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Ganoderma formosanum polysaccharides attenuate
Th2 inflammation and airway hyperresponsiveness
in a murine model of allergic asthma
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Abstract

Allergic asthma is an inflammatory disease of the airways mediated by Th2 immune responses and characterized
by airway hyperresponsiveness (AHR). Fungi of the genus Ganoderma are basidiomycetes that have been used
in traditional Asian medicine for centuries. We recently found that PS-F2, a polysaccharide fraction purified from
the submerged culture broth of Ganoderma formosanum, stimulates the activation of dendritic cells and primes
a T helper 1 (Th1)-polarized adaptive immune response. This study was designed to investigate whether the Th1
adjuvant properties of PS-F2 could suppress the development of allergic asthma in a mouse model. BALB/c mice
were sensitized by repeated immunization with chicken ovalbumin (OVA) and alum, followed by intranasal
challenge of OVA to induce acute asthma. PS-F2 administration during the course of OVA sensitization and
challenge effectively prevented AHR development, OVA-specific IgE and IgG1 production, bronchial inflammation,
and Th2 cytokine production. Our data indicate that PS-F2 has a potential to be used for the prevention of
allergic asthma.
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Background
Allergies or hypersensitivity is an immune disorder that
occurs when the immune system reacts to noninfectious
and normally innocuous environmental antigens (allergens).
Allergens first stimulate/sensitize an adaptive immune
response with the development of immunological memory
in predisposed individuals. Subsequent exposures to aller-
gens activate memory response, resulting in inflammation
and tissue damage that can sometimes be fatal (Galli et al.
2008). Immunoglobulin E (IgE)-mediated allergic reaction
results from the binding of allergens to allergen-specific
IgE bound to its Fc receptor, primarily on mast cells.
Crosslinking of Fcε receptors causes the degranulation of
mast cells and the release of inflammatory mediators,
which then recruit leukocytes from the blood. Both innate
immune cells (monocytes, eosinophils, and neutrophils)

and adaptive immune cells (T and B lymphocytes) are
recruited to the site of allergen challenge. The recruited
T lymphocytes are primarily CD4+ T helper (Th) cells
secreting IL-4, IL-5, and IL-13; thus, IgE-mediated allergy
is recognized as a Th2-skewed immune response (Galli
et al. 2008).
In allergic asthma, inflammatory reactions occur in the

lower airways and cause difficulties in breathing. Within
seconds of mast-cell degranulation, fluid and mucus are
secreted into the respiratory tract, and contraction of the
smooth muscle surrounding the airway causes bronchial
constriction. During the late-phase reaction, the Th2
cytokines produced by mast cells and T lymphocytes
together induce changes in the airways and lung paren-
chyma. Repetitive or persistent exposure to allergens cause
chronic inflammation of the airways with a persistent
infiltration of leukocytes, resulting in epithelial injury,
thickening of the airway walls, increased deposition of
extracellular-matrix proteins, hyperplasia of goblet cells,
and mucus hypersecretion (Hamid and Tulic 2009). The
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inflammatory and structural changes in the airways lead
to airway hyperresponsiveness (AHR), which is a clinical
feature of bronchial asthma and is closely associated with
the severity of the disease. In chronic asthma, the airways
are in a state of generalized hyperresponsiveness, and
environmental factors other than reexposure to specific
allergens can also trigger asthmatic attacks (Leikauf 2002).
Currently, patients with allergic asthma are primarily

treated with inhaled corticosteroids and bronchodilators,
and leukotriene receptor antagonists. Corticosteroids can
modulate Th2 cytokine production and dampen the
associated inflammatory responses. However, the effect
of corticosteroids is broad and nonspecific; thus, thera-
peutic approaches with specific targets have also been
developed (Barnes 2004). Allergy immunotherapies that
aim to induce specific immune tolerance to allergens
have been used in clinical practice for a century, and
allergens delivered subcutaneously or sublingually have
both been shown to prevent the development of asthma
(Burks et al. 2013; Fitzhugh and Lockey 2011). Although
effective in many patients, allergy immunotherapy is not
successful in all individuals, and there remains the risk of
allergen-induced anaphylaxis. More recently, new treat-
ment strategies have been designed to target components
of the Th2 pathway using biologics (Pelaia et al. 2012),
such as IL-4Rα antagonists (Wenzel et al. 2007), and
antibodies to IgE (Rodrigo et al. 2011), IL-13 (Ingram
and Kraft 2012), and IL-5 (Walsh 2013). Accumulating
evidence is supporting the efficacy of biological therapies
in treating allergic asthma; however, current data also
show that patients’ individual responses to these therapies
are variable, highlighting the heterogeneity in asthma
patients and the need to develop phenotype-targeted
therapies (Pelaia et al. 2012). Besides blocking the effector
molecules of the Th2 pathway, approaches targeting
innate immunity have also been designed since the
innate immune response can influence the development
of Th subsets (Zhu et al. 2010). Activation of many
TLRs results in IL-12 production by antigen-presenting
cells (APCs), therefore skewing the cytokine balance
from Th2 to Th1. Synthetic agonists for TLR4, TLR7,
and TLR9 are currently studied in clinical trials for the
treatment of asthma and allergies (Bezemer et al. 2012).
Medicinal mushrooms have been used as health-pro-

moting supplements in Asia for centuries, and modern
scientific research has revealed that the polysaccharides
and proteins derived from mushrooms exhibit potent
immunomodulatory activities (Li et al. 2011; Wasser 2002;
Xu et al. 2011). The higher basidiomycete Ganoderma
(also called Ling-Zhi or Reishi) is one of the most studied
medicinal fungi, and various pharmacologically active
constituents of Ganoderma have been characterized (Boh
et al. 2007; Paterson 2006). Ganoderma formosanum is
a native Ganoderma species isolated in Taiwan, and we

have previously shown that a polysaccharide fraction,
PS-F2, purified from the submerged culture fluid of G.
formosanum stimulates macrophage activation by activat-
ing Toll-like receptor 4 (TLR4), Dectin-1, and complement
receptor 3 (Wang et al. 2012; Wang et al. 2011). Fur-
thermore, we recently showed that by stimulating the
maturation of dendritic cells, PS-F2 could serve as a Th1
adjuvant and activate antitumor cytotoxic T cell responses
(Pi et al. 2014). These observations led us to hypothesize
that by stimulating a Th1-skewing immune response,
PS-F2 could potentially suppress Th2-mediated allergic
inflammation. In the present study, we tested this hypoth-
esis and found that the administration of PS-F2 during
the course of allergen sensitization and challenge could
attenuate Th2 inflammation and AHR in a murine
model of allergic asthma.

Results
PS-F2 treatment alleviates OVA-induced AHR in mice
To investigate whether PS-F2 could modulate a Th2-biased
immune response, we examined the effect of PS-F2 treat-
ment on OVA-induced allergic asthma in mice. Animals
were divided into three groups (PBS, OVA, and PS-F2),
which each received different treatments (Figure 1A). Aller-
gic asthma was induced by first sensitizing mice with three
i.p. immunizations with OVA+ alum on days 0, 10, and 20,
followed by an i.n. challenge of OVA on day 27 (Figure 1B).
To evaluate the effect of PS-F2 on allergic asthma induc-
tion, mice were also treated i.p. with PBS or PS-F2 several
times during the experimental period (Figure 1B). Twenty-
four hours after the i.n. OVA challenge, AHR was measured
with increased doses of methacholine by using the flexiVent
system. As shown in Figure 2 and Additional file 1, mice
immunized and challenged with OVA showed significantly
increased AHR following methacholine exposure compared
with the control animals (PBS group), which received only
the i.n. OVA challenge but were not pre-sensitized by OVA
immunization, indicating that the OVA-immunized/chal-
lenged mice developed symptoms of allergic asthma. In
clear contrast to this, the AHR response was significantly
attenuated in the OVA-immunized/challenged mice that
had also been given PS-F2 (Figure 2 and Additional file 1),
indicating that PS-F2 treatment suppressed the develop-
ment of OVA-induced allergic asthma in mice.

PS-F2 treatment attenuates bronchial inflammation in
OVA-challenged mice
Airway eosinophilic inflammation is a characteristic feature
of asthma. To determine whether attenuated bronchial
hyperresponsiveness in PS-F2-treated mice was associated
with reduced airway inflammation, we also analyzed the
recruitment of inflammatory cells into the airway walls by
counting the cells in BALF and via histological examination
of the lungs. Differential BALF cell counts revealed that
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OVA immunization and challenge resulted in a marked
bronchial infiltration of inflammatory cells, including eosin-
ophils, monocytes, lymphocytes, and neutrophils (Figure 3
and Additional file 2), whereas the recruitment of all types of
inflammatory cells was significantly reduced in the PS-F2-
treated animals (Figure 3 and Additional file 2). Extensive

inflammatory infiltrates into the peribronchial areas
were clearly seen in OVA-immunized/challenged mice by
histological examination of lung tissue sections (Figure 4).
In contrast, inflammatory infiltrates were markedly atten-
uated in mice treated with PS-F2 (Figure 4). These data
indicate that treatment of animals with PS-F2 during

Figure 1 Schematic diagrams of the experimental group design and protocol for chicken ovalbumin (OVA)-induced allergic asthma.
(A) Female BALB/c mice were divided into PBS, OVA, and PS-F2 groups (n = 10) which received different immunizations and treatments as indicated.
(B) Mice were immunized with OVA + alum or PBS on days 0, 10, and 20. Mice also received treatment with PS-F2 or PBS on the indicated days. All
animals were challenged i.n. with OVA on day 27. Twenty-four hours after OVA challenge, airway hyperresponsiveness (AHR) was measured, mice were
sacrificed, and serum, bronchoalveolar lavage fluid (BALF), and lung tissue samples were collected for further analysis.

Figure 2 PS-F2 treatment alleviates OVA-induced AHR in mice. Mice were immunized, treated, and challenged as described in Figure 1. Airway
responses to methacholine were measured with the flexiVent apparatus 24 h after i.n. OVA challenge. Data are presented as the ratio of the
lung resistance (RL) at a given dose of methacholine compared to that obtained with PBS (n = 10). Data shown are representative of 2 experiments.
*P < 0.05 versus OVA group.
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OVA sensitization and challenge strongly suppressed
OVA-induced airway inflammation.

PS-F2 administration suppresses OVA-induced Th2 immune
responses
The cytokines produced by allergen-specific Th2 lympho-
cytes are thought to be responsible for many symptoms of
asthma. To investigate whether PS-F2 treatment attenuated
OVA-induced AHR and inflammation by suppressing the
development of a Th2 immune response, we first measured
levels of IL-4, IL-5, and IL-13 (protypical Th2 cytokines) in
BALF. As expected, mice sensitized and challenged with
OVA produced significant amounts of IL-4 (Figure 5A),
IL-5 (Figure 5B), and IL-13 (Figure 5C), and in contrast,
levels of these cytokines were markedly reduced in PS-F2-
treated animals (Figure 5 and Additional file 3). We
further analyzed the production of OVA-specific IgE, IgG1,
and IgG2a in serum; the former two isotypes are indicators
of Th2-skewed inflammation and IgG2a is a marker of
Th1-skewed inflammation. As shown in Figure 6 and
Additional file 4, OVA immunization and challenge
induced a significant production of OVA-specific IgE
(Figure 6A), IgG1 (Figure 6B), and IgG2a (Figure 6C)
antibodies. PS-F2 treatment resulted in significant reduc-
tion in OVA-specific IgE (Figure 6A) and IgG1 (Figure 6B)
levels; while the production of OVA-specific IgG2a was
less affected (Figure 6C), indicating that PS-F2 did not
induce a general suppression in antibody production.
Together these data showed that PS-F2 treatment could
effectively prevent the development of a Th2-skewed
inflammation in OVA-sensitized/challenged mice.

Discussion
In a previous study, we found that PS-F2, the polysac-
charides produced by G. formosanum, could function as
an adjuvant and prime an antigen-specific Th1 immune

response (Pi et al. 2014). This observation prompted us
to investigate whether PS-F2 treatment could attenuate
Th2-mediated immunopathology in vivo through modu-
lating the Th1/Th2 balance. In this study, we tested our
hypothesis using an OVA-induced allergic asthma model
in mice. Our data showed that administration of PS-F2 to
OVA-sensitized/challenged animals attenuated all features
of allergic asthma, including bronchial inflammation, the
development of AHR, the secretion of Th2 cytokines, and
the production of OVA-specific IgE and IgG1 antibodies.
PS-F2 is therefore a novel agent that can be used to pre-
vent allergic asthma. These findings also provide a new
insight into the immunomodulatory functions of the
medicinal fungus Ganoderma.
The major finding in this report is that PS-F2 treatment

significantly lowered the degree of AHR and airway
inflammation in OVA-sensitized/challenged mice. In this
widely used murine asthma model, animals are first sensi-
tized systemically by repeated immunization with OVA+
alum, which induces a strong Th2 immune response that
is associated with the production of OVA-specific IgE and
IgG1 (Beck and Spiegelberg 1989). Airway challenge of
presensitized mice with OVA then induces airway inflam-
mation with preferential eosinophilic infiltration and AHR
(Zhang et al. 1997). Although this model does not cause
chronic airway inflammation and remodeling, as seen in
human asthma, it does mimic the allergic pulmonary
inflammation and AHR seen in humans and is therefore
useful for evaluating the potential therapeutic agents of
asthma (Szelenyi 2000). Our data show that PS-F2 treat-
ment effectively suppressed the development of both
AHR and airway inflammation, suggesting that these
two events are closely associated. Indeed, airway allergic
inflammation is thought to be the basis for AHR, and both
cellular and noncellular aspects of airway inflammation
are hypothesized to be important (Wills-Karp 1999).

Figure 3 PS-F2 treatment attenuates bronchial inflammation in OVA-challenged mice. Mice were immunized, treated, and challenged as
described in Figure 1. BALF was collected on day 28, and the numbers of total BALF cells, eosinophils, monocytes, lymphocytes, and neutrophils were
determined by microscopic differential cell counts (n = 10). Data shown are representative of 2 experiments. * P < 0.05, ** P < 0.01, *** P < 0.001.
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In the OVA-sensitized/challenged mice, we detected
marked infiltration of eosinophils, monocytes, and lym-
phocytes into the lungs, which are characteristics of late-
phase responses in allergic asthma (Wills-Karp 1999).

Among these cells, eosinophils are thought to be the key
effector cells contributing to airway dysfunction and tissue
remodeling in allergic asthma (Jacobsen et al. 2007). The
reduced eosinophilia in the lungs of PS-F2-treated animals

Figure 4 PS-F2 treatment attenuates inflammatory cell infiltration of the airways. Mice were immunized, treated, and challenged as described
in Figure 1. On day 28, lung sections were prepared, stained with hematoxylin and eosin, and photographed under light microscopy at × 400
magnification (scale bar = 50 μm). Prominent infiltrates of inflammatory cells are present in OVA group mice but not in PBS and PS-F2 group mice.
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was most likely due to the reduced level of IL-5. T lympho-
cytes, in particular CD4+ T cells, function as orchestrators
of the inflammatory response and play an important role
in the pathogenesis of asthma (Wills-Karp 1999). In PS-
F2-treated mice, a reduced number of lymphocytes was
associated with reduced levels of IL-4, IL-5, and IL-13 in
BALF, indicating that in OVA-sensitized/challenged mice,
the majority of lymphocytes recruited to the lungs were
Th2 cytokine-producing cells. Together these data sup-
port our hypothesis that administration of PS-F2, which is
a Th1 adjuvant, before allergen exposure may suppress the
induction of a Th2-mediated allergic inflammation, and
therefore attenuates airway pathology and AHR.
The development of Th1/Th2/Th17 immune responses

is regulated by the signals provided by APCs, in particular
the cytokines produced by APCs upon activation (Zhu
et al. 2010). It is therefore possible to treat allergic disor-
ders with adjuvants that can skew the T cell response from
Th2 to Th1. Based on this assumption, synthetic TLR
agonists have been developed and tested clinically to
treat asthma and allergies (Bezemer et al. 2012). CpG
oligodeoxynucleotides (ODNs), which activate TLR9, are
the most extensively investigated synthetic TLR agonists
in preclinical and clinical studies for the treatment of aller-
gic asthma (Fonseca and Kline 2009). It was reported that
CpG ODNs induce the production of interferon (IFN)-γ,
IL-6, and IL-12 by NK cells, B cells, and CD4+ T lympho-
cytes both in vivo and in vitro (Klinman et al. 1996). CpG
ODN was also found to stimulate dendritic cells (DCs) to
produce IL-12 and IL-10, which resulted in both a Th1
response and the induction of IL-10-producing regulatory
T (Treg) cell production (Jarnicki et al. 2008). We found
that PS-F2 could stimulate DCs to produce TNF-α, IL-12
p40, IL-6, and IL-10 (Pi et al. 2014), similar to the cyto-
kines secreted by CpG-ODN-treated DCs. Therefore, in
addition to the induction of a Th1 response, PS-F2 could
possibly also induce the generation of Treg cells, and these
responses may work together to confer the observed pro-
tective effects on allergic inflammation. The induction of
indoleamine 2,3 dioxygenase (IDO) production has also
been linked to the antiasthmatic effects of CpG ODNs
(Hayashi et al. 2004); whether PS-F2 could induce IDO is
a valid question and will require further investigation.
Besides suppressing the development of allergic asthma,
CpG ODNs have also been investigated as therapeutic
agents for other allergic disorders, such as allergic rhinitis
and conjunctivitis (Hussain et al. 2002; Magone et al.
2000; Rhee et al. 2004). The data obtained in this study

Figure 5 PS-F2 administration suppresses OVA-induced Th2
cytokine production. Mice were immunized, treated, and challenged
as described in Figure 1. On day 28, BALF was collected, and levels of
IL-4 (A), IL-5 (B), and IL-13 (C) were determined by ELISA (n = 10). Data
shown are representative of 2 experiments. * P < 0.05, ** P < 0.01.
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Figure 6 (See legend on next page.)
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also warrant future investigation of the use of PS-F2 in the
treatment of other atopic diseases. In this study, PS-F2
was given alone to mice before and during the course of
allergen exposure, and it will be worth testing the efficacy
of other treatment protocols. For example, PS-F2 can be
administered after the induction of disease to examine
its therapeutic effect; PS-F2 can also be administered
in conjunction with allergens and serve as an adjuvant
in subcutaneous immunotherapy (SCIT) and sublingual
immunotherapy (SLIT).
Natural products have been used as major sources of

medicine throughout the world for centuries, and many
of them exhibit immunomodulatory functions (Chlubnova
et al. 2011; Ramberg et al. 2010). Because allergic asthma
is a Th2-mediated inflammatory disease, theoretically,
substances that exhibit antiinflammatory and/or Th1-
skewing properties could potentially be used to ameliorate
the disease. Numerous herbs, phytochemicals, and vitamins
have been investigated for their interactions with the im-
mune system and used as complementary and alternative
medicines in treating atopic disorders (Chang et al. 2013;
Chang et al. 2011; Hwang et al. 2012; Lee et al. 2012a; Lee
et al. 2010; Lee et al. 2012b; Mainardi et al. 2009; Rao et al.
2013; Wang et al. 2013). Ganoderma is a medicinal fungus
that is considered to be a therapeutic biofactory with
numerous pharmacologically active components (Paterson
2006). In this study, we provide evidence that PS-F2,
the extracellular polysaccharides produced during the
submerged culture of G. formosanum, effectively suppress
the development of allergic asthma in mice. Similar to our
observation, Liu et al. reported that polysaccharides
extracted from another medicinal fungus, Antrodia
camphorate, could stimulate the production of IL-12
and IL-10 in DCs and alleviate OVA-induced allergic
asthma in mice (Liu et al. 2010). Jan et al. found that
polysaccharides extracted from the fruiting bodies of
G. lucidum could stimulate the production of IFN-γ and
downregulate IL-5 production from T cells co-cultured
with DCs derived from asthmatic children (Jan et al.
2011). Therefore we speculate that other fungal poly-
saccharides with similar activity on DCs and/or with
Th1 adjuvant activity may also exhibit antiallergic functions.
Besides polysaccharides, a triterpenoid-rich extract of G.
tsugae was also shown to attenuate the Th2 inflammation
in a murine asthma model (Chen and Lin 2007). Thera-
peutic benefits on allergen-induced airway inflammation
were observed when crude extracts of G. lucidum (Liu
et al. 2003) and G. tsugae (Lin et al. 2006) were orally

administered to mice. Whether PS-F2 maintains its anti-
asthmatic functions when given orally will require further
investigation. Additional long-term experiments will also be
needed to evaluate whether the preventive/therapeutic
benefit of PS-F2 can be sustained and whether continuous
administration of PS-F2 has any adverse effect.

Conclusion
In conclusion, our data demonstrate that systemic admin-
istration of PS-F2 can suppress Th2-mediated bronchial
inflammation and the development of AHR in a murine
model of allergic asthma. Although the animal model used
in this study may not fully recapitulate the human condi-
tion, our data suggest that PS-F2 has a potential to be
developed into a preventive agent for allergic asthma.

Materials and methods
Animals
Female BALB/c mice (6 weeks old; average weight 20 g)
were purchased from the National Laboratory Animal
Center (Taipei, Taiwan). This study was carried out in
strict accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals of the Council
of Agriculture, Taiwan. The protocol was approved by
the Institute Animal Care and Use Committee of National
Taiwan University, and all mice were kept in the animal
facilities of the College of Life Science at National Taiwan
University.

PS-F2 and reagents
The major polysaccharide fraction PS-F2 was purified
from the submerged culture of G. formosanum Chang et
Chen (ATCC 76538) as previously described (Wang et al.
2011). The purified PS-F2 was passed through an endo-
toxin removal column (Detoxi-Gel Endotoxin Removing
Gel, Thermo Scientific, Rockford, IL) and the endotoxin
level in the samples was determined to be < 0.3 EU/mg
by the Pyrotell Limulus Amebocytes Lysate (LAL) test
(Associates of Cape Cod, Falmouth, MA). Chicken ovalbu-
min (OVA) and pentobarbital sodium were purchased
from Sigma-Aldrich (St. Louis, MO) and passed though
the Detoxi-Gel Endotoxin Removing Gel before use.
Hanks’ balanced salt solution (HBSS) was purchased from
Thermo Scientific HyClone (Logan, UT). Fetal bovine
serum (FBS) was purchased from Biological Industries
(Beit-Haemek, Israel). Dulbecco's phosphate buffered
saline (DPBS) was purchased from Life Technologies

(See figure on previous page.)
Figure 6 Effect of PS-F2 administration on the production of OVA-specific antibodies. Mice were immunized, treated, and challenged as
described in Figure 1. (A) On day 14, serum levels of OVA-specific IgE were determined by ELISA. (B, C) On day 28, serum levels of OVA-specific
IgG1 (B), and IgG2a (C) were determined by ELISA. n = 10 in all groups. Data shown are representative of 2 experiments. * P < 0.05, ** P < 0.01,
*** P < 0.001.
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(Gaithersburg, MD). All other chemicals were purchased
from commercial sources at the highest purity available.

Mice sensitization, challenge, and treatment
Female BALB/c mice were divided into three groups (PBS,
OVA, and PS-F2) and treated as illustrated in Figure 1.
In brief, mice were sensitized by intraperitoneal (i.p.)
immunization with 50 μg of OVA emulsified in 4 mg of
aluminum hydroxide (alum, Thermo Scientific) in a
total volume of 200 μl in DPBS (OVA and PS-F2 groups)
or DPBS alone (PBS group) on days 0, 10 and 20. To
investigate the effect of PS-F2 on asthma induction,
mice were treated i.p. with PBS (PBS and OVA groups)
or 50 mg/kg of PS-F2 (PS-F2 group) on days −3, −1, 7, 9,
17, 19, 25, 26, and 27. Mice were challenged by intranasal
(i.n.) injection of 100 μg of OVA on day 27 in all three
groups. Twenty-four hours after OVA challenge, AHR
was measured, and blood was collected for measuring
OVA-specific antibodies. Mice were then sacrificed, the
bronchoalveolar lavage fluid (BALF) was harvested, and
lung sections were prepared.

OVA-specific antibody analysis
OVA-specific IgE in serum was measured by ELISA on
day 14 after OVA immunization. OVA-specific IgG1 and
IgG2a in serum were measured by ELISA on day 28 after
OVA immunization. Ninety-six-well plates were coated
with 10 μg/ml OVA. After overnight incubation at 4°C,
plates were washed with PBS containing 0.05% Tween
20 (PBST) and blocked with 1% bovine serum albumin
in PBS for 2 h at room temperature. Serum samples were
diluted and added to each well overnight at 4°C. The plates
were then washed with PBST, and biotin-conjugated anti-
mouse IgE (1:100), IgG1 (1:10000), and IgG2a (1:1000)
(BD Biosciences, San Jose, CA) were added for 2 h at
room temperature. Streptavidin-conjugated horseradish
peroxidase was added for another 30 min at room tem-
perature. Finally, the reaction was developed by H2O2

and tetramethylbenzidine (BD Biosciences), and 650 nm
absorbance was measured using a microplate reader
(Thermo Scientific).

Measurement of airway hyperresponsiveness (AHR)
At 24 h after i.n. challenge of OVA, airway hyperrespon-
siveness was assessed by invasive measurement of lung
resistance and dynamic compliance. In brief, mice were
anesthetized with 80 mg/kg pentobarbital sodium, tra-
cheostomized, and mechanically ventilated at a rate of
150 breaths/min and a tidal volume of 0.3 ml/kg with a
computer-controlled small animal ventilator and pul-
monary function analyzer (flexiVent, SCIREQ, Montreal,
PQ, Canada), which was used for measuring respiratory
mechanics and lung function through forced oscillation.
To induce the symptoms of bronchial contraction and

AHR, mice were exposed to aerosolized PBS and metha-
choline for 20 sec. The pressure and volume change of
flow were recorded by electronic differentiation, and
lung resistance (RL) was calculated automatically by the
flexiVent software. The ratio of RL was measured after
PBS nebulization with increasing doses of methacholine
(1.56, 3.13, 6.25, 12.5, 25 mg/ml).

Bronchoalveolar lavage and BALF analysis
Bronchoalveolar lavage was performed by instilling 1 ml
of HBSS containing 2% FBS to the trachea twice via a
trachea cannula (Angiocatch®, BD Biosciences), and BALF
was harvested by gentle aspiration. After centrifugation
(300 × g, 3 min), BALF supernatants were assayed for
IL-4, IL-5, and IL-13 by ELISA (eBioscience, San Diego,
CA). BALF cells resuspended in HBSS (1 × 105 cells/ml)
were cytospined (300 × g, 5 min) onto slides and stained
with Liu’s staining. Differential cell counts were performed
under a microscope, and a minimum of 300 cells were
counted and classified into eosinophils, monocytes, lym-
phocytes, and neutrophils based on the standard morpho-
logical criteria.

Lung histology
After sacrifice, the lungs of mice were immediately re-
moved and fixed with 10% neutral phosphate-buffered
formalin. The lung tissues were embedded in paraffin
and cut into 5-μm-thick sections. The sections were then
stained with hematoxylin and eosin and examined under a
light microscope.

Statistical analysis
Statistical analysis was performed using an unpaired,
two-tailed Student's t-test and a P < 0.05 was considered
significant. Data are reported as mean ± SEM.

Additional files

Additional file 1: Effect of PS-F2 treatment on OVA-induced AHR in
mice. Mice were immunized, treated, and challenged as described in
Figure 1. AHR (RL ratio) was measured as described in Figure 2.

Additional file 2: Effect of PS-F2 treatment on bronchial inflammation
in OVA-challenged mice. Mice were immunized, treated, and challenged as
described in Figure 1. On day 28, the numbers of total BALF cells and
inflammatory cells were determined as described in Figure 3.

Additional file 3: Effect of PS-F2 treatment on OVA-induced Th2
cytokine production. Mice were immunized, treated, and challenged as
described in Figure 1. On day 28, levels of Th2 cytokines in BALF were
determined as described in Figure 5.

Additional file 4: Effect of PS-F2 treatment on the production of
OVA-specific antibodies. Mice were immunized, treated, and challenged
as described in Figure 1. On day 28, serum levels of OVA-specific antibodies
were determined as described in Figure 6.
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