
Increased de novo copy number variants in the
offspring of older males
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The offspring of older fathers have an increased risk of neurodevelopmental disorders, such as schizophrenia and autism. In
light of the evidence implicating copy number variants (CNVs) with schizophrenia and autism, we used a mouse model to explore
the hypothesis that the offspring of older males have an increased risk of de novo CNVs. C57BL/6J sires that were 3- and 12–16-
months old were mated with 3-month-old dams to create control offspring and offspring of old sires, respectively. Applying
genome-wide microarray screening technology, 7 distinct CNVs were identified in a set of 12 offspring and their parents.
Competitive quantitative PCR confirmed these CNVs in the original set and also established their frequency in an independent
set of 77 offspring and their parents. On the basis of the combined samples, six de novo CNVs were detected in the offspring of
older sires, whereas none were detected in the control group. Two of the CNVs were associated with behavioral and/or
neuroanatomical phenotypic features. One of the de novo CNVs involved Auts2 (autism susceptibility candidate 2), and other
CNVs included genes linked to schizophrenia, autism and brain development. This is the first experimental demonstration that
the offspring of older males have an increased risk of de novo CNVs. Our results support the hypothesis that the offspring of
older fathers have an increased risk of neurodevelopmental disorders such as schizophrenia and autism by generation of
de novo CNVs in the male germline.
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Introduction

The offspring of older fathers have an increased risk of a range
of neuropsychiatric disorders, including autism,1 schizophre-
nia,2,3 bipolar disorder4 and epilepsy.5 The mechanisms
underlying the increased risk of various neurodevelopmental
disorders in the offspring of older fathers remain unclear;
however, it has been proposed that de novo point mutations
and copy number variants (CNVs) in the continually dividing
spermatogonia in older males underlie this association.2,6

Copy number variants refer to regions of the genome with
deletions, inversions or expansions of B1 kb up to several
100 kb in size.7 These may occur throughout the genome, but
are enriched in regions flanked by segmental duplication in
both humans8,9 and mouse.10,11 When CNVs encompass
genes, they can give rise to an increase or a decrease in gene
copy number, or they can contribute to the generation of
pseudogenes. CNVs have been associated with neuropsy-
chiatric disorders, including autism,12–14 schizophrenia,15–18

epilepsy19,20 and mental retardation.21,22 Carriers of such
CNVs tend to present with a variable phenotype, and a number
of these CNVs can occur in apparently healthy individuals.23

In light of the links between advanced paternal age (APA)
and neurodevelopmental disorders such as schizophrenia
and autism, various rodent-based models have been devel-
oped to explore the phenotypic correlates of APA.24–26 On the
basis of an APA C57BL/6J mouse model, we have previously

reported that the offspring of older sires had subtle changes in
anxiety-related outcomes and changes in cortical thickness.27

To date, we have not explored our model with respect to
de novo CNVs. In this preliminary study, we explored the
feasibility of CNV detection in our APA model. We hypo-
thesized that the offspring of older sires would have more
de novo CNVs than would the offspring of control sires. As the
offspring used in this study had also been assessed on
selected behavioral tests and structural magnetic resonance
imaging (MRI), we also had the opportunity to explore
phenotypic correlates of identified CNVs as a secondary
research question.

Materials and methods

Generation of control and APA families. Families with
control sires and those with old sires were generated as
described in detail elsewhere.27 Virgin 3-month-old (control)
and 12–16-month-old (APA) male C57BL/6J mice were
selected to sire offspring; each was time mated with a
3-month-old female of the same strain. Offspring from
3-month-old males were used as controls, whereas
offspring from males aged 12–16 months comprised the
APA condition. Offspring were housed in groups of two to five
with littermates where possible, but always with offspring
from the same paternal condition. Mice were obtained from
the University of Queensland C57BL6/J (JAX) mouse stock,
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and all procedures were performed with approval from the
University of Queensland Animal Ethics Committee, under
the National Health and Medical Research Council of
Australia Guidelines. Further details are available in
Supplementary Material S1.

Array hybridization and detection of CNVs. Two arrays
were used in combination to identify CNVs. For genome-wide
screening, a commercially available microarray-based
Comparative Genomic Hybridization (aCGH) (Mouse
Genome CGH 244A Oligo Microarray, Agilent Technologies
Australia, Forest Hill, Victoria, Australia) was used, which
contained 236 000 mapped 60-mer probes tiling the entire
mouse genome at an average distance of B11 kb. CNVs
occur with higher frequency in the vicinity of segmental
duplication, and the genomic structure in these regions is
often complex in nature.10 Furthermore, it becomes more
difficult to distinguish a one-copy change in a target region
already present in multiple copies in the general population,
as the expected log(2) intensity ratio derived from a two-color
array decreases as a function of increasing reference copy
number. To address these considerations, a custom array
targeting CNVs identified recently by She et al.28 in a
comprehensive comparison of different strains with C57BL/
6J was used. Designed by Dr S. Chong and printed by
Agilent, this array contained 11 800 60-mer probes spread
over the genome at random and 15 580 targeted probes
printed in duplicate. Selecting CNVs that could be targeted
with at least two pre-designed and computationally validated
probes, the custom array achieved 40% coverage of the
variant intervals mapped by She et al.28 The resulting probe
spacing at CNV loci varied but averaged at 1.5 kb.

Using these two arrays, we examined CNVs in two APA and
two control families (three offspring in each of the families and
equal number of sexes within each experimental group; total
offspring n¼ 12). To control for sex chromosome loading, each
female test sample was competitively hybridized against a
common female reference sample, and each male test sample
against a common male reference sample. A comparison of
the references allowed detection of any bias in autosomal and
pseudoautosomal regions where aberrations were identified
on the arrays. Preparation and labeling of genomic DNA, array
hybridization, scanning and feature extraction were performed
in accordance with the manufacturer’s recommended proto-
cols. Arrays were analyzed further using the Agilent DNA
Analytics v4.0.76 software to assure hybridization quality and
to detect aberrations. Detected aberrations were subjected to
further filtering to select distinct amplifications and deletions for
further inspection. These procedures are described in detail in
Supplementary Material S1.

Validation and examination of candidate CNVs in an
independent sample. The candidate CNVs identified by
arrays were validated with Sequenom (Sequenom, QLD,
Australia), which combined competitive quantitative PCR and
matrix-assisted laser desorption/ionization-time of flight
mass spectrometry29,30 (see Supplementary Material S1).
In brief, assays were designed targeting regions of interest
(seven CNVs in total and four control regions without
genomic aberrations). CNV2 to CNV7 and control regions

were targeted by one assay each. CNV1 was targeted by
three assays. Using these same methods, we also evaluated
the prevalence of the selected CNVs in an independent
sample of 77 offspring. These additional offspring, which
were generated from 10 APA and 10 control breeding pairs,
included 18 APA female and 16 APA male offspring, as well
as 24 control female and 19 control male offspring. On the
basis of the combined samples, all families were carefully
evaluated for de novo CNV aberrations in offspring. A CNV
that was detected in an offspring but was not detected in
either parent was classified as ‘de novo’.

Behavioral and neuroanatomical phenotyping. Beha-
vioral phenotyping was conducted when the offspring were
10 weeks of age and on separate and consecutive days in
the following order: elevated plus maze, hole board, light/
dark emergence, 2-day forced swim test and 2-day novelty-
suppressed feeding. The order of testing was such that the
tests most sensitive to handling were performed first
and those most stressful performed last. After 1 week of
free feeding, animals were tested on a 3-day active
avoidance and extinction protocol, tests for nociception
and prepulse inhibition of the acoustic startle response. All
behavioral observations were made blind to CNV status
and recorded from a central overhead camera, which was
attached to computerized tracking and event-recording
software, EthoVision version 3.1 (Noldus, Wageningen, The
Netherlands). Mice were acclimated to the testing room for 1 h
before testing and all arenas and apparatus were cleaned
between trials with 20% ethanol. After completion of behavioral
testing, animals were killed with pentobarbitone and perfused
transcardially with 4% paraformaldehyde containing 1% of a
separate MRI contrast-enhancement agent, Magnevist
(gadopentetate dimeglumine; Schering AG, Berlin, Germany)
to optimize gray/white matter boundaries). Immediately before
imaging, the brains were suspended in fomblin. Animals were
imaged in the 16.4-T microimaging facility (Centre for Advanced
Imaging, University of Queensland). Using a 15-mm diameter
solenoid coil, fast-low action shot images were obtained in
three dimensions with 50-mm voxel resolution. Regions-of-
interest volumetric estimates were derived using the OsiriX
software package (Rosset; GNU General Public License) with
boundaries determined from a mouse brain atlas.31 Brain
regions assessed included the hippocampus, striatum, septum,
corpus callosum and anterior commissure. All measurements
were made blind to CNV status and analyzed as proportions of
total brain volume. Further details of these measures are
described in a related publication.27

Statistics and data analysis. We hypothesized that the
offspring of older sires would have significantly more de novo
CNVs than would the offspring of control sires. On the basis
of the number of de novo CNVs in the offspring of the APA
and control groups, the odds ratio and 95% confidence
interval (two-tailed) were calculated. As no CNVs were called
in the control offspring, we used the Haldane correction by
adding 0.5 to each cell in the table, to generate a finite odds
ratio. For phenotype assessments, all offspring (regardless
of paternal age) were assessed with either (1) t-tests, in
which we could clearly allocate CNV present versus absent
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status, or regression analyses between the relative copy
number and the outcome of interest, in which a CNV was
prevalent and hypervariable.

Bioinformatic analysis of detected CNVs. The expression
of genes in the mouse and the human brains was established
using the Allen Brain Atlas (http://www.brain-map.org/). The
CNV regions were mapped to the human genome using
the UCSC genome browser (http://genome.ucsc.edu/). The
association of these loci with human disease was established
with the Sullivan Lab Evidence Project (https://slep.unc.edu/
evidence/)32 and the Online Mendelian Inheritance in Man
(http://www.ncbi.nlm.nih.gov/omim)33,34 databases. The
occurrence of CNVs in the syntenic genomic regions in
humans in control cases and cases with neurocognitive
dysfunction was explored using the Database of Genomic
Variants (http://projects.tcag.ca/variation/project.html),35,36

the DECIPHER (https://decipher.sanger.ac.uk/) and the
National Centre of Biotechnology Information (http://www.
ncbi.nlm.nih.gov/) databases.

Results

Identification and prevalence of CNVs. Seven CNVs
were identified in the array-based sample. All of these CNVs
were successfully validated by Sequenom (Supplementary
Material S2). Each CNV contained or overlapped with at
least one gene (Table 1, Supplementary Material S3). The
prevalence of these CNVs in the combined samples is shown
in Figure 1. The prevalence of CNVs within the total cohort of
mice tested in this study (including the relationship of animals
to each other, the experimental group status and the individual
relative copy numbers (rCNs)) can be found in Supplementary
Material S4.

Both CNV1 and CNV7 were found to be prevalent and
hypervariable in both the parents and the offspring (the wide
distribution of rCN for these CNVs in Figure 1 must be noted).
Therefore, it was not possible to determine whether these
particular CNVs in the offspring were de novo or inherited. The
detailed counts for the remaining five CNVs are shown in
Table 2. On the basis of these CNVs, in the combined
samples, we identified a total of six de novo CNVs, in the
offspring of aged sires — one offspring with a deletion in
CNV2, four offspring with deletions in CNV4 and one of CNV6.
The latter was a reversion of an X-linked region in a daughter
of an aged sire with an expansion in this locus (Supplementary
Material S4). No de novo CNVs were detected in the offspring
of control sires. We estimate that the offspring of aged sires
were 16 times more likely to have a de novo CNV compared
with the offspring of control sires (Haldane correction applied
to all counts; odds ratio and 95% confidence intervals¼ 15.9,
2.2—undefined, mid-P-exact¼ 0.005).

Correlation between CNV load and selected phenotypic
measures. We identified significant correlates for two of
the CNVs with behavioral and MRI-derived neuroanato-
mical phenotypes. For CNV1 (a prevalent and hypervari-
able locus), offspring with higher rCN had significantly
more avoidance responses (R¼ 0.489, F¼ 8.78, df¼ 28,
P¼0.006). For CNV6 (an X-linked locus) both behavioral and T
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neuroanatomical features were significantly correlated
(see Figure 2). As expected, the X-linked CNV6 expansion
was only seen in female offspring. When compared with
CNV-negative APA females, those with CNV6 expansion had
a higher score for tail flick (a measure related to pain
threshold; t(14)¼ 4.0, Po0.001) and higher scores on head
dip on the hole board test (a measure related to explora-
tory behavior; t(14)¼ 2.7, P¼ 0.02). With respect to the
MRI measures, those with CNV6 expansion had smaller
striatal (t (14)¼ 3.89, Po0.01) and hippocampal volumes
(t (14)¼ 4.84, Po0.01).

Bioinformatic analysis of syntenic regions in humans.
Copy number variant 1 spanned 33 characterized genes on
mouse chromosome 4 and their orthologs in the syntenic
region of this CNV in humans on chromosome 9. Within this
region, amplifications and deletions have been observed. A
gene encompassed by CNV1 (Sigmar1) has been asso-
ciated with alcoholism,37 schizophrenia38 and dementia.39

Copy number variant 2 spanned exons 3 and 4 in the mouse
and the syntenic human Auts2 gene (see Figure 3). This locus
has been associated with autism,40 schizophrenia,41 bipolar
disorder,42 attention deficit hyperactivity disorder43 and
alcoholism.44 Moreover, this gene was reported as differen-
tially methylated in a study on patients with schizophrenia and
major psychosis in schizophrenics.45 Although several small

Figure 1 Relative copy number (rCN) in the combined samples established by Sequenom. rCN in the combined samples was examined by Sequenom competitive
quantitative PCR. The data from both sets of animals are shown with all values scaled to set a relative CN of 1 at 0. (a) Variation in CNV2 was established using three separate
assays targeting the 50 prime, central or 30 prime region of this CNV, respectively. (b) The remaining CNVs were detected by one assay, each. CNV2–CNV6: Boxes denote
positive calls for amplifications or deletions. No formal assignment of calls was performed for the highly variable loci CNV1 and CNV7. CNV, copy number variant.

Table 2 Occurrence of CNV2, 3, 4, 5 and 6 in the combined samples

Parameter n CNV2 CNV3 CNV4 CNV5 CNV6

Advanced paternal age group
Sire 9 0 1 2 0 1
Dam 11 0 0 0 2 0
Female offspring 21 1 6 4 0 6
Male offspring 19 0 0 2 2 0

Sum 60 1 7 8 4 7

Control group
Sire 10 0 0 3 0 0
Dam 10 0 0 1 0 0
Female offspring 27 0 0 13 0 0
Male offspring 22 0 0 3 0 0

Sum 69 0 0 20 0 0

Total number of
animals (%)

129 1 (1) 14 (5) 28 (22) 8 (3) 14 (5)

De novo calls
Advanced paternal
age group

6 1 0 4 0 1

Control group 0 0 0 0 0 0

Abbreviation: CNV, copy number variant.
The number of sires, dams, male and female offspring tested in each
experimental group by either array and/or Sequenom is shown (n) together
with the number of those animals affected by an aberration. In addition, the total
number and proportion of all animals (%) affected and the number of de novo
calls for each CNV and each experimental group is detailed.
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CNVs have been observed in the general population,46–51

separate aberrations within this gene and overlapping with
CNV2 have been reported in cases with neurodevelopmental
disorders.19,52–54 Balanced translocations disrupting Auts2
have been observed in additional cases with autism spectrum
disorder and mental retardation.55 In addition, larger aberra-
tions encompassing Auts2 have been reported in cases with
mental retardation,54,56–58 Zellweger’s syndrome59 and social
cognitive delay.60

For CNV4, three (Anxa11, Plac9 and D14Ertd449e) of the
five genes affected by this CNV mapped to human chromo-
some 10. One patient with schizophrenia61 and two with
autism spectrum disorder54 carried aberrations o600 kb in
size that also contained these genes. CNV5 mapped to a
locus in human chromosome 8 that has been associated with
schizophrenia in a meta-analysis of genome-wide linkage
studies.62 An aberration containing this region was present in
a patient with mental retardation.54

Both CNV6 and CNV7 affected the Mid1 gene on
chromosome X. In the mouse, a pseudoautosomal boundary
is situated between exons 3 and 5 of Mid1.63 The region
upstream of exon 3 is specific to the X chromosome, whereas
the region downstream of this exon is located on both sex
chromosomes.63 The pseudoautosomal portion is highly
variable within C57BL/6J.28,64,65 In our current study, CNV6
spanned exons 2 and 3 and is, therefore, X-linked. The two
breakpoints for CNV7 were between exons 3 and 4 and
B11 kb downstream of this gene in the pseudoautosomal
region. CNV6 and CNV7 map to the same location in Mid1 in
humans, where the entire gene is X linked. Genetic loss of
function mutations in Mid1, has been found causative for the
Opitz G/BBB syndrome, which is characterized by a varied

phenotype that might include a range of midline birth defects
and mental retardation.66 A patient with Opitz G/BBB
syndrome and autism carried a discrete deletion of Mid1 exon
2 (contained in CNV6).67 A separate case with autism but
without Opitz G/BBB syndrome carried a duplication that
included the Mid1 gene from exon 2 onwards to a region
B500 kb downstream of his gene.68

Discussion

We report, for the first time, experimental evidence indicating
that the offspring of older males have an increased risk of
de novo CNVs. Although the field has long appreciated that
male germ cells would be at risk of more copy error mutations
compared with female germ cells,69,70 the empirical evidence
has rested on the observation that particular types of
paternally derived translocations seem to be more common
in offspring of older men,71,72 and studies that compared the
counts of candidate point mutations in the sperm of men of
different ages.73,74 Here, we used a well-controlled mouse
model to investigate the impact of paternal age on CNVs in the
offspring. Although our sample size was small, we identified
six de novo CNVs in this study, and all de novo CNVs were in
the offspring of aged sires.

On the basis of detailed comparisons between C57BL/6J
and closely related strains, Egan et al.65 estimated that de novo
CNVs occurred once in every 46–139 offspring. The lack of
de novo CNVs in the offspring of control animals is consistent
with these estimates. In contrast, for the offspring of aged
sires, we estimate that the incidence of de novo CNVs is once
in every six or seven offspring. Although we cannot be
certain that the de novo CNVs originated in the paternal
germline, because the age of the dams was the same in the two
groups, we would have expected an even distribution of
maternally derived mutations in the two groups. Similarly,
somatic mutations after fertilization should be equally repre-
sented in both groups. On the balance of probability, it is likely
that these CNVs were derived from the male germline. Future
studies could use dams and sires from different mouse
strains to allocate de novo CNVs to maternal or paternal
chromosomes.

With respect to the clinical relevance of our findings in
humans, our mouse model detected CNVs that impact on
genes previously linked to autism, schizophrenia and mental
retardation. Three of the CNVs occurred in regions of
prominent segmental duplication, which suggests that non-
allelic homologous recombination may underlie at least some
of the age-related CNVs. The two prevalent and hypervariable
CNVs (CNV1 and CNV7) are of interest and potentially
important for interpreting within-colony variation in this strain
of mouse. However, these may be less relevant to human
health outcomes as disease-related CNVs tend to be rare and
‘privileged’ within pedigrees.23 It should also be noted that
mechanisms other than CNVs may contribute to the asso-
ciation between APA and increased risk of disorders, such as
schizophrenia and autism. For example, it is feasible that
epigenetic changes identified in sperm from older males
may also contribute to adverse health outcomes in the
offspring.75

Figure 2 Normalized values on CNV6 load—MRI and behavioral measures.
HB center time¼ proportion of time spent in center zone of the hole board arena.
Avoidance response and head dip are count variables. Tail flick and HB center time
are timed outcomes (in seconds). Startle response is average amplitude of
response to 120 decibels. MRI outcomes include volume of the striatum,
hippocampus and ventricles, and width of the corpus callosum. Statistically
significant group differences by CNV6 status are shown with an asterisk. CNV, copy
number variant; HB, hole board; MRI, magnetic resonance imaging.
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The study has several important limitations. As our study
was exploratory in nature, the sample size was small, and we
used readily accessible technology to assess CNVs. The use
of (1) aCGH arrays with greater probe coverage, and/or deep
sequencing technology and (2) larger sample sizes, would
optimize more complete CNV discovery in our APA model.
Unfortunately, our experimental protocols required killing
animals for ex vivo MRI before the results of the CNV analysis
were completed, thus we were not able to establish breeding
lines from the offspring carrying APA-related de novo CNVs.
Adequate numbers of CNV-bearing offspring would
be required for optimal behavioral and neuroanatomical

phenotyping. Furthermore, the broad range of phenotypic
measures used in our standard APA screening battery involve
many comparisons, inflating type I error (our results were not
adjusted for multiple comparisons). As such, the phenotypic
findings reported in this study should be considered explora-
tory in nature and require replication in well-powered samples.

As sequencing technology improves, it may also be feasible
to examine the mechanism underpinning APA directly in the
sperm of young versus older males. Studies based on point
mutations in a candidate gene have already demonstrated the
utility of this strategy in pooled sperm samples.73,74 Further-
more, the mouse may not be the ideal species with respect

Figure 3 CNV2 details. (a) Array log(2) signal intensity ratios of the individual probes are plotted along mouse chromosome 5 and connected with a trend line based on
triangular smoothening. A de novo deletion (CNV2) affecting the Auts2 gene was detected in one female offspring of an old sire. The two purple lines depict the result of a
technical replicate with the animal containing the deletion. The black line visualizes the result obtained from a self-hybridization array, which was used to control for noise. The
location of the CNV on the mouse genome is boxed. (b) CNV2 was aligned to the human genome using the UCSC genome browser (http://genome.ucsc.edu/) together with
copy variants observed in the human and genomic regions associated with neurocognitive disease. HapMap: Case from the International Hapmap Project. SLEP, Sullivan
Laboratory Evidence Project; CNV, copy number variant; DEL, deletion; AMP, amplification; DN, de novo.
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to exploring human paternal age-related mutagenesis.
For example, the human genome contains slightly less
segmental duplication compared with the mouse (2.3 and
4.3%, respectively)76 and is enriched for different types of
retrotransposal elements. As more human genomes are
sequenced (especially mother-father-offspring trios), and
CNVs are more accurately detected, we predict that the
offspring of older fathers will carry more de novo CNVs. It will
be of interest to explore the taxonomy of paternal age-related
CNVs and explore whether these mutations differentially
impact on neuropsychiatric health outcomes. It is feasible that
these mutations could ‘decanalize’ brain development and
increase the risk of neurodevelopmental disorders, such as
schizophrenia and autism.77

The age of parenthood is increasing in many societies,78

and thus it is feasible that the incidence of paternal-age
related de novo CNVs will increase over time. Worryingly,
these CNVs can be inherited and may accumulate over
several generations, with some clinical phenotypes ‘breaking
through’ only after a critical threshold of inherited and de novo
mutations have accumulated.79 In light of the clues from
epidemiology linking APA to increased risk of schizophrenia
and autism, and given the convergent evidence linking rare
CNVs to these two disorders, the results of our study provide
a parsimonious biological mechanism that may contribute
to these disabling and poorly understood disorders.
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