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Colorectal cancer (CRC) is the third prevalent cancer worldwide, themorbidity andmortality of
which have been increasing in recent years. As molecular targeting agents, anti-epidermal
growth factor receptor (EGFR) monoclonal antibodies (McAbs) have significantly increased
the progression-free survival (PFS) and overall survival (OS) of metastatic CRC (mCRC)
patients. Nevertheless, most patients are eventually resistant to anti-EGFR McAbs. With the
intensive study of the mechanism of anti-EGFR drug resistance, a variety of biomarkers and
pathways have been found to participate in CRC resistance to anti-EGFR therapy. More and
more studies have implicated non-coding RNAs (ncRNAs) primarily including microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are widely
involved in tumorigenesis and tumor progression. They function as essential regulators
controlling the expression and function of oncogenes. Increasing data have shown
ncRNAs affect the resistance of molecular targeted drugs in CRC including anti-EGFR
McAbs. In this paper, we have reviewed the advance in mechanisms of ncRNAs in
regulating anti-EGFR McAbs therapy resistance in CRC. It provides insight into exploring
ncRNAs as new molecular targets and prognostic markers for CRC.
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INTRODUCTION

CRC is the third most frequent cancer worldwide. Global cancer statistics in 2020 has shown there are
about 1.932 million new cases and 935,000 deaths of CRC worldwide, accounting for 10.0% of the total
new cases of cancer and 9.4% of the total cancer-related deaths, respectively (1). Following lung cancer,
CRC causes the second highest mortality in cancer patients worldwide (1). The therapeutic strategies for
CRC mainly include surgery, chemotherapy, radiotherapy and targeted therapy. Currently, surgery and
chemotherapy are still the preferred treatment options for CRC. Nevertheless, patients with metastatic
CRC (mCRC) have a poor prognosis (2). The combined chemotherapy and molecular targeted drugs
can noticeably increase the progression-free survival (PFS) and overall survival (OS) of mCRC patients
(3). As molecular targeted drugs, cetuximab and panitumumab can directly target epidermal growth
factor receptor (EGFR). Combined with chemotherapeutic drugs, they are applied to effectively treat
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mCRC patients carrying wild-type RAS and BRAF (4).
Unfortunately, few patients with mCRC are sensitive to anti-
EGFR treatment, and most responding patients usually develop
resistance to the therapy (5). In recent years, a variety of biomarkers
and pathways have been found to participate in regulating the
resistance to anti-EGFR therapy, and thus affecting the therapeutic
effect and reducing the survival rate of CRC patients (6). Some
studies have suggested the potential resistance mechanisms in order
to explore strategies for overcoming anti-EGFR resistance (5, 7,
8) (Figure 1).

EGFR is a kind of HER tyrosine kinase receptor, which is
composed of extracellular ligand binding domain, transmembrane
hydrophobic domain, and intracellular tyrosine kinase domain.
EGFR is selectively activated by binding to epidermal growth
factor (EGF) as one of the major ligands. EGFR transmits signals
from cytoplasm to nucleus through RAS/RAF/MEK/ERK/MAPK,
PI3K/PTEN/AKT/mTOR, and some other intracellular signaling
pathways which participate in regulating cancer cell proliferation,
invasion, and angiogenesis (9). Abnormal expression and activation
of any signal molecules mentioned above may lead to primary (de
novo) or acquired (secondary) resistance to anti-EGFR therapy in
mCRC (5). Abnormal EGFR gene copy number, protein expression
of EGFR ligands, HER2 and MET gene amplifications, and
activation of EGFR downstream cascade signaling pathways
[including the mutations of RAS/BRAF/PIK3CA, the loss of
Frontiers in Oncology | www.frontiersin.org 2
PTEN, STAT3 phosphorylation, and epithelial-mesenchymal
transition (EMT)], have been demonstrated to be associated with
the primary resistance to anti-EGFR therapy in CRC (5, 7, 8). It has
been well documented that the acquired resistance is attributed to
EGFR ectodomain mutation (S492R), genetic alterations in RAS/
RAF and other downstream signaling molecules, and the activation
of intracellular signaling pathways that are bypassing EGFR and
mediated by IGF1R, HER2, MET, and VEGFR (5, 7, 8). Multiple
genetic and nongenetic mechanisms drive resistance to anti-EGFR
therapy in CRC, with a significant overlap in primary and acquired
resistance (8) (Figure 1).

NcRNAs are a type of RNAs which have no protein-coding
function. According to the length, they are divided into two classes:
small non-coding RNAs (sncRNAs) with a length of 18-200 nt, and
long noncoding RNAs (lncRNAs) with a length over 200 nt.
NcRNAs are widely involved in cell proliferation, apoptosis,
autophagy, EMT, and cell cycle progression (10–14).
Accumulated studies have suggested ncRNAs play important roles
in tumorigenesis, progression, and anti-EGFR monoclonal
antibodies (McAbs) treatment resistance in CRC (15–21). In this
review, we have focused on current progress in the underlying
molecular mechanisms of ncRNAs in regulating the resistance to
anti-EGFR therapy in CRC. We aim to fully explore the potentials
of ncRNAs as novel molecular targets and prognostic markers
for CRC.
A

B

FIGURE 1 | Mechanisms of anti-EGFR drug resistance in CRC. (A) Primary resistance mechanisms. (B) Acquired resistance mechanisms.
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MIRNAS

Biological Functions of MiRNAs
MiRNAs are single-stranded small ncRNAs with a length of 21-
25 nt. The synthesis of miRNAs involves multiple biological
steps. Firstly, primary miRNAs (pri-miRNAs) are encoded by
DNA in the nucleus and transcribed by ribonucleic acid
polymerase II. Secondly, long pri-miRNAs are processed by
ribonuclease III Drosha, which produces precursor miRNAs
(pre-miRNAs) with a length of 60-70 nt. Lastly, pre-miRNAs
are cleaved into mature double-stranded miRNAs by
ribonuclease III Dicer in the cytoplasm. Then, mature miRNAs
participate in forming RNA-induced silencing complex (RISC)
(22). MiRNAs induce messenger RNA (mRNA) degradation and
translation repression by directly binding to the 3’-untranslated
region (3’-UTR) of targeted mRNAs, and act as regulators at the
post-transcriptional level during gene expression process (23).
They are widely involved in cell proliferation, apoptosis,
autophagy, and immune response (10, 11, 18, 21).
Accumulated studies have suggested miRNAs participate in the
pathogenesis of various diseases including cancers (24–28).
MiRNAs act either as oncogenic miRNAs (onco-miRs) or
tumor suppressive miRNAs (TS-miRs) with significant tissue-
and organ-specificity (29, 30). Many studies have also found that
miRNAs participate in regulating the drug resistance in CRC (31,
32). It has been demonstrated miR-31 negatively regulates breast
cancer invasion and metastasis (33). However, it negatively
regulates the expression of tumor suppressors and thus exerts
oncogenic effects in lung cancer (34). In CRC, miR-31 has been
documented to promote cancer progression by activating RAS
signaling pathway and hypoxia inducible factor 1a (HIF-1a),
respectively (35, 36). Taken together, miR-31 is involved in
tumor progression and metastasis by serving as a TS-miR or
an onco-miR in different malignancies. The diverse roles of miR-
31 in cancer may be attributed to different types of cancer cells,
Frontiers in Oncology | www.frontiersin.org 3
specific targets, and other complicated factors. Further research
is required to reveal its specific functions in CRC.

MiRNAs, aberrantly expressed in tumor tissues and tumor
cells, exert their tumor suppressive- and oncogenic-functions by
regulating different targeted genes (Figure 2). When the
expression levels of TS-miRs decrease, negative regulation on
targeted genes weakens. Besides, increasing expression levels of
onco-miRs promotes tumor development, metastasis, and drug
resistance through down-regulating tumor suppressive genes.

MiRNAs Regulate Drug Resistance of
Anti-EGFR Therapy in CRC
MiRNAs regulates anti-EGFR drug resistance by directly
targeting tumor-related genes involved in EGFR-related
signaling pathways in CRC. Abnormal expression of miRNAs
is commonly observed in anti-EGFR treatment-resistant CRC
cells. Recent studies have shown that miRNAs may predict the
prognosis and drug therapeutic efficacy of CRC patients (37–39).
The latest studies regarding miRNAs and drug resistance to anti-
EGFR therapy in CRC have been described in the following
subsections and briefly summarized in Table 1.

Impact of MiRNAs on EGFR
Signaling Pathway
EGFR signaling pathway has been confirmed to be aberrantly
activated in multiple malignant tumors, which is associated with
tumor progression and prognosis. Increasing evidence has
implicated miRNAs participate in regulating EGFR signaling
pathway and play vital roles in anti-EGFR drug resistance in
CRC (Figure 2). Zhou et al. have found miR-133b regulated cell
proliferation and invasion in CRC by targeting EGFR (40).
Moreover, the combination of miR-133b mimics and
cetuximab can effectively suppress the proliferation and
invasion of cetuximab-resistant CRC cells (40). Suto et al. have
found miR-7 is involved in regulating the EGFR signaling
FIGURE 2 | Mechanisms of miRNAs regulating anti-EGFR drug resistance in CRC.
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pathway by down-regulating the expression of EGFR and RAF-1,
which could inhibit CRC cells proliferation and reverse
cetuximab resistance in CRC patients with mutant KRAS (41).
Sun and the colleagues have found that miR-302a suppressed
CRC metastasis by targeting nuclear factor I B (NFIB) and CD44
and decreasing the activation of NFIB/ITGA6 signaling pathway
(42). MiR-302a has also been found to restore the response to
cetuximab by inhibiting CD44-induced cancer stem cell (CSC)-
like characteristics through EGFR-mediated MAPK and protein
kinase B (AKT) signaling pathways (42). These studies have
revealed that miRNAs can directly target EGFR (or RAF) in CRC
cells, inhibit the activation of its downstream signaling pathways,
and thus repress CRC cells growth and invasion. Besides, miR-
100 and miR-125b have been found to cooperatively regulate the
resistance to cetuximab in CRC through Wnt signaling pathway
that has a cross-talk with EGFR pathway (50). MiRNAs are
extensively involved in regulating the resistance to cetuximab.
Accordingly, miRNAs might serve as markers for predicting
anti-EGFR therapy in mCRC patients due to their regulatory
effects on EGFR signaling pathway.

Impact of MiRNAs on RAS
Signaling Pathway
KRAS, a member of RAS family, has almost 40%mutation rate in
CRC patients. KRAS mutations are predictive biomarkers for the
treatment efficacy of anti-EGFR treatment and the outcome of
patients with CRC (53). MiRNAs have been widely reported to
regulate the therapeutic response and drug sensitivity of CRC
patients through KRAS signaling pathway (43–45) (Figure 2).

Synthetic miR-143 (miR-143#12) inhibits KRAS signaling
pathway activation and restores the sensitivity of cetuximab-
resistant CRC cells by targeting the KRAS activating protein
SOS1 (43). Overexpression of miR-143 or miR-145 can increase
the sensitivity to cetuximab by enhancing cetuximab-mediated
antibody-dependent cellular cytotoxicity (ADCC) in CRC cells
(44). Strippoli et al. have demonstrated miR-31-3p, miR-143 and
miR-145 are closely correlated with anti-EGFR treatment
resistance in mCRC via regulating RAS-MAPK axis and c-MYC
Frontiers in Oncology | www.frontiersin.org 4
pathway (45). Moreover, miR-143 and miR-145 have been well
established to exert tumor-suppressive effects and are beneficial for
the efficacy of anti-EGFR treatment in CRC, whereas miR-31-3p
comes to the opposite. It has been shown that the overexpression of
miR-193a-3p can promote BRAF-mutant CRC cells apoptosis by
inhibiting the expression of KRAS and myeloid cell leukemia-1
(Mcl1) through MAPK signal (47). As a tumor suppressor, miR-
193a-3p promotes the efficacy of BRAF inhibitor dabrafenib (DAB)
and MEK inhibitor trametinib (TRA), and enhances the anti-
proliferative effect of combined therapy of DAB, TRA with
cetuximab in CRC (47). A recent study has shown that 4-acetyl-
antroquinonol B (4-AAQB) inhibits CRC cell proliferation and
induces cell apoptosis by up-regulating miR-193a-3p, down-
regulating KRAS and inhibiting the activation of KRAS signaling
pathway. The combined treatment of 4-AAQB with cetuximab can
make KRAS-mutant CRC cells resensitized to cetuximab (46). In
addition to KRAS, miR-193a-3p acts on multiple signaling
pathways and plays a tumor-suppressive role by regulating the
expression of interleukin 17 receptor D (IL17RD) and erb-b2
receptor tyrosine kinase 4 (ERBB4) in CRC (54, 55). And lower
expression of miR-193a-3p in CRC tissues predicts poorer PFS
independently of the status of BRAF mutation (56). Accordingly,
miR-193a-3p may serve as a prognostic biomarker. Its
combination with molecular targeted drugs may be a novel
therapeutic strategy for BRAF-mutant CRC. Weng et al. have
reported that lauric acid can induce miR-378 expression and
increase the sensitivity of BRAF- and KRAS-mutant CRC cells to
cetuximab by inhibiting KRAS, BRAF, MEK, ERK1/2 protein
expressions through the MAPK signaling pathway (48). In
addition, they have found that eicosapentaenoic acid ethyl ester
(EPA) can also increase the expression of miR-378 in BRAF- and
KRAS-mutant CRC cells and resensitize KRAS-mutant CRC cells
to cetuximab (49). Taken together, miRNAs play vital roles in
regulating the therapeutic response and drug sensitivity of KRAS-
or BRAF-mutant CRC through RAS signaling pathway. Potential
miRNAs and key molecules in the RAS signaling pathway may
serve as promising biomarkers for predicting the efficacy and drug
resistance during the targeted therapy in CRC.
TABLE 1 | MiRNAs involved in anti-EGFR drugs resistance in CRC.

MiRNAs Expression Targets/Pathways Drugs References

MiR-133b Down-regulated EGFR pathway Cetuximab (40)
MiR-7 Down-regulated EGFR/RAF pathway Cetuximab (41)
MiR-302a Down-regulated CD44/EGFR/RAS/MAPK pathway, CD44/EGFR/PI3K/AKT pathway Cetuximab (42)
MiR-143 Down-regulated SOS1/RAS/ERK/MAPK pathway, AKT pathway Cetuximab (43)

ADCC (44)
RAS-MAPK axis, c-MYC pathway (45)

MiR-145 Down-regulated ADCC Cetuximab (44)
RAS-MAPK axis, c-MYC pathway (45)

MiR-193a-3p Down-regulated KRAS/RAF/MEK/ERK pathway Cetuximab (46)
Mcl1/EGFR/BRAF/MEK/MAPK pathway Dabrafenib, Trametinib, Cetuximab (47)

MiR-378 Down-regulated ERK/MAPK pathway Cetuximab (48, 49)
MiR-31-3p Up-regulated RAS-MAPK axis, E2F2/c-MYC pathway Cetuximab (45)
MiR-100 Up-regulated DKK1, ZNRF3/Wnt/b-catenin pathway Cetuximab (50)
MiR-125b Up-regulated ZNRF3, RNF43, DKK3, APC2/Wnt/b-catenin pathway Cetuximab (50)
MiR-199a-5p Up-regulated PHLPP1/AKT pathway Cetuximab (51)
MiR-375 Up-regulated PHLPP1/AKT pathway Cetuximab (51)

Down-regulated CTGF/EGFR/PIK3CA/AKT pathway, EGFR/KRAS/BRAF/ERK1/2 pathway (52)
January 2022 | Volume 11 | A
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Impact of MiRNAs on PI3K/AKT
Signaling Pathway
The PI3K/AKT signaling pathway is widely involved in
carcinogenesis and cancer progression. Aberrant activation of
PI3K-AKT can promote CRC invasion and metastasis (57). It has
been reported that miRNAs can directly target the PI3K/AKT
signaling molecules or signaling pathway regulators, including
numerous regulatory proteins (51, 52, 57–60) (Figure 2). MiR-
375 and miR-199a-5p promote cetuximab resistance in CRC
patients by repressing the expression of PH domain and leucine-
rich repeat protein phosphatase 1 (PHLPP1) and positively
regulating AKT signaling pathway (51). Nevertheless, some other
studies have found miR-375 and miR-199a-5p inhibit CRC cells
proliferation and invasion, suggesting their complicated functions in
CRC (52, 58–60). It has been well documented that miR-375
suppressed CRC cell proliferation by targeting PIK3CA via the
PI3K/AKT pathway (61), while miR-199a-5p inhibited CRC cell
survival, proliferation, migration, and invasion by downregulating
GCNT2 expression and inhibiting the AKT and ERK signal
activation (62). Different roles of miR-375 and miR-199a-5p
exerting in CRC, might be attributed to significant tumor
heterogeneity among patients. Taken together, miRNAs regulate
the progression and drug resistance of CRC by regulating tumor
suppressors or oncogenes involved in various signaling pathways
including PI3K/AKT signal. However, the precise mechanisms of
miR-375 and miR-199a-5p underlying the resistance to anti-EGFR
drugs in CRC warrant to be fully elucidated in more future research.

Impact of MiRNAs on Tumor Immune
Microenvironment
Tumor immune microenvironment is composed of a variety of
cells, extracellular matrix and various signaling molecules (63).
Imbalance of tumor immune microenvironment is essential for
tumor growth, metastasis and prognosis (64). MiRNA-mediated
regulation of tumor microenvironment (TME) has been
demonstrated to affect cancer growth, angiogenesis, metastasis,
and drug resistance exerting either antitumor or tumorigenic
effects (65). For instance, a recent study has shown miR-34a
promoted the expression of B7-H3 and TNF-a in tumor
microenvironment and negatively regulated T cell-mediated
immune response, which thus induced immunosuppression
and immune escape in CRC (66). MiR-148a-3p and miR-448
respectively down-regulate the expression of calnexin (CANX)
and indoleamine 2,3-dioxygenase 1 (IDO1), which enhances
CD8+ T cell-mediated immune response in CRC (67, 68).

Cetuximabcan induceADCCbybinding toEGFRoncancer cells
and CD16 receptor on natural killer (NK) cells and dendritic cells
(DCs) (69–71). It stimulates the production of proinflammatory
cytokines, suchas IFN-gandTNF-a, andactivates cytotoxicTcells in
the TME, thereby exerting tumor immunosuppressive effects (69–
71). It has been suggested that anti-EGFR therapy and
immunotherapy have synergetic and complementary mechanisms.
The combination of immune checkpoint inhibitors, chemotherapy
with anti-EGFRMcAbs inmCRChas shown an encouraging clinical
outcome (72). Nevertheless, littler is known about the role of
Frontiers in Oncology | www.frontiersin.org 5
miRNAs in regulating tumor immune microenvironment and thus
affecting anti-EGFR drugs resistance in CRC.
LNCRNAS

Biological Functions of LncRNAs
LncRNAs are a type of ncRNAs over 200 nt in length. They are
mainly formed by RNA polymerase II-catalyzed transcription
typically containing a cleavable 3’ poly-A tail (73). According to
genomic localization, lncRNAs are grouped into five classes: sense
lncRNA, antisense lncRNA, intronic lncRNA, bidirectional
lncRNA, and intergenic lncRNA (74). LncRNAs have low
sequence conservation and high tissue and organ specificity. As
competitive endogenous RNAs (ceRNAs), lncRNAs can directly
sponge miRNAs and inhibit their expression. LncRNAs interact
with DNA, RNA and protein, acting as regulators of gene
expression at multiple levels and play roles in various cell
processes, such as genomic imprinting, epigenetic regulation,
transcriptional regulation, chromosome conformation, and cell
cycle regulation (75). A great deal of data has suggested lncRNAs
participate in the pathogenesis of various diseases, including
cancer (75–78). Linc00152, SNHG1, SCARNA2, DLEU1 and
XIST contribute to colorectal carcinogenesis, metastasis and
prognosis of CRC (54, 79–83). In addition, a number of studies
have implicated lncRNAs lead to associated with primary or
acquired drug resistance in CRC, thereby reducing drug efficacy
(84, 85). Nonetheless, the regulatory mechanisms of lncRNAs
underlying anti-EGFR therapy resistance in CRC are not clear yet.

LncRNAs Regulate Drug Resistance of
Anti-EGFR Therapy in CRC
Increasing evidence has supported that lncRNAs participate in
regulating CRC resistance to anti-EGFR McAbs through multiple
signaling pathways (Figure 3). The study by Peng et al. has found
that down-regulation of POU5F1P4 in cetuximab-sensitive CRC
cells can reduce their sensitivity in mCRC (86). LNC00973 and
several other lncRNAs may be involved in cetuximab resistance by
regulating glucose metabolism (87). Down-regulation of
LNC00973 can improve cetuximab resistance in drug-resistant
CRC cells (87). Lu et al. have elaborated that the overexpression of
lncRNA MIR100HG-derived miR-100 and miR-125b promotes
cetuximab resistance through Wnt/b-catenin pathway in CRC
(50) (Tables 1, 2). Recent studies have reported that lncRNA
CRART16 is up-regulated in CRC cells with secondary cetuximab-
resistance. CRART16 contributes to cetuximab resistance in CRC
by up-regulating ERBB3 through miR-371a-5p/MAPK signaling
pathway (88). LncRNA HCG18 promotes cell proliferation,
migration, and cetuximab resistance in CRC by up-regulating
PD-L1 and down-regulating CD8+ T lymphocytes via sponging
miR-20b-5p (89). Besides, the study by Yang et al. has shown the
evidence that up-regulation of UCA1 in cetuximab-resistant CRC
cells and the produced exosomes (90). Moreover, exosomal UCA1
is observed to cause drug resistance in cetuximab-sensitive CRC
cells (90). Due to its non-invasive and relatively stable content in
January 2022 | Volume 11 | Article 801319
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serum, exosomal UCA1 is hopefully used as a new biomarker for
CRC in the future (Table 2).

Accumulated studies have suggested lncRNAs have been
elucidated to serve as ceRNAs by sponging miRNAs, which
subsequently regulates miRNAs-mediated anti-EGFR therapy
resistance in CRC. In addition, lncRNAs play vital roles in
CRC progression, metastasis, and drug resistance. These
findings provide therapeutic targets and potential prognostic
markers for CRC with regard to lncRNAs. Future studies are
warranted to reveal the specific mechanism of lncRNAs involved
in CRC progression, metastasis, and drug resistance.
CIRCRNAS

Biological Functions of CircRNAs
CircRNAs are novel covalently closed circular single-stranded
ncRNAs discovered in recent years, mainly formed by exon
reverse splicing of pre-mRNA. According to the sequence origin,
Frontiers in Oncology | www.frontiersin.org 6
circRNAs are grouped into exonic circRNAs, circular intronic
RNAs, and exon-intron circRNAs (91). They exist stably in
plasma, serum, saliva, and other body fluids, and are widely
expressed in various types of cells with cell- and tissue-specificity
(92, 93). Acting as ceRNAs, circRNAs can competitively bind
with miRNAs and regulate gene expression via interacting with
miRNAs or RNA-binding proteins (RBPs). They exert essential
effects on the progression of multiple diseases including cancer
(17, 94–99).
CircRNAs Regulate Drug Resistance
in CRC
Increasing evidence has supported that circRNAs participate in
regulating tumorigenesis and drug resistance of CRC (100, 101).
Chen et al. have found that circ-PRKDC acted as a miR-375
sponge and targeted FOXM1, and enhanced CRC cells resistance
to 5-fluorouracil (5-FU) through the Wnt/b-catenin signaling
pathway (102) (Table 3, Figure 4). CircRNAs of circ_0007031,
circ_0007006, and circ_0000504 have been found to modulate 5-
FU resistance of CRC cells by regulating AKT3 via the AKT
signaling pathway, while circ_0048234 can sponge miR-671-5p in
5-FU-resistant CRC cells via the EGFR signaling pathway (103)
(Table 3, Figure 4). ATP-binding cassette (ABC) transporters,
such as ABCB1, ABCC1, and ABCG2, have been reported to play
crucial roles in CRC drug resistance by increasing drug efflux out
of cancer cells (105). Inhibition expression of ABC transporters is
an effective approach to reverse drug resistance in cancer cells
(105, 106). A number of ncRNAs have been demonstrated to be
involved in regulating ABC transporters in drug-resistant cancer
cells by regulating EGFR and its downstream signaling pathways
(107, 108). Circ_0007031 has been documented to induce 5-FU
resistance by modulating the expression of ABC transporter
ABCC5 through miR-133b/ABCC5 axis in CRC (100). MiR-7
functions as a regulator of anti-EGFR therapy resistance in CRC. It
has been shown that ciRS-7 regulated CRC cell growth and
invasion by sponging miR-7 and upregulating EGFR and IGF-
1R expression (109). Similarly, CiRS-7 can function as ceRNA for
miR-7 to activate EGFR/RAF1/MAPK pathway in CRC (110). The
study by Zeng et al. has reported circHIPK3 sponged miR-7 to
upregulate the expression of several oncogenes, such as FAK,
IGF1R, EGFR, and YY1, through the PI3K/AKT and MEK/ERK
signaling pathways that contributing to drug resistance in CRC
(104). Additionally, inhibition of circHIPK3 can reverse the
TABLE 2 | LncRNAs involved in anti-EGFR drugs resistance in CRC.

LncRNAs Expression Targets/Pathways Drugs References

POU5F1P4 Down-
regulated

EGFR pathway Cetuximab (86)

LNC00973 Up-regulated / Cetuximab (87)
MIR100HG Up-regulated MiR100/DKK1, ZNRF3/Wnt/b-catenin pathway, MiR-125b/ZNRF3, RNF43, DKK3, APC2/Wnt/b-catenin

pathway
Cetuximab (50)

CRART16 Up-regulated MiR-371a-5p/ERBB3/MAPK pathway Cetuximab (88)
HCG18 Up-regulated MiR-20b-5p/PD-L1 Cetuximab (89)
UCA1 Up-regulated / Cetuximab (90)
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resistance to cetuximab by targeting miR-7 in CRC cells (104)
(Figure 4). All these findings have provided novel insights into the
understanding of drug resistance mechanisms regarding
circRNAs. Nevertheless, more studies are warranted to
estimating the involvement and mechanism of circRNAs in
regulating the resistance to anti-EGFR therapy in CRC.
PERSPECTIVES

Drug resistance remains a major challenge for CRC treatment.
The mechanisms underlying CRC resistance to anti-EGFR
Frontiers in Oncology | www.frontiersin.org 7
therapy are complicated. Increasing studies have shown that
ncRNAs play crucial roles in regulating the resistance to anti-
EGFR therapy in CRC, primarily including miRNAs, lncRNAs
and circRNAs, which have been identified as either oncogenes
or tumor suppressors (111). Currently available studies
have supported ncRNAs participate in modulating anti-
EGFR drug resistance based on miRNAs-mRNAs, lncRNAs-
miRNAs-mRNAs, or circRNAs-miRNAs-mRNAs regulatory
networks through the EGFR signaling pathway, RAS signaling
pathway, and PI3K/AKT signaling pathway. Accordingly,
ncRNAs may function as novel biomarkers in predicting the
efficacy and resistance of anti-EGFR therapy in CRC.
Nevertheless, the molecular mechanisms of ncRNAs
involved in anti-EGFR therapy resistance still warrant to be
further elucidated in CRC. Further studies need to focus on
investigating new therapeutic strategies based on ncRNAs
regulatory networks combing with anti-EGFR targeted
therapy in CRC.
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