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Abstract: The brain uses contextual information to uniquely resolve the interpretation of ambiguous
stimuli. This paper introduces a deep learning neural network classification model that emulates
this ability by integrating weighted bidirectional context into the classification process. The model,
referred to as the CINET, is implemented using a convolution neural network (CNN), which is
shown to be ideal for combining target and context stimuli and for extracting coupled target-context
features. The CINET parameters can be manipulated to simulate congruent and incongruent context
environments and to manipulate target-context stimuli relationships. The formulation of the CINET
is quite general; consequently, it is not restricted to stimuli in any particular sensory modality nor
to the dimensionality of the stimuli. A broad range of experiments is designed to demonstrate the
effectiveness of the CINET in resolving ambiguous visual stimuli and in improving the classification
of non-ambiguous visual stimuli in various contextual environments. The fact that the performance
improves through the inclusion of context can be exploited to design robust brain-inspired machine
learning algorithms. It is interesting to note that the CINET is a classification model that is inspired by
a combination of brain’s ability to integrate contextual information and the CNN, which is inspired
by the hierarchical processing of information in the visual cortex.
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1. Introduction

The goal of this paper is to develop a versatile deep learning neural network classification model
that improves the interpretation of ambiguous and degraded stimuli through the inclusion of context
during the training and testing phases. The deep learning neural network selected for the classification
model is the convolution neural network (CNN) because it offers an effective way to integrate context
stimuli with a target stimulus for the purpose of extracting features that are coupled across the target and
context stimuli. The resulting context-integrating CNN classification model is referred to as the CINET.
The CINET is inspired by the context effect, which is the influence of the surrounding environment
on the perception of stimuli [1–3]. Numerous studies related to the context effect have shown that
the integration of contextual information improves the interpretation of spoken words [4,5], written
letters and words [6–8], physical objects [9–11], sounds [12,13], smells [14], tastes [15], threats [16],
colors [17], and facial emotions [18–20]. The context effect has also been widely studied to show how
contextual information is used to uniquely resolve the interpretation of ambiguous stimuli [7,8,21–26].
Ambiguous stimuli contain conflicting sensory information which provides the brain with multiple,
mutually exclusive interpretations [24]. Figure 1 is a simplified illustration of an example that is often
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used to show how the brain exploits contextual information to correctly interpret an ambiguous letter.
In isolation, the letter in Figure 1a is equally likely to be interpreted as an A or an H. However, as
shown in Figure 1b,c the same ambiguous letter is uniquely interpreted as an H in the word THE and
as an A in the word CAT.
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inputs is described in Section 3. The visual stimuli used in the experiments and the methods used to 
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Figure 1. Interpreting an ambiguous letter (a) without context, (b) with context T and E, and (c) with
context C and T.

The CINET attempts to emulate the brain’s ability to resolve the interpretation of ambiguous and
degraded stimuli; however, it is not aimed at modelling the internal mechanisms of the brain involved
in context integration. Instead, the aim is to model, at the input-output level, how context included
in the learning phase influences the resolution of stimuli in the classification phase. Specifically, the
goal is to demonstrate that the CINET parameters can be manipulated to emulate various aspects
of the Context Shift Decrement (CSD) principle [27] and the related Context Reinstatement Effect
(CRE) [28], which are central to explaining how context influences perception. Together, the CSD and
CRE principle state that recognition is more accurate if the relationship between the context and target
is strong, and recognition decreases when this relationship is weak or the context is changed during the
recognition phase. A letter classification problem is selected because it can elegantly demonstrate the
capabilities and performance of the CINET by incorporating context letters to form meaningful words.
The model, however, is equally applicable to more complex problems, such as the interpretation of
ambiguous objects in the visual domain and ambiguous words in a spoken sentences in the auditory
domain. Furthermore, the target and context stimuli can be from different modalities to emulate
multisensory context integration.

The structure of the paper is as follows: Section 2 describes the structure and parameters of the
generalized CINET classifier model. The CNN implementation of the CINET for multidimensional
inputs is described in Section 3. The visual stimuli used in the experiments and the methods used to
manipulate target and context stimuli are described in Section 4. The series of experiments designed to
demonstrate the capabilities and properties of the CINET, the results, and a discussion of the results
are presented in Section 5. Finally, the contributions of the study are summarized in Section 6.

2. The Generalized CINET Classifier Model

The interpretation of ambiguous stimuli is formulated as a pattern recognition problem; therefore,
the focus is on modelling the mapping between an ambiguous stimulus (system input) and the class of
the ambiguous stimulus (system output). Due to the inclusion of context, the design of the CINET
classifier is unlike the design of most pattern classifiers, which mainly focus on training and testing
with isolated, context-free patterns. In the formulations, the stimuli classes are represented by ωi,i = 1,
2, . . . , L, where L is the number of stimulus classes.

The proposed CINET classifier model is illustrated in Figure 2. This section focuses on the input
and context integration component of the model. The CNN classifier component is described in
detail in the next section. In the model, the target stimulus is represented by T, the context stimuli
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by C, the context weights by α, the stimulus noise by N, the weighted and noisy stimuli by R j, the
context-integrated stimulus by R, and the classifier output by ω∗. The context-integrated stimulus,
which is the input to the CNN classifier, can be written as

R = [(α j−S1C j−S1 + N j−S1)∇ . . .∇(α j−2C j−2 + N j−2)∇(α j−1C j−1 + N j−1)∇(α jT j + N j),
(α j+1C j+1 + N j+1)∇(α j+2C j+2 + N j+2)∇ . . .∇(α j+S2C j+S2 + N j+S2)],

(1)

where the symbol ∇ is used to represent the general context-integration operation. Equation (1) can be
written more compactly as

R = ∇S2
i=−S1

R j+i, (2)

where, R j+i = (α jT j + N j) when i = 0 and R j+i = (α j+iC j+i + N j+i) when i , 0.
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In this generalized formulation, the subscript j can represent a position (spatial) index or a time
(temporal) index. The transformed target stimulus is padded on the left and right by S1 and S2

transformed context stimuli where both S1 and S2 are positive constants with values greater than or
equal to zero. The context “span” is defined as S, where, S = S1 + S2, and the resulting classifier is
referred to as a CINET(S) classifier. The model is symmetrical if S1 = S2 and asymmetrical if S1 , S2.
Furthermore, if S1 = S2 = 0, that is, the context span S = 0, the CINET(S) classifier reduces to a
context-free classifier represented by CINET(0). For the CINET(0) classifier, the input stimulus is
simply (α jT j + N j). The weight α j+i assigned to context C j+i can be varied from zero (no influence) to
one (full influence) in order to control the strength of the target-context relationship. The noise N j and
N j+i added to T j and C j+i accounts for randomness in the target and context stimuli, respectively.

The context-integration operation ∇ in Equation (2) is critical because it specifies the manner
in which the target and context stimuli are integrated to form the input into the CNN classifier,
which in turn will determine the type of features that are extracted from the context-integrated input.
For example, if the target T and the context stimuli C are H ×W arrays, they can be integrated into an
H×W array through averaging, a large (M)(H)×W array through concatenation, or an H×W× (S + 1)
cuboid through a stacking operation. The averaging operation mixes the target and context stimulus
arrays into a single array. As a result, there is no control over the strength of the coupling between the
target and context stimuli. The concatenation operation also suffers from a lack of controlled coupling.
The cuboid option is selected for the development of the CINET classifier model because it offers the
most flexible choices for selecting features that are not only coupled across the target and context
stimuli, but also features with controlled coupling.
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3. CNN Implementation of the CINET Classifier Model

In the most general case, the CNN classifier in Figure 2 can be replaced with any classifier.
As noted in the Introduction, the CNN is selected because it is ideal for combining target and context
stimuli and for extracting coupled target-context features with controlled coupling. This section begins
with a brief introduction to CNNs and is followed by a detailed description of the multidimensional
CINET and its special cases.

3.1. Convolution Neural Networks

CNNs, inspired by the pioneering work of Nobel laureates David Hubel and Thorsten Wiesel
on information processing in the visual cortex [29–31], are a class of deep learning networks that
have proven to be very effective for large-scale object classification and detection in images [32–38].
Common CNN architectures generally consist of a series of convolution and pooling layers followed by
a fully connected network (FCN). The function of the convolution operations in each layer is to detect
features from the output of the previous layer. As a result, the complexity of the features detected
increases as the number of convolution layers in the network increases. The pooling layer reduces
the spatial dimension of the convolution layer output through subsampling. The most often used
pooling operation is max-pooling, in which a block of features is replaced by its maximum value in
order to select the most robust feature in the block. The FCN is a standard feed-forward network
using either sigmoid or tanh activation functions in the hidden layers and softmax activations in the
outputs in order to interpret the network outputs as class posterior probabilities. The gradient descent
backpropagation algorithm is used to train the network.

Designing a CNN for a given problem involves specifying the architecture, which includes the
number of convolution layers; the number, stride, padding, and the dimensions of the filters in each
convolution layer, the size, stride, operation (maximum, average) of the filters in the pooling layers; the
sequence of the convolution and pooling layers; the number of layers in the FCN; and the activation
functions in the convolution and FCN layers. The hyperparameters that need to be specified during
the training phase include the loss function, weight-initialization, learning rate, momentum term,
convergence criterion, and batch size.

3.2. The Multidimensional CINET(S) Model

The most general formulation of the CINET(S) in Figure 2 is obtained by assuming that
stimuli T and C are multidimensional (arrays with more than two dimensions). A color image
comprised of red, green, and blue component images may be regarded as a three-dimensional
stimulus. Examples of three-dimensional signals include seismic volumes, X-ray computed tomography,
and LIDAR data. In the generalized formulation, the multidimensional input into the CNN can
include higher-dimensional arrays, such as multisensor satellite images and hyperspectral images.
Each multidimensional input can be represented by a cuboid, and the cuboids from multiple inputs
can be integrated, using the stacking operation, into hypercuboids. The height, width, and depth of
hypercuboids and cuboids will be represented by the variables h, w, and z, respectively. Note that z
does not represent the depth (number of layers) of the CNN. To avoid this confusion, the cuboid depth
will be referred to as “z-depth.”

The CINET(S) for multidimensional stimuli, shown in Figure 3, is described in detail. It is
then shown that the models for one-dimensional and two-dimensional stimuli are special cases of
the multidimensional stimulus model. If H, W, and Z j are the height, width, and z-depth of the
multidimensional input stimuli, respectively, the dimension of the cuboid R j in Equation (2) will be
H ×W ×Z j, and the dimension of the hypercuboid R in Equation (1) will be H ×W ×Z = Z j(1 + S).
That is, the input to the CNN is the hypercuboid R(h, w, z) of dimension H ×W ×Z formed by stacking
the weighted-noisy target and context stimuli, as shown in the figure.
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In order to simplify the formulations, it is assumed that the convolutions in each layer are the
“same” through zero-padding the input so that the filter outputs have the same dimensions as the
input. Moreover, it will be assumed that the height and width of the filters in all convolution layers are
the same. If the convolution is “valid,” the dimensions of the filtered outputs can be easily adjusted
according to the height and width of the filter. In the first convolution layer, each filter is selected
to be a cuboid filter with the same z-depth as the input hypercuboid so that the target and context
are fully coupled within the receptive field of each neuron in the layer. The filters, centered at zero
in the (h, w) plane, are assumed to have dimensions [(2a + 1) × (2b + 1) ×Z]. If the number of filters
in the first layer is K1 and the kth cuboid filter is represented by f [1,k](x, y, z), x = −a, . . . , 0, . . . , a; y =

−b, . . . 0, . . . , b; z = 0, 1, . . . , (Z− 1); k = 0, 1, . . . , (K1 − 1), the output of the filter is given by

R̂[1,k](h, w) =
Z−1∑
z=0

a∑
u=−a

b∑
v=−b

f [1,k](u, v, z)R(h + u, w + v, z), h = 0, 1, . . . , (H − 1); w = 0, 1, . . . , (W − 1).

Note that the convolution of the input hypercuboid with a cuboid filter having the same z-depth
results in an array with dimension H ×W. A bias B[1,k] is added to the filtered output and passed
through the nonlinear ReLu activation function so that the activation of filter k in the first layer is
given by

R̃[1,k](h, w) = ReLu[R̂[1,k](h, w) + B[1,k]],

where, ReLu[δ] = Max[0, δ]. The output of the first convolution layer are the K1 activations combined
into a H ×W ×K1 cuboid, which can be written as

R[1](h, w, k) = ∇K1−1
k=0 R̃[1,k](h, w), h = 0, 1, . . . , (H − 1), w = 0, 1, . . . , (W − 1), k = 0, 1, . . . , (K1 − 1).

If pooling follows and the stride and size of the pooling filter are ∝ and (γ× γ× 1), respectively, the
output of the pooling layer is given by

R[1,p](h, w, k) = MAX
(hp,wp)∈Ghp

[R[1](hp, wp, k)], h = 0, 1, . . . , (H[1]
− 1),w = 0, 1, . . . , (W[1]

− 1), k = 0, 1, . . . , (K1 − 1)

where, Ghp =
{
(∝ ×h + th,∝ ×w + tw), th, tw = 0, 1, . . . , (γ− 1) } is the pooling window, and H[1] =

(H − γ)/ ∝+1, and W[1] = (W − γ)/ ∝+1 are the height and width of the pooled output, respectively.
In the next convolution stage, the cuboid R[1,p](h, w, k) is convolved with a cuboid filter f [2,k](x, y, z), x =

−a, . . . , 0, . . . , a; y = −b, . . . 0, . . . , b; z = 0, 1, . . . , (K1 − 1); k = 0, 1, . . . , (K2 − 1) and the filtered output is
given by the cuboid convolution

R[2,k](h, w) =
K1−1∑
z=0

a∑
u=−a

b∑
v=−b

f [2,k](u, v, z)R[1,p](h + u, w + v, z), h = 0, 1, . . . , (H[1]
− 1);

w = 0, 1, . . . , (W[1]
− 1).
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As in the previous step, a bias is added to each filtered output and passed through the ReLu
activation function, and the K2 activations are combined into a H[1]

×W[1]
×K2 cuboid. If a pooling

layer follows, the height and width of the cuboid are adjusted accordingly. The convolution and
pooling operations are repeated and terminate into a flattening operation in which the rows of the
cuboid are combined into a vector which is the input to a fully connected feed-forward neural network
with N layers.

The fully connected network (FCN) uses the ReLu, sigmoidal, or tanh activation function for the
intermediate hidden layers, the softmax activation function for the output layer, and the cross-entropy
for the loss-function. As noted earlier, it is assumed that the target stimuli T j belongs to one of L classes
represented by ωi, i = 1, 2, . . . , L. The softmax layer will, therefore, have L outputs, one for each class
of the target stimulus. If qi is the weighted sum of the inputs into a neuron i in the softmax layer, the
softmax layer outputs are given by

p(ωi) =
eqi∑L

i=1 eqi
, i = 1, 2, . . . , L,

The cross-entropy cost function is given by

E = −
L∑

i=1

ti log(p(ωi)), where,ti =

{
1 i f T j εωi
0 otherwise

During testing, the softmax outputs can be regarded as estimates of class posterior probabilities;
therefore, the target stimulus can be assigned to the class ω∗ yielding the highest posterior probability,
which is given by

ω∗ = arg max[ p(ωi)], i = 1, 2, . . . L. (3)

3.3. Special Cases of the CINET(S) Model

As mentioned earlier, the one-dimensional and two-dimensional inputs into the CNN are special
cases of the multidimensional inputs. For the two-dimensional case, the main difference is that z-depth
of the target and context stimuli is unity. Therefore, the dimension of R j in Equation (2) will be H ×W,
and the dimension of the cuboid R in Equation (1) will be H ×W × (1 + S). The cuboid input to the
CNN can, therefore, be written as R(h, w, z), h = 0, 1, . . . , (H − 1); w = 0, 1, . . . , (W − 1); z = 0, 1 . . . , S.
In order to match the z-depth of the input cuboid, the filters in the first convolution layer will, therefore,
have dimension [(2a + 1) × (2b + 1) × (1 + S)]. Other than the changes in the dimensions of the cuboid
input and filters in the first layer, the convolution, pooling, and FCN layer operations are identical to
the operations in the multidimensional input case.

For one-dimensional inputs, the heights and depths of the target and context stimuli are unity
and are, therefore, vectors. The dimension of R j in Equation (2) will be W, and the dimension
of R in Equation (1) will be 1×W × (1 + S). Note that, although R is an array, it is written as a
cuboid with unity height for consistency. The cuboid input to the CNN can, therefore, be written as
R(0, w, z), w = 0, 1, . . . , (W − 1); z = 0, 1 . . . , S. The dimension of each filter in the first layer will be
1× (2b + 1) × (1 + S) and the filtered output will be a vector with dimension W, which can be written
as a 1×W × 1 cuboid. The output of the kth filter in the first convolution layer is given by

R̂[1,k](0, w, 0) =
S∑

z=0

b∑
v=−b

f [1,k](0, u, z)R(0, w + v, z), w = 0, 1, . . . , (W − 1).

A bias is added to each filtered output and passed through the ReLu activation function. The K1

filtered outputs are combined into a 1×W ×K1 cuboid. The width of the cuboid is adjusted if a pooling
layer follows the convolution layer. Subsequent convolutions are also unit height cuboid convolutions
which result in vectors which are then combined into unit height cuboids. An FCN with softmax
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outputs is implemented after the last pooling layer, and a target stimulus is assigned to class ω∗ using
the rule in Equation (3).

4. Target and Context Stimuli

The experiments described in the next section are aimed at demonstrating various aspects of the
CSD principle and the CRE applied to the recognition of ambiguous stimuli. That is, the CINET(S)
should yield the expected results in various contextual environments. In the process of doing so, it is
also shown that the CINET(S) model parameters can be manipulated to:

(a) Simulate various context environments;
(b) Vary the strengths of the target-context relationships; and
(c) Introduce ambiguities in the stimuli.

As noted in the introduction, the letter recognition problem was selected simply because it is
suitable for demonstrating the properties of the CINET(S) classifiers by forming meaningful words.
The experiments involved the recognition of six (L = 6) binary letters which were digitized into 32 ×
32 two-dimensional arrays. The six target letters are shown in Figure 4, and the three ambiguous letters
are shown in Figure 5. The first ambiguous letter is labelled as [A/H] because it can be interpreted as
target letter A or H. Similarly, [O/U] may be interpreted as target O or U, and [P/R] may be interpreted
as target P or R. The specific goal, therefore, is to determine how accurately an ambiguous letter can
be classified into one of its two possible interpretations with and without context. The context was
incorporated by adding letters to both sides of the target letter to create a context-augmented letter set.
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4.1. Ambiguity Manipulation

There are several methods for generating test sets with varying levels of ambiguity. For example,
target letters can be distorted by adding segments to the letter limbs, deleting segments, and skewing
segments. Ambiguity can also be introduced by blurring or changing the resolution of the images [9–11].
These methods, however, are not suitable for generating large sets and are also difficult to quantify.
We introduce a method to systematically increase the ambiguity level by adding increasing levels of
zero-mean Gaussian noise to the noise-free pixels of the letter arrays. The noise N j added to T j is
specified by the variance σ2

j . Because the noise is random, a large set of distorted characters can be

generated for a given σ2
j . Ambiguity is increased by increasing σ2

j . Examples of noisy images of the
ambiguous letter [A/H] with noise levels in the range used in the experiments are shown in Figure 6.
Observe that the letter [A/H] is difficult to recognize visually when the variance is greater than 1.5. The
effect of distortions and noise on the other ambiguous letters is quite similar.
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4.2. Context Manipulation

The context environment during testing can be congruent (same) or incongruent (different) from
the context environment that was used during training. Incongruencies can be generated in many
ways. The most obvious is to replace the context stimuli that were used during training with different
stimuli during testing. However, this method is not suitable for resolving ambiguous stimuli because
the correct interpretation of ambiguous stimuli in the new environment is unknown. Our definition
of incongruent, therefore, includes weakened and/or impaired context stimuli, but does not include
replacing the context with different stimuli. Other possibilities to manipulate context include changing
the positions and orientations of the context letters [9], and the colors of the context backgrounds [17].
We introduce a method to generate large test sets with quantifiable incongruencies by manipulating
the CINET(S) model parameters α j+m, m , 0 and N j+m, m , 0 individually, or together. The context
weights can be decreased to emulate weak target-context relationships. The noise in the context stimuli
can be increased to emulate impaired context. The context environment can also be manipulated by
varying the weights and noise simultaneously.

Figure 7 summarizes ambiguity and context manipulations through the introduction of random
noise and setting of context weights, respectively. The figure shows the left and right context strength
axes (α), as well as the ambiguity level axis σ2 in the center. The range of α is from zero to one, and the
range of σ2 is from zero to H (high), where H is a suitably high value. Three symmetrical target-context
strength patterns are displayed. The horizontal line labelled 1 corresponds to full target-context
strength across the entire span, the horizontal line labelled 2 corresponds to a weaker context strength
across the entire span, and the variable curves labelled 3 show a decaying influence of the context as
the span increases. The arrow pointing downwards on the ambiguity axis indicates the ambiguity
level. The length of the arrow is proportional to the ambiguity level introduced by adding random
noise to the letter.
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4.3. CNN Architecture

The CNN architecture used in the experiments consisted of a convolution layer, convolution layer,
pooling layer, and a 2-layer FCN, in which the first layer used sigmoidal activation functions and the
output layer used softmax activation functions. The “valid” operation was used in the convolution
layers, and max pooling was used in the pooling layer. Figure 8 shows the architecture of the CINET(4)
model implemented for [H = 32 ×W = 32 × (S + 1) = 5] input cuboids, where H and W are the height
and width of the target and context letters, respectively, and S is the context span. The number of filters
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were 32 and 32 in the first and second convolution layers, respectively. The filter dimensions in the first
and second convolution layers were (3× 3× 5) and (3× 3× 32), respectively. The size of the pooling
filter was 2 × 2. The strides of the convolution and pooling filters were set to 1 and 2, respectively.
The dimension of the flattened output from the pooling layer was 14 × 14 × 32 = 6272. The number of
neurons in the first and output layers of the FCN were 100 and 6, respectively. The networks were
implemented using the Keras library [39–41].
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5. Classification Experiments and Results

In the experiments that follow, the context-free CINET(0) and context-integrating CINET(S)
classifiers were trained to classify only the target letters. The training sets were generated by adding a
small level of random noise (σ2 = 0.001) to the noise-free target and context letters. The inclusion of
noise at such small levels introduces minor variations in the letters; therefore, the resulting training
sets are referred to as “noise-free training sets” in the experiments. The networks were initialized with
random weights and training was terminated when the cross-entropy fell below 0.001. The CINET(0)
classifier was tested on the three ambiguous letters in varying noise levels. The CINET(S) classifiers
were tested on the three ambiguous letters in congruent and incongruent environments. In the
experiments conducted, a total of one hundred distorted and noisy versions of each ambiguous letter
were generated to form the test set at each noise level σ2

j . Because the classification results of a CNN
are dependent on the initial weights, a total of thirty CNNs were initialized with random weights. The
performance of each network was evaluated using the test sets. Consequently, the total number of tests
conducted for each ambiguous letter at a given noise level was 30 × 100 = 300. The results for each
ambiguous letter were averaged across the 300 tests, and the final classification probability was given
by averaging the averaged results of the ambiguous letters. The following experiments were designed:

Set 1: Context-free classification with the CINET(0) classifier
The first set of experiments was aimed at demonstrating the performance of the classifier when no

context is integrated into the training and testing phases. A CINET(0) classifier was trained to classify
the six noise-free isolated target letters {A,H,O,U,P,R}, shown in Figure 4, and was tested with the
three isolated, ambiguous letters {[A/H], [O/U], [P/R]}, shown in Figure 5. The noise level in the test
ambiguous letters was varied from 0.1 to 2. It is important to note that in the absence of context, the
true class of the ambiguous letter is unknown. An ambiguous letter could be classified into any one of
the six classes, however, the interest is mainly on estimating the probability of an ambiguous letter
being classified into one of its two possible categories. The classification probabilities are summarized
in the row labeled Set 1 in Table 1. The classification probability, in this case, can be interpreted by
considering the first entry in the Set 1 row of the table, which shows that the average probability of
classifying the three ambiguous characters into their possible classes was 0.48 when the noise level
was 0.1. That is, the average of the probabilities of classifying [A/H] as an A or an H, [O/U] as an O or a
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U, and [P/R] as a P or an R was 0.48 when the noise level was 0.1. Observe that the probabilities drop
as the noise increases because it becomes increasingly difficult to classify each ambiguous letter into
one of its two possible classes.

Table 1. Classification probabilities for the six sets of experiments involving ambiguous letters.

Noise Variance

0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Set 1 0.48 0.44 0.39 0.36 0.34 0.33 0.32 0.31 0.30
Set 2 0.99 0.98 0.94 0.89 0.84 0.80 0.77 0.73 0.71
Set 3 1.00 1.00 1.00 0.98 0.95 0.93 0.92 0.91 0.88

Set 4(A) 1.00 0.99 0.95 0.92 0.89 0.84 0.79 0.76 0.73
Set 4(B) 0.97 0.95 0.89 0.84 0.80 0.75 0.71 0.68 0.65

Set 5 1.00 0.93 0.83 0.72 0.65 0.60 0.56 0.52 0.50
Set 6 0.307 0.298 0.280 0.270 0.261 0.253 0.246 0.240 0.238

Set 2: Training and testing the CINET(2) classifier with congruent context
These experiments were aimed at demonstrating the improvement in performance when strong

context (unity weights) is incorporated in training, and the same noise-free context (congruent) is used
during testing in order to emulate learning and testing in the same environments. A symmetrical
CINET(2) classifier (S1 = S2 = 1) with unity weights (α j−1 = α j+1 = 1) was trained with the noise-free
context-augmented training set {BAG, THE, MOW, FUN, SPY, IRK} to classify the six target letters
in the center. That is, B and G were the context for target stimulus A, T and E were the context for
target H, and so on. The training set is shown in Figure 9a. The classifier was tested with the center
letters replaced with ambiguous letters, as shown in Figure 9b. That is, the test set was {B[A/H]G,
T[A/H]E, M[O/U]W, F[O/U]N, S[P/R]Y, I[P/R]K}. The same noise levels used in Set 1 were added to
the center ambiguous letters. Correct classification occurred if the noisy, ambiguous letter, surrounded
by congruent context letters, was resolved correctly. The results, shown in the row labelled Set 2 in the
table, can be interpreted by considering the first entry, 0.99, which shows that when the noise level
was 0.1, the average of the probabilities of correctly classifying [A/H] as an A when the input was as
B[A/H]G, [A/H] as an H when the input was T[A/H]E, [O/U] as an O when the input was M[O/U]W,
[O/U] as an U when the input was F[O/U]N, [P/R] as a P when the input was S[P/R]Y, and [P/R] as a R
when the input was I[P/R]K, was 0.99. By including context, the CINET(2) classifier has the ability to
resolve stimulus ambiguities quite effectively. As expected, the classification probabilities dropped
when the noise levels increased.
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training set (b) the test set with noise-free congruent context.

Set 3: Training and testing the CINET(4) classifier with congruent context
These experiments were aimed at demonstrating the improvement in performance when

additionally strong context (unity weights) is incorporated in training, and congruent context
is used during testing. A symmetrical CINET(4) classifier (S1 = S2 = 2) with unity weights
(α j−2 = α j−1 = α j+1 = α j+2 = 1) was trained with the context-augmented training set {BEAST, ETHYL,
FLUID, GNOME, IMPLY, SCREW} to classify the six target letters in the center. The training set
is shown in Figure 10a. As in Set 2, the classifier was tested with the center letters replaced with
ambiguous letters. Figure 10b shows the test set with the noise-free ambiguous letters surrounded by
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noise-free congruent context. The test results under varying noise levels in the ambiguous letters are
shown in the row labelled Set 3 in Table 1. The probabilities are interpreted just as they were for Set 2.
It is clear that, for the same range of noise levels, the performance of the CINET(4) classifier is much
better than the CINET(2) classifier. It could, therefore, be concluded that incorporating additional
context improves the classification of ambiguous letters.
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Set 4: Testing the CINET(4) classifier with weighted incongruent context
This set of experiments was aimed at demonstrating how the weights can be manipulated to

simulate incongruent testing environments and to show how the performance is affected by varying
the context weights during testing. The CINET(4) classifier designed in Set 3 was tested with two
different sets of context weights. The first set of weights, (α j−2 = α j−1 = α j+1 = α j+2 = 0.7), were
selected to show how the attenuation of context affects the performance. The next set of context
weights, (α j−2 = 0.4,α j−1 = 0.7,α j+1 = 0.7,α j+2 = 0.4), were selected to have a decaying influence
as the separation span (spatial/temporal lag) between the target and context stimuli was increased.
The resulting noise-free test sets with weighted incongruent context are shown in Figure 11. The results
for this set of experiments are presented in the rows labelled Set 4(A) and Set 4(B) in Table 1, respectively.
As expected, the performance declines as the incongruency in the testing environment is increased.
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Set 5: Testing the CINET(4) classifier with noisy incongruent context
This set of experiments was aimed at demonstrating how the performance is affected when

noise is added to the context stimuli during testing to generate incongruent context environments.
The CINET(4) classifier designed in Set 3 with unity weights was tested with noise in the ambiguous
letters, as well as statistically equivalent noise in the context letters. An example of a test set using
σ2

j = 0.75 is shown in Figure 12. The results are presented in the row labelled Set 5. As expected,
performance declines when context incongruency is increased by adding noise. However, the general
trend observed in the Set 3 results is maintained.
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Set 6: Testing the CINET(2) classifier with flipped incongruent context
The last set of experiments were different in the sense that the CINET(2) classifier trained in Set 2

was tested with “flipped” context to demonstrate how performance is affected if the incorrect context
is used during testing. The test set, therefore, was {G[A/H]B, E[A/H]T, W[O/U]M, N[O/U]F, Y[P/R]S,
K[P/R]I}. The test set is shown in Figure 13, and the results in varying noise levels are shown in the
row labelled Set 6. Despite the fact that the same context letters were used, the results are quite poor.
This, however, is not unexpected because the temporal pattern of the context was changed.
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The best result at each noise level is shown in boldface font in Table 1. For comparison purposes and
to observe the trends, Figure 14 summarizes the correct resolution probabilities from the experiments
of Sets 2–5. The Set 1 results are also included in the figure to serve as the context-free reference. The
results from Set 6 are not included in the figure.
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Although not the primary focus of this study, the CINET(S) model can also be used to design
experiments to demonstrate the influence of context on the recognition of non-ambiguous target
stimuli in varying congruent and incongruent environments simply by testing the targets instead of the
ambiguous stimuli. In general, it can be expected that the performance will be improved by including
the congruent context in the learning and recognition phases. This was confirmed by repeating all
six experiments in which the target letters {A,H,O,U,P,R} were tested. The average classification
probabilities are summarized in Table 2 and Figure 15. The best results are shown in boldface font.
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As expected, the classification probabilities are higher for non-ambiguous targets. By comparing
Figures 14 and 15, it is interesting to observe that the performance trends for the classification of
ambiguous and non-ambiguous stimuli are quite similar.

Table 2. Classification probabilities for the six sets of experiments involving target letters.

Noise Variance

0.1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Set 1 0.93 0.83 0.71 0.61 0.54 0.50 0.46 0.44 0.42
Set 2 1.00 1.00 0.97 0.94 0.89 0.84 0.80 0.77 0.74
Set 3 1.00 1.00 1.00 0.99 0.96 0.94 0.93 0.92 0.90

Set 4(A) 1.00 1.00 0.97 0.94 0.91 0.86 0.82 0.79 0.76
Set 4(B) 0.99 0.98 0.93 0.87 0.83 0.79 0.74 0.71 0.68

Set 5 1.00 0.94 0.85 0.74 0.67 0.62 0.58 0.54 0.52
Set 6 0.331 0.319 0.301 0.292 0.289 0.286 0.277 0.270 0.265
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Conclusions from the Experiments

The results in Tables 1 and 2 and the trends in Figures 14 and 15 show that the CINET(S) classifiers
perform in a desirable manner in the sense that various aspect of the CSD principle and the CRE are
demonstrated. That is, congruent context helps resolve classification ambiguities, and this ability
decreases as the ambiguity levels and context incongruencies are increased. The CNN offers an effective
method for extracting features that are coupled across the target and context stimuli. Moreover, the
random stimulus noise and context weights offer an effective way of manipulating the relationship
and strength of the coupling.

The six sets of experiments and the results obtained demonstrate, quite effectively, the performance
trends of the CINET(S) classifier. It can be expected that other forms of ambiguity and context
manipulations will result in similar trends. Furthermore, similar results would be obtained even if the
letters used for context did not form meaningful words, as long as the same context letters were used
for both training and testing. Also noteworthy is that the use of simulated ambiguities and context
environments enabled the systematic and quantifiable evaluation of the CINET(S) classifier model
under a wide range of conditions. Clearly, such extensive experimentation and evaluation would
not be possible with real data unless an enormously large data set with quantifiable ambiguities and
context is collected. Undoubtedly, the CINET(S) classifier will perform similarly on real data.
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Experiments can also be designed to demonstrate the influence of context on perceiving a missing
stimulus, for example, a missing letter in a learned word. Because the stimulus index j can be temporal,
the model can also be applied to resolve ambiguities in sequentially occurring events, such as garbled
words in a sentence. Context that is not inherently sequential can also be accommodated in the model.
For example, if the background of an object in an image is regarded as the context, the image can be
segmented into two components: object (target) and background (context). The input to the CINET(S)
classifier would then be a concatenation of the target features and context features. Finally, it is
important to note that the target and context stimuli can be from mixed modalities (e.g., visual and
auditory stimuli) for multisensory target-context integration, which is yet another way to combine
multisensory information in brain-inspired classification systems [42].

6. Conclusions

The key contribution of this study is the development of a versatile, brain-inspired deep learning
classifier model that can effectively resolve classification ambiguities by incorporating bidirectional
weighted context during training and by using congruent context during classification. Supporting
contributions include the design of a series of experiments which show that the model can emulate
various aspects of the CSD principle and the CRE as applied to the recognition of ambiguous
stimuli. The experiments also demonstrate the ability of the CINET(S) classifier model to introduce
ambiguities due to distortion and noise, simulate various context environments, and vary the strengths
of target-context stimulus relationships. Furthermore, it was noted that the model could accommodate
symmetrical and asymmetrical context, is applicable to spatial and temporal context, includes the
context-free classification model as a special case, and is not restricted to any particular type of classifier.
The model was also used to demonstrate improvements in the classification of non-ambiguous target
stimuli through the inclusion of context. The fact that the inclusion of context resolves ambiguities
and improves classification is notable because context is seldom considered in the design of machine
learning classification systems. Therefore, whenever possible, context should be incorporated to
improve the performance of classifiers.

Author Contributions: Conceptualization, R.A., R.S.G., and L.G.; Methodology, R.A., R.S.G., and L.G.; Software,
R.A.; Validation, R.A., R.S.G., and L.G.; Formal analysis, R.A., R.S.G., and L.G.; Investigation, R.A., R.S.G., and
L.G.; Data curation, R.A.; Writing—original draft preparation, L.G.; Writing—review and editing, R.S.G., R.A.,
and L.G.; supervision, L.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for their helpful comments and
suggestions which greatly improved this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Goldstein, E.B. Encyclopedia of Perception; Sage: Newbury Park, CA, USA, 2010; Volume 1.
2. Sternberg, R.J.; Sternberg, K.; Mio, J.S. Cognitive Psychology; Wadsworth/Cengage Learning: South Melbourne,

Australia; Belmont, CA, USA, 2012.
3. Baddeley, A.; Eysenck, M.; Anderson, M. Memory. In Hoboken: Taylor and Francis, 2nd ed.; Psychology Press:

London, UK, 2014.
4. Cavanaugh, W.J.; Tocci, G.C.; Wilkes, J.A. Architectural acoustics: Principles and Practice; John Wiley & Sons:

Hoboken, NJ, USA, 2009.
5. Besken, M.; Mulligan, N.W. Context effects in auditory implicit memory. Q. J. Exp. Psychol. 2010, 63,

2012–2030. [CrossRef]
6. Toussaint, G.T. The use of context in pattern recognition. Pattern Recognit. 1978, 10, 189–204. [CrossRef]
7. McClelland, J.L.; Rumelhart, D.E. An interactive activation model of context effects in letter perception: I. An

account of basic findings. Psychol. Rev. 1981, 88, 375. [CrossRef]

http://dx.doi.org/10.1080/17470211003660501
http://dx.doi.org/10.1016/0031-3203(78)90027-4
http://dx.doi.org/10.1037/0033-295X.88.5.375


Brain Sci. 2020, 10, 64 15 of 16

8. Gennari, S.P.; MacDonald, M.C.; Postle, B.R.; Seidenberg, M.S. Context-dependent interpretation of words:
Evidence for interactive neural processes. Neuroimage 2007, 35, 1278–1286. [CrossRef] [PubMed]

9. Oliva, A.; Torralba, A. The role of context in object recognition. Trends Cogn. Sci. 2007, 11, 520–527. [CrossRef]
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