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Abstract 

Despite significant advances in the treatment and care of people with HIV (PWH), several challenges remain in our 
understanding of disease pathogenesis to improve patient care. HIV infection can modify the host epigenome and 
as such can impact disease progression, as well as the molecular processes driving non-AIDS comorbidities in PWH. 
Epigenetic epidemiologic studies including epigenome-wide association studies (EWAS) offer a unique set of tools 
to expand our understanding of HIV disease and to identify novel strategies applicable to treatment and diagnosis in 
this patient population. In this review, we summarize the current state of knowledge from epigenetic epidemiologic 
studies of PWH, identify the main challenges of this approach, and highlight future directions for the field. Emerg-
ing epigenetic epidemiologic studies of PWH can expand our understanding of HIV infection and health outcomes, 
improve scientific validity through collaboration and replication, and increase the coverage of diverse populations 
affected by the global HIV pandemic. Through this review, we hope to highlight the potential of EWAS as a tool for HIV 
research and to engage more investigators to explore its application to important research questions.
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Introduction
Last year marked the 40th anniversary of the first 
reported cases of acquired immunodeficiency syndrome 
(AIDS). In the last four decades, considerable progress 
has been made in our understanding of the biology of 
human immunodeficiency virus (HIV), the causal agent 
of AIDS. Antiretroviral therapy (ART) has transformed 
what was once a deadly infection into a chronic and man-
ageable disease. The availability of effective preventative 
measures has led to a steady decline of new HIV cases 
globally, and there is renewed hope for vaccine develop-
ment and HIV cure research.

Despite these significant advances, several challenges 
remain for people with HIV (PWH). The burden of non-
AIDS related disease conditions (NADC) associated with 
chronic inflammation attributed to HIV, accelerated 
aging, and immune non-response (INR) while virologi-
cally suppressed on ART, continue to have a significant 
negative impact on quality of life and longevity for PWH. 
There is a need for innovative approaches to address 
these new challenges and identify effective interventions. 
This review summarizes the state of knowledge derived 
from epigenome-wide association studies (EWAS) of 
HIV infection, treatment, and progression while explor-
ing the role of EWAS as a key approach to addressing 
emerging challenges in HIV research.
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A foundational primer on epigenetic modifications
Epigenetic information consists of modifications of 
nuclear DNA or histones that are maintained during cell 
division but are also influenced by environmental fac-
tors [1]. There are three major forms of epigenetic infor-
mation: DNA methylation, histone modification, and 
chromatin conformation, all of which can regulate gene 
expression [2].

DNA methylation (DNAm) is the addition of methyl 
(CH3)-groups to DNA which can modify the function 
of genes and their expression. One common form is the 
methylation of the fifth carbon of the pyrimidine ring of 
a cytosine in the cytosine-guanine dinucleotide (known 
as CpG sites). In mammalian cells up to 70% of CpG sites 
are methylated [3], a process which can be influenced by 
intrinsic and extrinsic host factors, leading to alterations 
in how genes are expressed and regulated.

Histone modification—Histones are proteins associ-
ated with DNA in the nucleus and a key component of 
the chromatin. They have a role in condensing DNA 
into chromatin and can undergo post-translational 
modifications via multiple mechanisms: acetylation, 

methylation, phosphorylation, ubiquitylation, and 
sumoylation. These modifications can alter three-
dimensional chromatin structure and impact gene 
expression.

Chromatin conformation—Chromatin is a complex of 
protein and nucleic acids (RNA and DNA) that makes 
up genes in eukaryotic cells. Chromatin can undergo 
modification leading to conformational changes that 
impact gene expression. Changes in chromatin remod-
eling proteins and binding RNAs have been associated 
with human malignancies and other diseases.

In the setting of HIV infection, epigenetic modi-
fications can be mediated by the virus itself or by the 
inflammatory processes triggered by chronic viral 
infection. Subsequently, epigenetic modification can 
increase the expression of pro-inflammatory cytokine 
genes resulting from infection, further exacerbating the 
inflammatory cascade. Details of the complex pathways 
implicated in these processes are beyond the scope of 
the current review but have been summarized by oth-
ers [4, 5]. Figure 1 illustrates the factors contributing to 
epigenetic modifications in PWH.

Fig. 1  Factors leading to epigenetic modifications in people with HIV and the downstream consequences of these changes. Abbreviations: DNA 
deoxyribonucleic acid, EWAS epigenome-wide association study, HCV hepatitis C virus, HBV hepatitis B virus, CMV cytomegalovirus, HIV human 
immunodeficiency virus
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Key challenges in HIV research
Chronic inflammation and biomarkers
Chronic inflammation and immune activation are well 
recognized as major drivers of pathogenesis and disease 
in PWH [6]. They persist even with effective suppression 
of viral replication and have been implicated in NADCs 
and frailty in this population. Several markers of inflam-
mation such as interleukin-6 (Il-6), soluble cluster deter-
minant-14 (sCD14) and tumor necrosis factor-alpha 
(TNF-α) are persistently elevated in PWH and are signifi-
cantly associated with disease progression and mortality 
[6]. At present, few pharmacological interventions are 
effective in reducing inflammation in PWH. Although 
EWAS may offer insights into the mechanisms of inflam-
mation and immune activation in HIV, these insights 
might not lead directly to new therapeutic strategies 
because epigenetic changes could be a secondary effect 
or byproduct of chronic inflammation. Potential causal 
roles for epigenetic markers require further investigation 
(e.g., by Mendelian randomization [7]).

Non‑AIDS related disease conditions (NADCs)
Compared with the general population, PWH have a 
disproportionately higher burden of chronic diseases, 
termed NADCs. HIV infection is an independent risk 
factor for cardiovascular disease (CVD) and PWH expe-
rience higher incidence of stroke, myocardial infarction, 
and coronary artery disease much earlier in life than their 
aged-matched HIV-negative counterparts [8]. Chronic 
kidney disease (CKD) is also a frequent complication 
of HIV infection, occurring in 3.5% to 48.5% of PWH 
depending on the cohorts studied [9]. CKD is mediated 
by factors related to HIV infection, genetic predisposi-
tion, ART, environmental factors and other chronic med-
ical conditions like diabetes mellitus and hypertension. 
Understanding how these factors interact to promote 
CKD in PWH is crucial for identifying ways to mitigate 
this co-morbidity.

ART does not fully restore immune function in PWH 
and, despite the declining incidence of AIDS-defin-
ing malignancies the incidence of many other cancers, 
remains high [10, 11]. This risk is further enhanced by 
the higher prevalence of concomitant oncogenic virus 
infections (Epstein Barr virus (EBV), human herpes 
virus-8 (HHV8), human papilloma virus (HPV), hepati-
tis B virus (HBV) and hepatitis C virus (HCV)) [12] and 
a higher prevalence of tobacco and other substance use 
in this patient population [12]. Chronic antigen stimu-
lation from longstanding HIV infection results in T and 
B cell exhaustion, loss of antiviral effector function, and 
impaired antibody production; all of these factors con-
tribute to reduced viral clearance, impaired immune 
tumor surveillance, and increased risk for malignancy 

[12]. Increased longevity extends the cumulative expo-
sure to chronic inflammation, oncogenic viral co-infec-
tions, and carcinogens, and the accumulation of somatic 
mutations and epigenetic changes related to carcinogen-
esis [10, 11].

Impaired cognitive function is the main manifestation 
of HIV neurologic involvement and remains a challenge 
for PWH [13]. When compared to healthy HIV-negative 
controls, around half of PWH continue to have lower 
levels of performance on neuro-psychometric testing 
than would be predicted [13]. There is a paucity of reli-
able biomarkers for diagnosis of HIV-associated neuro-
cognitive disorders (HAND) or prediction of neurologic 
decline. Although non-specific, neopterin can be a useful 
biomarker for HIV-associated dementia. Neopterin is a 
bioproduct of the guanosine triphosphate pathway, pro-
duced primarily in monocyte/macrophage-related cells 
[14]. No therapeutic interventions have been found to 
improve the symptoms of HAND.

Chronic pulmonary disease [15] and liver disease [16] 
are also more prevalent in PWH as are contributing fac-
tors such as illicit drug use, tobacco abuse, obesity, and 
co-infection with other viral pathogens. Epidemiologic 
studies that incorporate epigenetic markers can help elu-
cidate the interactions between these contributing fac-
tors and HIV infection, as well as the independent and 
joint contributions of individual contributing factors to 
NADC in PWH.

HIV and epigenetic changes
DNAm of host genes in response to HIV-1 infection has 
been implicated in mechanisms of viral latency, HIV-1 
transcription, and viral replication [17–19]. As an exam-
ple, HIV-1 can trigger methylation of host genes directly 
by inducing the DNA methyl transferase-1 enzyme 
in  vitro [20]. Host epigenetic regulatory machinery can 
control proviral DNA by cellular epigenetic regulators 
which may modify the state of chromatin, thus modu-
lating HIV latency and reactivation [20]. A detailed 
description of the mechanisms by which HIV modulates 
epigenetic changes in the host genome is beyond the 
scope of this review but has been summarized by others 
[20].

Epigenetic reprogramming is therefore able to regu-
late not only the life cycle of the virus at multiple stages, 
but also the interaction between the host and the virus 
genome with implications for disease pathogenesis and 
clinical outcomes. Epigenome-wide association studies 
(EWAS) draw on bioinformatic and statistical tools to 
identify epigenetic markers that are associated with phe-
notypes at the population level. In this review, we focus 
on DNAm because it is the only epigenetic marker that 
has been analyzed in population-based studies of PWH.
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Design and workflow of EWAS in PWH
EWAS in PWH most often employ retrospective case–
control, cross-sectional, or longitudinal designs, as 
illustrated by the studies highlighted in this review. Ret-
rospective case–control studies typically compare epi-
genetic markers in cases (HIV-positive) and controls 
(HIV-negative) who have the phenotype of interest. 
Cross-sectional studies may or may not include HIV-neg-
ative controls and only provide a snapshot of epigenetic 
modifications relative to the phenotype of interest at 
one point in time. Retrospective case–control and cross-
sectional studies are limited by the fact that they cannot 
determine the direction of causation of the epigenetic 
changes observed. Furthermore, cross-sectional studies 
do not allow a complete exploration of how the relation-
ship between HIV, ART, and DNAm may change over 
time. Longitudinal studies follow a cohort of HIV-posi-
tive individuals over time with repeated tissue sampling. 
By identifying epigenetic changes prospectively, longitu-
dinal studies provide a stronger basis for causal inference 
and overcome some of the limitations of retrospective 
and cross-sectional study designs. This design has been 
applied in DNAm age-acceleration studies as well as in 
pre-ART and post-ART studies of PWH.

The choice of tissue for sampling is crucial for all EWAS 
but is generally constrained by accessibility. Most EWAS 
in PWH are based on DNAm in blood samples due to the 
challenges of obtaining relevant tissues; for example, brain 
tissue biopsy is rarely feasible for studies of HIV-associated 
neurocognitive disease. Blood samples may not always be 
biologically relevant to the phenotype of interest. Further-
more, using blood samples as a surrogate requires careful 
interpretation due to variable cell-type composition. Fig-
ure 2 summarizes the typical workflow of EWAS.

Epigenetic epidemiologic studies of PWH
Epigenetic epidemiologic research on HIV infection, pro-
gression, and outcomes is still at an early stage. Several 
key published findings so far are based on the Veterans 
Aging Cohort Study (VACS), a study of patients with and 
without HIV infection who are seen in infectious disease 
and general medical clinics operated by the Veterans 
Health Administration [21]. Other studies of PWH have 
collected similar DNAm data and begun to explore the 
role of DNAm on the disease risk and health span among 
PWH [20, 22–26].

HIV‑infection and viremia
In a study of 186 predominantly male US veterans, 
Zhang and colleagues examined differentially methylated 
CpG sites in the host genome of PWH and HIV-nega-
tive individuals to determine whether HIV-associated 

DNAm sites correlated with viral load [27]. Twenty sites 
were found to be differentially methylated in PWH 
compared to the controls without HIV, three of which 
showed a significant association with viral load. In this 
study, hypomethylation of two CpG sites (cg07839457 
and cg16411857) in the promoter of the NLRC5 gene 
was associated with HIV infection and replicated in 
an independent sample. NLRC5 plays a role in antivi-
ral immunity and the cytokine response by inhibiting 
the transcription factor nuclear factor kappa beta (NF-
KB). Methylation changes in NLRC5 may be associated 
with uncontrolled HIV replication through upregulating 
NF-KB and interferon-I (IFN-I) signaling pathways. The 
top three CpG sites significantly associated with HIV 
infection were located near or within genes related to 
immune activation, which is a central feature of chronic 
HIV infection and disease pathogenesis.

Antiretroviral therapy
Although ART reduces HIV replication, it does not fully 
eliminate the virus from the host due to the persistence 
of latently infected immune cells. In a small cohort of 11 
PWH on ART with fully suppressed viremia (< 50 cop-
ies/mL), extremely low levels of methylated CpG dinu-
cleotides were observed within the HIV 5′ LTR of resting 
CD4+ T cells [28]. In contrast, another study found that 
in six PWH on ART without detectable viremia, CpG 
methylation of the HIV 5′ LTR was 20%, 30%, 48%, 71%, 
96%, and 100%—compared with < 0.1% in a control group 
of viremic patients [29]. These discordant findings sug-
gest that factors such as subtypes of CD4+ T cells [30], 
history of infection, duration and type of ART, degrees of 
turnover of latently infected CD4+ T cells, and inclusion 
of unintegrated HIV DNA may play a significant role in 
the variation of DNAm, viral persistence, and latency.

A pediatric cohort study of South African children 
compared DNAm profiles of 120 children with HIV on 
ART with suppressed viremia to those of 60 age-matched 
children without HIV. This study identified 1309 dif-
ferentially methylated CpG sites in children with HIV 
compared to their age-matched controls [26]. Strong dif-
ferential methylation in the same region of the NLRC5 
gene identified in adult cohorts of PWH was also found 
in this pediatric cohort. In contrast to a study based on 
the adult male VACS cohort that identified hypomethyl-
ated sites in individuals with HIV compared to individu-
als without HIV, 97% of DNAm CpG sites identified in 
children with HIV were hypermethylated with respect to 
age-matched controls [26]. This suggests that exposure to 
HIV infection and ART in early life may impact the epig-
enome differently from exposure later in life, which could 
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Fig. 2  The typical workflow of EWAS
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have implications for differential disease manifestations 
in children compared to adults.

In EWAS of PWH on ART with fully suppressed 
viremia, it is challenging to separate the effects of ART 
exposure and HIV infection on the epigenome. In addi-
tion, concurrent factors such as chronological aging, 
environmental factors, and other infectious exposures 
may also leave marks on the epigenome. Furthermore, 
cross-sectional studies do not allow a complete explo-
ration of how the relationship between HIV, ART, and 
DNAm may change over time; thus, the directionality of 
the relationship cannot be inferred (i.e., inability to sepa-
rate cause from effect). Longitudinal studies may be more 
informative in both pediatric and adult populations. 
Most studies to date have used the Illumina Human 
Methylation 450  K BeadChip Array (Illumina Inc, San 
Diego, CA), which only covers 1.5% of genomic CpG 
sites and is biased towards promoter and protein coding 
regions. Additional studies using the more recent EPIC 
850  K array (Illumina Inc. San Diego, CA) and DNA 
methylation sequencing, which offers broader coverage 
in other genomic regions, are needed to provide a more 
comprehensive view.

Chronic diseases and HIV
PWH carry a significant burden of chronic diseases 
impacting multiple end organs, including the kidneys, 
lungs, brain, heart, and liver. The underlying molecu-
lar processes that explain this increased disease burden 
are incompletely understood. EWAS has the potential to 
unlock clues into disease pathogenesis and identify new 
therapeutic targets. In recent years this powerful tool 
has been exploited to examine the association between 
DNAm and several chronic conditions in PWH. Table 1 
provides a summary of EWAS of chronic diseases, co-
morbid factors and HIV.

Chronic pulmonary disease
Significantly higher rates of chronic obstructive pulmo-
nary disease (COPD) and overall pulmonary function 
decline have been observed in PWH [15]. It remains 
unclear whether individual factors such as smoking, 
illicit drug use, recurrent infections, chronic inflam-
mation, or a combination of these factors drive the 
increased risk for COPD in PWH. Cordero et  al. tested 
the association between blood DNAm and lung function 
in a cohort of 161 PWH [22]. They assessed pulmonary 
function parameters including forced expiratory volume 
in one second (FEV1), forced vital capacity (FVC), the 
FEV1/FVC ratio, and the decline in FEV1 over a period 
of 5  years. They found that 1393 differentially DNAm 
sites were associated with airflow obstruction defined as 
FEV1/FVC < 0.70 while 4676 DNAm sites were associated 

with airflow obstruction defined as FEV1/FVC < lower 
limit of normal. Overall, airflow obstruction was associ-
ated with global hypomethylation. DNAm associations 
were not found with FEV1 decline.

Interestingly, the Cordero et  al. study found that the 
DNAm sites associated with airflow obstruction were 
enriched for biological pathways associated with chronic 
viral infections, such as hepatitis B, Epstein Barr virus, 
and human papilloma virus [22]. This observation sug-
gests a potential role for viral co-infections such as 
chronic herpes viruses and hepatitis viruses, which are 
more prevalent in cohorts of PWH, as contributors to 
differential DNAm associations with pulmonary func-
tion parameters. This study cohort was restricted to indi-
viduals > 40 years with detectable viral load and CD4+ T 
cell counts > 500 cells/mL, who were not on ART at the 
time of entry. It is therefore difficult to say whether these 
findings would apply to PWH on ART for many years, 
who have achieved virologic suppression. Furthermore, 
the proportion of the cohort meeting criteria for airway 
obstruction was small (n = 20), and larger cohorts will be 
needed to confirm these findings.

Kidney disease
HIV infection is associated with an increased risk for 
chronic kidney disease (CKD), defined as a reduced 
estimated glomerular filtration rate (eGFR) < 60  mL/
min/1.73 m2. A study of 567 men with HIV and 117 men 
without HIV in the Veterans Aging Cohort Study (VACS) 
explored epigenetic changes related to eGFR in PWH 
[31]. Using the Illumina 450 K array to survey peripheral 
blood mononuclear cells, 15 CpG sites were significantly 
associated with eGFR among the HIV-positive partici-
pants. The three most significant CpG sites (located at 
MAD1L1, TSNARE1/BAI1, and LTV1) were all nega-
tively associated with eGFR. This study attempted to rep-
licate CpG associations with eGFR reported in previous 
non-HIV EWAS with limited success, although direc-
tionality of the associations was consistent. This could 
reflect limited statistical power and potential differences 
between people with and without HIV infection. They 
also profiled DNAm in peripheral blood cells rather than 
in kidney tissue, which is more relevant for CKD. This is 
a limitation of many such studies in understanding func-
tional mechanisms of target organs.

HIV‑associated neurocognitive disorders (HAND)
HIV-associated cognitive impairment (CI) is character-
ized by a wide range of clinical manifestations ranging 
from mild cognitive decline to debilitating behavioral 
changes, motor function decline, and dementia. The 
use of ART has dramatically reduced the prevalence of 
HAND, but less severe forms continue to occur in 40% 
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of PWH on treatment [23]. Monocytes/macrophages 
contribute to the pathogenesis of HIV-associated CI 
[32], but considerable gaps remain in our understand-
ing of the underlying mechanisms.

Corley et  al. examined DNAm of peripheral blood 
mononuclear cells (PBMCs) from 21 PWH who met 
clinical criteria for CI in the Hawaii HIV Aging Cohort 
Study for comparison with 10 individuals with HIV 
and normal cognitive function [33]. They identi-
fied 1032 CI-associated, differentially methylated loci 
in monocytes and observed CI-associated methyla-
tion differences linked to gene expression (assessed 
by targeted human transcriptome profiling) and neu-
ropsychological test scores. They also noted a 10% 
difference in methylation at specific loci (occurring 
preferentially at regulatory regions of the genome, 
including CpG island shores, gene bodies, intergenic, 
and enhancer regions) related to genes involved in the 
CNS and interacting with HIV. These findings sup-
port the role of epigenetic perturbations of monocytes 
in HIV-associated CI and the potential to identify 
immuno-epigenetic signatures that could be used to 
research novel therapeutic approaches. The results 
of this small study still need to be validated in larger 
cohorts, preferably with pure subsets of monocytes 
such as microglia, which play a vital role in brain dys-
function [34].

Diabetes mellitus
Factors that increase the risk of developing type 2 dia-
betes mellitus (T2DM) in PWH include long-term 
survival from HIV infection and use of ART, hepatitis 
C virus (HCV) co-infection, and elevated BMI [35]. 
Epigenetic modifications of DNA are independently 
associated with HIV infection and with T2DM; the 
co-existence of both create the possibility of interac-
tion effects in studies of DNAm and disease outcomes. 
Mathur et  al. investigated epigenetic associations with 
T2DM according to HIV infection status and assessed 
interaction effects among 681 male participants from 
the Veterans Aging Cohort Study [36]. They replicated 
the previously reported association of cg19693031 
(TXNIP) with T2DM, demonstrating a stronger asso-
ciation in the HIV−positive than in the HIV-negative 
group. TXNIP has also been shown to be associated 
with several inflammatory markers in a cohort of HIV-
negative individuals [37]. They also identified several 
T2DM-associated CpG sites (cg1231141 (ADAMTS2), 
cg19534769 (HGFAC), and cg13163919 (TLE3) impli-
cated in inflammation, pancreatic β-cell function, 
and T2DM pathogenesis [36] in PWH for further 
investigation.

Co‑morbid factors and HIV
Smoking and HIV infection
Several studies indicate that the prevalence of smoking in 
PWH is 2–3 times higher than in the general population 
[38–43]. Smoking in PWH is associated with increased 
mortality and amplifies the risk for other chronic, co-
morbid conditions in this population [44]. Zhang et  al. 
applied ensemble machine learning to identify smoking-
related DNA methylation signatures that were predic-
tive of prognosis and mortality of HIV infection [45]. 
The study population included 1137 PWH in VACS, 
divided into a discovery sample (361 smokers and 247 
non-smokers) and a validation sample (309 smokers and 
220 non-smokers). They performed a meta-EWAS of 
the discovery and validation samples and identified 137 
CpGs associated with smoking [45]. To examine whether 
smoking-associated CpGs were predictive of HIV frailty 
and mortality, machine learning was utilized to build a 
model employing 408,583 CpGs. 698 CpGs were predic-
tive of high HIV frailty and a DNAm index constructed 
from these CpGs was associated with a hazard for mor-
tality [45]. In this retrospective study, smoking status 
was defined by self-report, which could introduce bias. 
These findings will need to be confirmed in prospective 
cohorts.

Cocaine use and HIV infection
Cocaine use is more common in PWH than in the gen-
eral population and has been associated with HIV dis-
ease progression [46] by mechanisms that are not fully 
understood. Some studies suggest that substance abuse 
disorders may be associated with inadequate adherence 
to ART [47]; however, cocaine use also causes epige-
netic changes that could mediate the impact of cocaine 
use on HIV progression and disease severity. A study of 
1435 veterans with HIV in VACS examined DNAm as a 
potential mediator of the association of cocaine use with 
HIV severity [48]. In this study, cocaine use was associ-
ated with a higher VACS index (a validated measure of 
frailty/mortality) and with increased mortality, find-
ings consistent with previously studied cohorts [21, 49]. 
They identified 12 differentially methylated CpG sites in 
genes involved in the antiviral response (IFIT3, IFITM1, 
NLRC5, PLSCR1, PARP9) and in HIV progression 
(CX3CR1, MX1) [48]. These CpG sites also showed signif-
icant mediation effects, individually explaining between 
11.3 and 29.5% of the effect of persistent cocaine use on 
HIV severity. Strengths of this study included the avail-
ability of longitudinal data, clearly defined measures of 
cocaine use, and an unbiased EWAS approach; however, 
the study was limited by the predominantly male cohort 
and a small sample size used for mediation analyses.
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Intravenous drug use (IVDU) and HCV co‑infection
Both IVDU and HCV infection may worsen HIV out-
comes by amplifying chronic inflammation and immune 
activation [50–52]. A study of PWH in VACS found that 
PBMC-based DNAm significantly different between 
IVDU+/HCV+ and IVDU−/HCV− persons, which could 
be linked with HIV outcomes measured by the VACS 
index [53]. Methylated regions associated with IVDU+/
HCV+ status were located on genes important for medi-
ating antiviral immunity and inflammation [53]. These 
findings suggest that the link between methylation mark-
ers and HIV outcomes in IVDU+ /HCV+ individuals may 
be related to immune activation, which is strongly asso-
ciated with HIV progression, comorbidity, and frailty. 
Differential DNA methylation associated with IVDU 
and HCV may worsen HIV outcomes by regulating 
gene expression of immune and inflammatory proteins. 
The main limitation of this study was the inability of 
the investigators to separate IVDU from HCV infection 
because these exposures were tightly linked.

HIV disease progression and mortality
DNA methylation profiles predictive of mortality have 
been identified in general population cohorts [54]. 
DNAm changes mediated by HIV infection have the 
potential to modulate both disease progression and mor-
tality in PWH. An EWAS conducted by Moron-Lopez 
and colleagues identified distinct patterns of CD4+ T-cell 
DNAm associated with HIV disease progression [55]. 
They analyzed 85 samples from 64 participants, including 
21 elite-controllers, 21 individuals with viremia before 
ART and under suppressive ART (sampled before ART 
initiation and viremic suppression and after ART initia-
tion with undetectable viral load), and 22 HIV-negative 
donors. They found that viremic individuals had 129 
methylated CpG sites that were significantly different 
compared with HIV-negative individuals, 162 CpG sites 
compared with treated individuals, and 441 CpG sites 
(163 gene promoters) compared with elite controllers. 
No differences were found between elite controllers and 
HIV-negative individuals. The tumor necrosis factor 
(TNF) promoter region was hypermethylated and cor-
related with elevated plasma levels of TNF in viremic 
persons compared with the ART-receiving, elite control-
ler and HIV-negative groups [55]. Several studies have 
demonstrated the role of TNF in the pathogenesis of HIV 
with effects on various stages of viral replication, includ-
ing the ability of TNF to increase HIV transcription 
through activation of the NF-κB signaling pathway. The 
small number of participants in this study limited its abil-
ity evaluate potential differential effects of specific antivi-
ral agents on DNAm.

Another group applied machine learning to EWAS 
data from the VACS cohort, using the ensemble pre-
diction model to identify a panel of DNAm features 
associated with mortality in PWH. They included 1081 
HIV-positive individuals from VACS who were divided 
into subsets for training (n = 460), validating (n = 114) 
and testing (n = 507) the model [56]. The VACS index 
[49] was applied as measure of mortality risk among 
PWH. A prediction model using 393 CpG sites showed 
excellent performance in predicting 10-year mortality. 
The biological relevance of these 393 CpG sites was sup-
ported by gene ontology enrichment analyses [56]. Top 
enriched pathways were associated with viral response, 
immune activation, and cytokine receptor binding, 
which could contribute to the increased risk of mortal-
ity among PWH. This study highlights the applicability 
of machine learning to EWAS data as a way of identify-
ing new biological markers of disease and predictors of 
disease outcome. The specific prediction model, however, 
has limited generalizability because all data were from 
middle-aged men with HIV.

DNAm as a marker of aging for PWH
In 2018, more than half (51%) of PWH were aged 50 and 
older and this proportion was expected to rise [57]. HIV 
infection may contribute significantly to early onset aging 
through multiple mechanisms. HIV can lead to DNA 
damage through direct and indirect mechanisms [58]. 
Telomere shortening has been well described in cohorts 
of PWH and has been associated with aging though cau-
sation has not been firmly established [59, 60]. Disruption 
of homeostasis between protein synthesis and degrada-
tion increases with aging and is associated with chronic 
diseases which tend to be overrepresented in PWH [61, 
62]. Mitochondrial dysfunction, which could be associ-
ated with HIV infection itself or with certain antiretrovi-
rals used for treatment, may contribute to accumulation 
of mutations in the mitochondrial DNA and promote 
premature aging [63]. Chronic, low grade HIV replication 
may also contribute to cellular senescence (reviewed in 
[64]). Figure 3 illustrates important interactions and the 
factors contributing to DNA methylation and aging in 
PWH.

At the molecular level, aging has been associated with 
epigenetic modifications including DNA methylation, 
histone modification and chromatin remodeling [65]. 
Epigenetic tools have been developed to predict epige-
netic age based on DNAm changes (reviewed in [65]). 
Epigenetic age is also known as DNAm age and is cal-
culated by applying mathematical algorithms to a selec-
tion of aging-related DNAm sites [65]. Several studies 
have shown associations between aging and DNAm in 
the genome [66–68].The most frequently used approach, 
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the Horvath clock, estimates age, based on 353 DNAm 
epigenetic markers in the genome. The basic approach is 
to form a weighted average of the 353 clock CpGs, which 
is then transformed to DNAm age using a calibration 
function [65]. Table 2 provides a summary of EWAS and 
aging in PWH.

Using DNAm as an epigenetic marker for aging, Hor-
vath and Levine reported that HIV infection led to accel-
erated epigenetic aging in both brain tissue (7.4 years) and 
blood (5.2 years), demonstrating the potential of the epi-
genetic clock as a tool for studying aging related NADCs 
in PWH [69]. Another study compared 137 people with 
HIV on sustained ART with 44 controls without HIV 
and found that both chronic and recent HIV infection 
led, on average, to a 4.9-year increase in DNAm age and 
increased expected mortality by 19% [70]. Rickabaugh, in 
a smaller study, compared 12 individuals with HIV not 
on ART with 12 controls without HIV and reported an 
epigenetic age increase of 14 years [71]. This discrepancy 
with the other two studies could reflect either the benefi-
cial effects of ART or the different statistical approaches 
applied. A more recent study compared 378 ART-naive 
persons with HIV having CD4+ T-cell counts > 500/µL 

with 34 controls without HIV, calculating DNAm age 
using the epigenetic clock [72]. They found that in PWH 
not on ART, even with preserved immune function, there 
is evidence of advanced DNAm aging. These results sug-
gest that the aging process potentially starts early during 
HIV infection and substantial methylation changes can 
occur even in the absence of advanced disease and AIDS 
defining conditions. There is some indication that ART 
can help mitigate these changes and temper age accel-
eration but this would need to be confirmed in studies 
of larger cohorts, as should the utility of DNAm age as a 
biomarker in the care of PWH.

Interestingly these findings were not confirmed in a 
pediatric cohort of children with HIV in South Africa. 
Shiau et al. conducted a cross-sectional study of 120 chil-
dren including HIV-positive, HIV-exposed uninfected 
(HEU) and HIV-negative unexposed uninfected (HUU). 
After adjusting for differences in cell-type proportions, 
they found no differences in DNAm associated with age 
acceleration between children with HIV and the other 
groups [26]. Telomere length was however noted to be 
significantly shorter in children with HIV compared to 
children in the HEU and HUU groups. Several factors 

Fig. 3  DNA methylation and aging in People with HIV. Abbreviations: ART​ antiretroviral therapy, DNA deoxyribonucleic acid, DNAm DNA 
methylation, HIV human immunodeficiency virus
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may explain the difference in findings between this pedi-
atric cohort and studies in adults. It is possible that the 
negative impact of HIV on DNAm age is mitigated by 
initiation of ART soon after birth in children who are 
perinatally infected, or that it occurs only after a longer 
duration of infection (i.e., greater than the mean of 
6.4 years observed in this study) or later in life. Prospec-
tive cohorts with follow-up from perinatal age through 
adolescence and adulthood are needed to clarify the rela-
tionship of HIV infection with DNAm age in children.

A cross-sectional study that compared 31 perina-
tally infected young African American adults aged 
20–35  years with 30 HIV-negative individuals found 
significant differences in two markers of epigenetic 
age acceleration (EAA)—intrinsic (IEAA) and extrin-
sic (EEAA)—between HIV-positive and HIV-negative 
groups [25]. EEAA is a measure of DNAm age that 
directly incorporates age-related changes in blood cell 
composition [73]. There was no difference in IEAA—a 
measure of DNAm independent of blood cell composi-
tion between the groups. In the HIV-positive individu-
als, EAA and EEAA were higher in those with HIV viral 
load ≥ 50 copies/mL compared to individuals with unde-
tectable viral load (< 50 copies/mL). Negative correlations 
were also observed between EEAA and executive func-
tion, attention, and language scores [25]. Ninety percent 
of participants with HIV had initiated ART perinatally 
and had controlled viremia [25]. Early ART treatment 
and virologic suppression may explain the absence of a 
difference in IEAA between HIV-positive and the HIV-
negative controls but a definitive conclusion is limited by 
the small size of the study as well as the absence of longi-
tudinal data.

Using the VACS cohort, Nelson et  al. studied DNAm 
age in 19 ART-naïve men with HIV compared to 19 
HIV-negative controls at baseline before ART initiation 
and 7–11  years later [74]. They found that DNAm age 
in men with HIV was on average 11.2 years higher than 
HIV negative control participants at baseline; two HIV-
positive men in the cohort showed a recovery in accel-
erated DNAm age after ART initiation [74]. The main 
limitation of the study was its small sample size and the 
lack of female participants; however, studying DNAm 
age in PWH prior to ART initiation allowed the authors 
to examine the methylation effects of HIV infection 
itself, rather than the combination of HIV infection and 
therapy.

Esteban-Cantos et  al. conducted a larger longitudi-
nal study of epigenetic aging in 63 adults with HIV who 
were well-controlled on ART; during a 4-year follow-up 
period, they found no evidence for EAA [75]. Longitudi-
nal changes in measures of epigenetic aging were inde-
pendent of the ART regimen, CD4+ T-cell count, and 

other factors related to HIV infection. The main strength 
of this study is that it prospectively evaluated epigenetic 
age acceleration in a population of long-term viremic 
adults with HIV using three different measures of epige-
netic aging (Horvath´s clock and the estimators Pheno-
Age and GrimAge) [75]. PhenoAge is an epigenetic aging 
surrogate marker which incorporates multiple measures 
such as chronological age, lymphocyte percentage, albu-
min and glucose levels [76]. GrimAge is another multi-
factorial marker of epigenetic aging which incorporates 
chronological age, sex, smoking and several DNAm 
estimators of plasma proteins [77]. Both PhenoAge and 
GrimAge have been applied to predicting mortality and 
age-related changes in blood cell composition [77].This 
study was however limited by the lack of a control group 
without HIV and the lack of sufficient power to detect 
distinctive differences in epigenetic age acceleration with 
different classes of ART.

Another recently published study [78], a sub-analysis 
of participants from the NEAT001/ANRS143 trial [79], 
looked at DNAm aging in PWH before and after ART 
initiation compared to an HIV-negative control group 
with similar sex and age distribution. DNAm was meas-
ured using frozen whole blood samples from 168 HIV-
positive individuals before ART and two years after ART) 
[78]. Epigenetic age acceleration was assessed using 4 
estimators (Horvath’s clock, Hannum’s clock, GrimAge 
and PhenoAge). A CD4 + T-cell count < 200 cells/uL and 
detectable viral load > 100,000 copies/mL at baseline were 
associated with more pronounced epigenetic aging. Epi-
genetic age acceleration was reduced after two years on 
ART though PhenoAge and GrimAge remained higher in 
the HIV-positive group compared to HIV-negative con-
trols. No significant differences in epigenetic aging were 
noted between the two treatment regimens [78]. These 
important findings support the role of ART in reversing 
epigenetic aging. Only two ART regimens were assessed 
in this study. Other ART regimens may have more pro-
found effects on reversing epigenetic age acceleration, 
which can be addressed in future studies with larger and 
more diverse samples.

Another study of 155 post-mortem examinations of 
PWH investigated whether three inflammation-related 
single nucleotide polymorphisms (SNPs) were risk factors 
for accelerated aging and NADCs [80]. The authors found 
that epigenetic aging (higher Z-score) was significantly 
greater in IL-6 C-allele carriers and IL-10 CC homozy-
gotes compared to other genotype groups. TNF genotype 
was not associated with epigenetic aging or NADCs. IL-6 
is a pro-inflammatory cytokine associated with increased 
mortality in PWH [81]. The processes of accelerated 
aging in HIV are intimately linked to chronic inflamma-
tion and immune activation, which are hallmarks of HIV 
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infection. Chronic inflammation promotes tissue dam-
age and epigenetic modification. Studies such as this may 
provide insight into the pathophysiology of accelerated 
aging in PWH.

More recently, studies of epigenetic aging have been 
extended as a way of identifying markers of disease. A 
study of an African American (AA) cohort including 69 
PWH and 38 HIV negative controls, all over 60 years old, 
estimated the association of six DNAm markers of aging 
with measures of cognitive function (the NIH cognition 
toolbox and the Montreal Cognitive assessment tool) 
[24]. In PWH, intrinsic epigenetic age acceleration was 
negatively correlated with executive function, attention, 
and working memory.

Main challenges and future directions
The nascent field of EWAS applied to HIV biology and 
epidemiology holds potential that has yet to be har-
nessed. Our review discusses a growing body of studies 
in this field. Several challenges remain in interpreting 
current findings and their potential implications for 
improving the lives of PWH:

•	 The variety of array platforms used (old and new) and 
heterogeneous sample characteristics in studies pub-
lished to date makes it challenging to compare find-
ings between studies and limits the ability to validate 
interesting observations.

•	 The cross-sectional design of most studies, though 
convenient, only provides a snapshot at a point in 
time of epigenetic changes and may not capture the 
dynamic nature of this process.

•	 Additional limitations in many studies include small 
sample sizes, the lack of control groups (both indi-
viduals without HIV infection and individuals with 
HIV infection on ART with virologic control), and 
the ability to stratify by type of ART.

•	 For studies of epigenetic aging, the variety of meas-
ures and estimators makes it challenging to compare 
results between studies. There is a need for a univer-
sal standard for assessing DNAm age.

•	 EWAS is a useful tool for generating hypotheses link-
ing genes and markers to disease pathogenesis and 
therapeutic targets; however, only a limited number 
of these leads have been further evaluated in biologi-
cal studies.

•	 The associations between DNAm, chronic diseases, 
and aging in PWH hint at an important role of epige-
netic modifications in the pathogenesis of HIV infec-
tion and warrant functional studies to fully under-
stand the implications for disease progression and 
clinical outcomes.

•	 EWAS is limited by the tissue sampled. For studies in 
PWH, this has been mostly blood cell subsets, which 
are easy to obtain but which may be less relevant in 
capturing meaningful epigenetic modifications for 
other tissues such as the brain, kidneys, lungs liver 
etc. It remains unclear whether epigenetic modifica-
tions identified in blood cells are relevant surrogates 
for organ-specific disease processes.

•	 The important confounding issue of whether epige-
netic modifications are a cause or a consequence of 
disease processes remains a challenge.

Future EWAS studies applied to larger patient 
cohorts with appropriate controls and longitudinal 
study designs will address some of the main limita-
tions of existing studies. Using newer array platforms 
with more genomic coverage will allow a more com-
prehensive assessment of epigenetic modifications by 
exploring a wider range of genes relevant to HIV dis-
ease. Finally, tissue-specific sampling for EWAS either 
through post-mortem studies or biopsies of relevant 
tissue will allow for more relevant data on epigenetic 
modification in organ-specific disease processes.

Combining epigenetic studies with other approaches 
to studying gene function and expression, such as RNA 
sequencing and proteomics, could help expand our 
understanding of the role of gene expression in the 
development of human disease. Additional epigenetic 
epidemiologic studies of PWH will help inform research 
on HIV infection and health outcomes, improve scien-
tific validity through collaboration and replication, and 
encompass more of the diverse populations affected by 
the global HIV pandemic. The intersection of HIV and 
epigenetics research remains a vast space with enor-
mous potential for impact. We hope to engage more 
investigators in incorporating this approach to existing 
and emerging questions in the field of HIV research.
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