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Estimation of causal effects from observational data is a primary goal of epidemiology. The use of multiple meth-
ods with different assumptions relating to exchangeability improves causal inference by demonstrating robustness
across assumptions. We estimated the effect of antiretroviral therapy (ART) on mortality in rural KwaZulu-Natal,
South Africa, from 2007 to 2011, using 2 methods with substantially different assumptions: the regression disconti-
nuity design (RDD) and inverse-probability–weighted (IPW)marginal structural models (MSMs). The RDD analysis
took advantage of a CD4-cell-count–based threshold for ART initiation (200 cells/μL). The 2 methods yielded con-
sistent but nonidentical results for the effect of immediate initiation of ART (RDD intention-to-treat hazard ratio
(HR) = 0.66, 95% confidence interval (CI): 0.35, 1.26; RDD complier average causal effect HR = 0.56, 95% CI:
0.41, 0.77; IPWMSMHR = 0.49, 95% CI: 0.42, 0.58). Although RDD and IPWMSM estimates have distinct identi-
fying assumptions, strengths, and limitations in terms of internal and external validity, results in this application
were similar. The differences in modeling approaches and the external validity of each method may explain the
minor differences in effect estimates. The overall consistency of the results lends support for causal inference
about the effect of ART onmortality from these data.

antiretroviral therapy; causal inference; HIV; marginal structural models; mortality; regression discontinuity; South
Africa

Abbreviations: ART, antiretroviral therapy; CACE, complier average causal effect; CD4, cluster of differentiation 4; CI, confidence
interval; HIV, human immunodeficiency virus; HR, hazard ratio; IPW, inverse-probability–weighted; ITT, intention to treat; MSM,
marginal structural model; RDD, regression discontinuity design.

The most commonly used epidemiologic methods for identi-
fication of causal effects rely on the untestable assumption of
no unmeasured confounding to achieve exchangeability (i.e.,
that the counterfactual risk of outcome for each exposure status
is the same in the exposed and the unexposed) (1, 2). Recently,
nonrandomized study designs have been classified into 2 broad
categories based primarily on the underlying assumptions for
internal validity (3). “Quasi-experimental” study designs have
been defined as those that utilize an exogenous source in varia-
tion in exposure assignment (e.g., an instrumental variable).
Because the source of variation in treatment assignment is not
related to the causal structure, these designs do not require the
typical assumption of no unmeasured confounding to achieve

exchangeability, and they do not require explicit modeling of
or adjustment for covariates (4). However, in order for valid
causal inferences to be drawn, these designs each require their
own set of assumptions to bemet, some of which are not empir-
ically verifiable (5).

The second category, “nonexperimental” studies, encompasses
study designs in which exposure allocation is modeled as a pro-
cess that is endogenous to the causal structure under study (3).
Because exposure is allocated nonrandomly, these study designs
requiremeasurement of and adjustment for all potential confound-
ers. The models used under this umbrella must explicitly model
all potential confounders to identify causal effects, and thus they
require the assumption of no unmeasured or residual confounding.
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In addition to differences in assumptions for exchangeabil-
ity, the external validity of results differs by causal inference
method. To achieve exchangeability, restricting the analyti-
cal population of a quasi-experimental study to persons with
values that are close to the exogenous source of exposure
allocation is often necessary. Without untestable assump-
tions, these results will only be generalizable to target pop-
ulations with a similar distribution of values. Conversely,
nonexperiments may be generalizable to a larger population,
as they estimate the association in the entire study population.
The answer to the same research question can thus differ de-
pending onwhether it has been derived from a quasi-experiment
or a nonexperiment.

In controlled trials of antiretroviral therapy (ART) among
persons with human immunodeficiency virus (HIV) infection,
immediate initiation of ART has been shown to reduce mortal-
ity in comparison with delayed initiation (6–8). Real-world
causal effects outside of tightly controlled randomized trials
may differ because of differences in adherence (e.g., without
the counseling provided in a trial) or drug stock-outs. However,
identification of the effect of ART on mortality in observational
data using traditional covariate-adjustment regression methods
is limited by confounding by indication. ART initiation is a
function of cluster of differentiation 4 (CD4)-positive T-cell
count, which is also an indicator of disease progression and
thus is associated with mortality. Failing to account for CD4
cell count will therefore lead to incorrect inferences (9). How-
ever, standard covariate adjustment cannot be used if the expo-
sure is time-varying, because time-varying confounders are
affected by previous treatment. For time-fixed exposures,
standard regression could be used, although it is not ideal
because the hazard ratio is noncollapsible. Here we compare the
assumptions and external validity of the regression discontinuity
design (RDD) (10–14), classified as a quasi-experimental ap-
proach,with that of inverse- probability–weighted (IPW)marginal
structural models (MSMs) (9), classified as a nonexperimental
approach. We then illustrate the comparison of approaches with
an application to assessment of the causal effect of ART on sur-
vival in rural KwaZulu-Natal, South Africa (Table 1).

METHODS

Regression discontinuity design

The RDD can be used in settings where an exposure is as-
signed by a threshold rule based on a continuously measured
variable (the assignment variable) (10, 15–19). Persons who
present for care close to the threshold value who are measured
just above and just below the threshold are expected to be simi-
lar with respect to the distributions of measured and unmea-
sured covariates. Patients immediately above and below the
threshold value are expected to be exchangeable (see Web
Appendix 1, available at https://academic.oup.com/aje).

A discontinuity in treatment assignment occurs when the
probability of receiving treatment given that a patient is above
the threshold does not equal the probability of receiving treat-
ment given that the patient is below the threshold. Causal ef-
fects can then be estimated in a small neighborhood around the
threshold. This process has been formally described elsewhere
(10). When the assignment procedure is deterministic (when
the threshold rule perfectly determines treatment), the proce-
dure is known as “sharp regression discontinuity.” In the prob-
abilistic case, where not all patients receive the treatment they
are assigned by the threshold, the procedure is known as “fuzzy
regression discontinuity.” With sharp regression discontinuity,
the association estimated is equal to the average causal effect in
the population around the threshold. With fuzzy regression dis-
continuity, where treatment is assigned probabilistically, this
measure becomes the intention to treat (ITT), or the effect of eli-
gibility for treatment as determined by the threshold. This is
analogous to the ITT commonly estimated in a randomized
controlled trial (20–22).

In practice, a bias-variance tradeoff exists in the estimation of
these models. While theoretically resulting in the least biased
estimate of the causal effect, an analysis restricted only to per-
sons immediately above and below the threshold may have
insufficient statistical power. To increase power, information
can be borrowed from persons further away from the thresh-
old. However, as the bandwidth around the threshold widens,
correct modeling of the functional form of the expected value

Table 1. Comparison of Regression Discontinuity Design and Inverse-Probability–WeightedMarginal Structural
Models as Causal Modeling Strategies for Initiation of Antiretroviral Therapy Among PersonsWith Human
Immunodeficiency Virus Infection

Element of
Study Design Regression Discontinuity Design Inverse-Probability–Weighted

Marginal Structural Model

Causal question The causal effect of immediate ART eligibility on
mortality

The causal effect of ART initiation at
entry to care onmortality

Effect estimated Local treatment effect Average causal effect

Key assumption Potential outcomes are continuous at the
threshold (continuity assumption)

No unmeasured confounding

Handling of
confounding

Whether or not a person near the threshold
presents to the clinic just above or just below
the threshold is assumed to be random

Creating a pseudopopulation where
treatment is random conditional
on measured covariates

Statistical power
relative to standard
cohort methods

Strongly reduced Reduced

Abbreviation: ART, antiretroviral therapy.
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of the outcome given the assignment variable becomes increas-
ingly important to maintain exchangeability.

Two assumptions must be evaluated and met for estimating
the causal effect in the ITT for RDDs. First, the assignment
variable must be continuous at the threshold. Second, the so-
called continuity assumption (which is that potential outcomes
are continuous at the threshold) must hold. When it is met,
it implies exchangeability. There can be no other factors at the
threshold that would cause a discontinuity in the potential out-
comes. If there exist other variables that are discontinuous at the
threshold and also affect outcomes, the continuity assumption
would be violated and causal inference jeopardized. In prac-
tice, when an assignment variable is measured with random
noise, we expect this key assumption to be met for persons
close to the threshold. Another assumption of RDD, consis-
tency (23) (e.g., that interventions are well-defined) and positiv-
ity (24) (e.g., that there are observations in each stratum), is
generally expected to be met, since interventions assigned by a
threshold rule are generally well-defined, and we expect there
to be persons both above and below the threshold (13). One
precondition for regression discontinuity is that the thresh-
old rule is known (10).When this precondition is met, the con-
sistency assumption will also hold.

In fuzzy regression discontinuity, an alternative to the ITT
estimate is the effect of the exposure itself on outcomes. This
measure, called the complier average causal effect (CACE) or
local average treatment effect (LATE), can be estimated using
instrumental variable approaches (4, 10, 25), where the instru-
ment is treatment assignment by the threshold rule and is used
to identify the exogenous variation in actual treatment. The
CACE is what would have occurred had everyone in the sam-
ple complied with the treatment assignment by the threshold
rule. This estimate can be viewed as the “undiluted” effect
of treatment, which will only coincide with the ITT under the
ideal conditions of perfect compliance (26).

Estimation of the CACE using treatment assignment by the
threshold rule as the instrument requires monotonicity—that is,
all people who are affected by the instrument are affected by it
in the same way. Monotonicity rules out the possibility that for
a given change in the instrument, there are both some indivi-
duals whose treatment status changes in one direction and
other individuals whose treatment status changes in the opposite
direction (i.e., there are no so-called defiers). Unfortunately, de-
fiers are not an empirically identifiable population. In general,
instrumental variable analyses require the exclusion restriction
(4). The exclusion restriction states that the instrument only af-
fects the outcome via treatment status itself. In regression dis-
continuity, if the continuity assumption has been met, there is
no confounding of the threshold (e.g., common causes of the
threshold and the outcome) and thus the exclusion restriction
will be met (5).

Inverse probability weighting

Inverse probability weighting of MSMs reduces bias in the
presence of time-varying confounding (9). Conventional multiple
regression models result in bias in the presence of time-varying
confounding, as they rely on conditioning on all covariates in the
model. Inverse probability weighting of MSMs overcomes these
limitations by creating a pseudopopulation in which there is no

association between confounding variables and treatment by esti-
mating the probability of receiving the treatment that the subject
actually received at time k, conditional on past treatment and risk
factor history (9, 27, 28). In the pseudopopulation, under the
assumption of no unmeasured confounding (i.e., conditional
exchangeability in the original population), the unexposed and
exposed are expected to be unconditionally exchangeable, and
causal effects can be estimated (2).

The key assumption for identification of causal effects in
IPWMSMs is conditional exchangeability. Any unmeasured
variables that are associated with both the exposure of
interest and the outcome would jeopardize causal infer-
ence in this framework. If the exposed and unexposed are
conditionally exchangeable in the original population, they
will be unconditionally exchangeable in the pseudopopula-
tion, allowing for identification of marginal causal effects.
The exposed and unexposed may be conditionally exchangeable
if time-varying stabilized inverse probability weights include
baseline covariates in the numerator. However, if the assump-
tion of conditional exchangeability (i.e., no unmeasured or
residual confounding) does not hold in the original population,
the exchangeability assumption will not hold in the pseudo-
population. This assumption is empirically unverifiable. Re-
searchers must rely on subject-matter knowledge to assess the
degree to which this assumption is reasonable. The additional
identifying assumptions of consistency and positivity must
also hold for valid causal inference (23).

Application to ART initiation andmortality

We applied both the RDD and IPW MSMs to estimate the
effect of immediate ART initiation on all-causemortality in rural
South Africa. The ITT for the RDD estimates the effect of imme-
diate ART eligibility on all-cause mortality. The CACE for the
RDD estimates the effect of immediate ART initiation in the
population of persons who initiated ART because of the thresh-
old rule (e.g., the compliers). The time-invariantMSM estimates
the effect of immediate initiation of ART, remaining in care and
onART throughout follow-up. The time-varyingMSM estimates
the effect of initiating ART during follow-up and remaining on
ART and remaining in care such that laboratory values are re-
corded as comparedwith never initiatingARTduring follow-up.

We used data from a large population-based cohort in rural
South Africa (29, 30), which is maintained by the Africa Health
Research Institute, one of theWellcome Trust’s 5 Africa andAsia
programs. The cohort includes data for all patients initiating care
at public-sector ART clinics between 2007 and 2011 who pre-
sented with a CD4 cell count less than or equal to 350 cells/μL.
We excluded patients initiating care after August 2011, as the
CD4 cell count threshold changed after this date. Patients with
CD4 counts greater than 350 cells/μL at baseline were excluded
from all analyses to ensure that the analytical population was the
same for all analyses. Data from the public-sector ART clinics
were linked to the population-based cohort, in which all mem-
bers of households in a 438-km2 (274-square-mile) area are
followed longitudinally. Household response rates exceed
99% (29). Data collected include information on demographic,
socioeconomic, and health indicators. Mortality is assessed via
verbal autopsy (31). For this analysis, all-cause mortality was
the outcome of interest.
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ART initiation in this context is assigned via a CD4-count–
based threshold rule: Until August 2011, patients with HIV
were eligible for ART once their CD4 counts dropped below 200
cells/μL. If patients had a CD4 count above 200 cells/μL, they
were deferred from ART until their next monitoring visit, in
approximately 6 months. For the regression discontinuity
method, we estimated the ITT using a discrete-time hazards
model with terms for the gap in CD4 count above and below
the threshold. The ITT was estimated for 3 bandwidths of
CD4 count around the threshold: ≤350 cells/μL (the entire
study sample; n = 4,435), 150–250 cells/μL (n = 1,304), and
175–225 cells/μL (n = 626). We conducted sensitivity analyses
to assess whether results were robust to the inclusion of baseline
covariates (Web Appendix 2). To estimate the effect of initia-
tion of ART itself in the RDD, we calculated the CACE in each
of the 3 bandwidths described above (10, 13). To estimate the
CACE, we used a discrete-time hazards model using ivprobit in
Stata (StataCorp LLC, College Station, Texas). Patients were
followed from the date of their first CD4 count in the HIV
care system (as a proxy for the date of initiation of HIV care)
to the date of their last observance in the surveillance system,
classified as either the end of follow-up (censored) or death.

Using the IPW MSM, we estimated the effect of initiating
treatment at entry into care (within a 3-month grace period) ver-
sus not. Participants were followed until the end of follow-up
(December 2014) or death, whichever came first. We also esti-
mated the effect of time-updated ART status. Because not all par-
ticipants had laboratory measurements taken every 6 months per
monitoring guidelines and some were lost to care entirely, in the
time-varying analysiswe censored personswho had not had a lab-
oratorymeasurement for 12months ormore.An additionalmodel
included both censoring at 12 months and an interaction term for
ART status× time, which allowed for estimation of heterogeneity
of effects over time. Time-invariant models were not censored.

For the model estimating the effect of ART initiation at entry
into care, we first estimated inverse probability weights with the
following baseline covariates: age, sex, CD4 count, educational
status, household wealth (estimated as the first principal compo-
nent in a principal components analysis of 32 household assets
and characteristics and discretized into quintiles (29)), distance
from the patient’s place of residence to the clinic (in kilometers),
and place of residence (whether the patient lived in an urban or
rural area). Although we permitted a 3-month grace period to
allow for minor delays in initiating ART, only baseline CD4 cell
count was used in the calculation of the inverse probability
weights, as CD4 count monitoring is typically done at 6-month
intervals. A discrete-time hazards model was then used to fit the
MSM, without adjustment for any covariates. The discrete-time
hazards model was utilized to accommodate time-varying
weights for the time-varying MSM, and an identical approach
was used for all other models to maintain consistency.

To compare the regression discontinuity model with models
of the effect of time-varying ART status on mortality, we con-
ducted a time-varying analysis with inverse probability weight-
ing. Methods used for these models are included in Web
Appendix 3. Due to the noncollapsibility of the hazard ratio,
results of the time-varying analysis with stabilized weights are
not directly comparable to results derived from the time-invariant
MSM. An additional analysis included accounting for time-
varying confounding and informative censoring using the joint

distribution of inverse-probability-of-treatment and inverse-
probability-of-censoring weights (Web Appendix 4).

RESULTS

A total of 4,435 persons initiated care between 2007 and
2011 with a baseline CD4 count less than or equal to 350 cells/μL.
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Figure 1. Hazard of mortality among persons with human immunodefi-
ciency virus infection according to baseline CD4 cell count, KwaZulu-
Natal, South Africa, 2007–2011. Black dots (●) indicate the raw mortality
hazard (incidence) for each 10-cell/μL group. The solid lines are fitted
regression lines showing the incidence of mortality as a function of the
earliest CD4 cell counts above and below the threshold (dashed line).
The dashed gray line is the projection for the curve below the threshold,
which is the estimate of whatmortality incidencewould have been for per-
sons who were above the threshold (and thus not eligible for immediate
initiation of antiretroviral therapy (ART)) if they had actually been eligible
for ART immediately. The discontinuity at the threshold is the estimate of
the effect of ART eligibility onmortality incidence.
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Figure 2. Probability of antiretroviral therapy (ART) initiation within 6
months of entering care among persons with human immunodeficiency
virus infection, according to baseline CD4 cell count, KwaZulu-Natal,
South Africa, 2007–2011. The probability of ART initiation within 6 months
of the earliest CD4 cell count was calculated by baselineCD4 cell count as
the number of persons in a given 10-cell/μL group over the total number of
persons in that group. A discontinuity in the probability of ART initiation is
evident at the 200-cells/μL threshold.
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Of these, 935 participants died over the course of 19,269 person-
years of follow-up (mortality incidence rate= 4.9 per 100 person-
years). Table 2 andWeb Table 1 show the distribution of baseline
covariates for persons above and below the threshold. Of the 935
deaths, 734 were among persons who were eligible for ART
at baseline (incidence rate = 6.6 per 100 person-years) and 201
occurred among thosewhowere not eligible (2.5 per 100 person-
years). Mortality decreased as baseline CD4 count increased, and
there was evidence of a discontinuity at the 200-cells/μL thresh-
old (Figure 1).

Figure 2 demonstrates evidence of discontinuity in the proba-
bility of initiating ARTwithin 6 months by baseline CD4 count.
Baseline characteristics for the overall sample were roughly bal-
anced between persons who were eligible for treatment at base-
line and those who were not eligible (Table 2) but were more
closely balanced for persons closer to the threshold (Web
Table 1). Sensitivity analyses were conducted with additional
functional forms for CD4 counts above and below the threshold,
including 1) a squared functional form for CD4 counts below
the threshold; 2) a restricted cubic spline at 125 cells/μL (75

cells/μL below the threshold); 3) the addition of age at base-
line and sex as covariates in the model (Web Table 2).

Figure 3 graphically displays the results of each analysis.
In the regression discontinuity model at a bandwidth of
≤350 cells/μL, there was a 41% reduction in mortality with
immediate eligibility for ART (hazard ratio (HR) = 0.59, 95%
confidence interval (CI): 0.42, 0.81) (Figure 2, Table 3), which
was lowered to a 30% reduction in a model with a restricted
cubic spline (HR = 0.70, 95% CI: 0.46, 1.05) and in a model
with a squared functional form for CD4 count (HR = 0.70,
95% CI: 0.43, 1.13). These results were similar in magni-
tude to the effect estimates at a narrower bandwidth of 150–250
cells/μL (HR = 0.66, 95% CI: 0.35, 1.26). The CACE demon-
strated a 44% reduction in mortality with immediate initiation
of ART among the compliers at the widest bandwidth (HR =
0.56, 95% CI: 0.41, 0.77). These estimates were robust to the
inclusion of baseline covariates in themodel (Web Table 2).

In the IPW MSM, initiating ART within a 3-month grace
period from study entry was associated with a 51% reduction
in all-cause mortality (HR = 0.49, 95% CI: 0.42, 0.58) and a

Table 2. Baseline Characteristics of Participants in a Study of Immediate Initiation of Antiretroviral Therapy Among
PersonsWith Human Immunodeficiency Virus Infection (n = 4,435), KwaZulu-Natal, South Africa, 2007–2011

Characteristic

Eligibility for ART Initiation at Baseline

Below Threshold (Eligible) (n = 2,751) Above Threshold (Ineligible) (n = 1,684)

No. of Persons % Median (IQR) No. of Persons % Median (IQR)

Age, years 33.1 (27.5–41.4) 31.3 (24.8–40.3)

Female sex 1,790 65.1 1,278 75.9

BaselineCD4 cell count, cells/μL 101 (49–140) 268 (233–306)

Asset index quintilea

Lowest 594 21.6 402 23.9

Second lowest 571 20.8 357 21.2

Middle 488 17.7 315 18.7

Second highest 404 14.7 239 14.2

Highest 347 12.6 241 14.3

Missing data 347 12.6 130 7.7

Distance to nearest clinic, km 2.6 (1.5–3.4) 2.4 (1.5–3.5)

Place of residence

Rural 1,249 45.4 813 48.3

Periurban 918 33.4 553 32.8

Urban 252 9.2 189 11.2

Missing data 332 12.1 129 7.7

Educational attainment, years

≤7 (none or primary) 920 33.4 564 33.5

8–12 (secondary) 1,523 55.4 951 56.5

>12 (tertiary) 246 8.9 133 7.9

Missing data 62 2.3 36 2.1

Abbreviations: ART, antiretroviral therapy; IQR, interquartile range.
a Household wealth was estimated as quintiles of the first components identified by principal components analysis

of 32 household assets and characteristics.
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46% reduction in a time-varying model censoring persons
without a laboratory test in the previous 12months (HR = 0.54,
95%CI: 0.41, 0.70). In the censoredmodel with an ART status ×
time-since-initiation interaction term, there was significant evi-
dence of an increase in the protective effect of ART over time
(per year, HR = 0.84, 95%CI: 0.76, 0.94).

DISCUSSION

The RDD and the IPW MSM yielded consistent results, in-
dicating an approximately 40%–50% reduction in mortality due
to immediate initiation of ART. These results provide both con-
sistent and complementary information. The CACE and the time-
invariant MSM estimate the effect of immediate ART initiation
(within 3months of entry into care) on all-cause mortality. The
CACE found a 44% reduction in all-cause mortality, as com-
pared with 51% with the time-invariant MSM, with completely
overlapping confidence intervals. The time-varying MSM,
a commonly used method for modeling ART status as an expo-
sure due to the potential for time-varying confounding, was simi-
larly consistent with the previous 2 approaches. Prior studies have
established the efficacy of ART for prevention of mortality, and
CD4 count is a well-known confounder of this relationship. We
chose the causal effect of ART on mortality for our study using
multiple causal inference methods, because this relationship is
well-understood and thus provides a good example with which to
demonstrate the usefulness of a methodological approach. In

future applications, triangulation of causal inference across mul-
tiple methods may be most valuable when the preexisting evi-
dence is weak or inconsistent. In these cases, inconsistent
findings across different causal methods will be more likely
than in our application, and consistent findings thus have
greater potential to substantially strengthen the evidence on
causality.

While the broad causal question of interest in the present
application was the relationship between ART and mortality,
each study design presented herein answered a subtly different
specific causal question. Each of these results has a slightly dif-
ferent interpretation. The unadjusted association showed an
increased risk ofmortalitywithARTuse,which is expected given
the strong confounding by CD4 count. Each method of causal
inference evaluated here showed that, as expected, ART use
was protective against mortality. Taken together, these results
demonstrate the robustness of the causal effect of ART on
mortality in “real life.” Using a large population-based cohort
without the resources of a carefully conducted randomized con-
trolled trial, we demonstrated a large decrease in mortality with
the use of ART. The use of multiple approaches for causal infer-
ence also strengthens the evidence arising from this study in
comparison with most cohort studies, which do not use such
approaches.

The different methods we used generate different types of
causal effect size estimates. Time-invariant inverse probability
weighting of MSMs determines the estimate in the entire study
population and thus can be generalized across the entire
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Figure 3. Primary analysis results for the relationship between antiret-
roviral therapy (ART) and mortality among persons with human immu-
nodeficiency virus infection, KwaZulu-Natal, South Africa, 2007–2011.
Results were derived using the regression discontinuity design (RDD)
for both the intention-to-treat (ITT) effect (■) and the complier average
causal effect (CACE; □) at the ≤350-cells/μL, 50- to 350-cells/μL, and
150- to 250-cells/μL bandwidths (left to right); inverse-probability–
weighted (IPW) marginal structural models (MSMs) (from left to right,
baseline time-invariant ART initiation, time-updated ART status censor-
ing persons without laboratory tests at 12 months, and time-updated
ART status censoring persons without laboratory tests at 12 months
with inverse-probability-of-censoring weights applied) (▲); the unad-
justed effect of ART onmortality (♦); and the effect adjusted for baseline
covariates (●). Bars, 95%confidence intervals.

Table 3. Primary Analysis Results for Regression Discontinuity and
Inverse-Probability–Weighted Analyses of Immediate Initiation of
Antiretroviral Therapy Among PersonsWith Human
Immunodeficiency Virus Infection, KwaZulu-Natal, South Africa,
2007–2011

Model and CD4 Cell Count HR 95%CI

Unadjusted 1.28 1.08, 1.51

Regression discontinuity—ITT

≤350 cells/μL 0.59 0.42, 0.81

150–250 cells/μL 0.66 0.35, 1.26

175–225 cells/μL 0.50 0.23, 1.55

Regression discontinuity—CACE

≤350 cells/μL 0.56 0.41, 0.77

150–250 cells/μL 0.58 0.25, 1.31

175–225 cells/μL 0.43 0.10, 1.81

Inverse probability weighting

Time-invariant ART status 0.49 0.42, 0.58

Time-varying ART statusa 0.54 0.41, 0.70

Time-varying ART status with
censoring weightsb

0.50 0.37, 0.66

Abbreviations: ART, antiretroviral therapy; CACE, complier average
causal effect; CI, confidence interval; HR, hazard ratio; ITT, intention to
treat.

a Censored at a 12-month gap in laboratory values.
b Censored at a 12-month gap in laboratory values and accounting

for censoring with inverse-probability-of-censoring weights applied.
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distribution of CD4 cell counts. Notably, in the time-varying
model, the estimate is conditional on baseline covariates. In
the RDD, generalizability will depend on additional assump-
tions. In the presence of heterogeneity of treatment effects ac-
cording to the assignment variable (in this application, CD4
count), the RDD effect may have limited generalizability. In
the RDD literature, 3 perspectives on the generalizability of
effects have been posited (5, 12). First is that the effect size is
generalizable to the entire study population and is an average
treatment effect (32). The assumption required for this interpreta-
tion is that the functional form of the potential outcomes (e.g., had
everyone been treated versus had no one been treated) are known.
However, this is a strong and untestable assumption. The second
perspective is that the effect estimated under the RDD is only gen-
eralizable locally, within an arbitrary region around the threshold.
The third perspective is that the effect size estimated under the
RDD represents a weighted average of the treatment effect in the
entire study population, with weights that are proportional to the
probability of an individual’s value of the assignment variable
(CD4 count) being in the neighborhood of the threshold (33).
Given the strong assumptions required for the first perspective,
the IPW estimate, which is an average treatment effect, could
differ from the regression discontinuity estimate if the rela-
tionship between ART and mortality is stronger at lower CD4
counts (i.e., in persons who are sicker at baseline), compared
with those whose baseline CD4 count is 200 cells/μL.

For bothmethodological approaches, the datawe used for these
analyses had significant strengths. The public-sector ART clinic
in this region (the Hlabisa HIVTreatment and Care Programme)
provides the vast majority of HIV care in the area, and thus mis-
classification of exposure is likely to have beenminimal. Follow-
up information was very complete in our study, because it was
collected through one of Africa’s largest and most rigorous
population-based cohorts. The cohort covers the entire popu-
lation in the catchment areas of the clinics through which pa-
tients were recruited for our study, and data on mortality have
been collected on an ongoing basis for over 15 years. Death
registration in the cohort is near-complete (34). As a result, we
still observed our outcome of interest in nearly all of the patients
who were lost to follow-up from clinical HIV care. Use of com-
plete, high-quality data allows for direct comparison of esti-
mates generated by the two approaches, specifically in how
they each meet the exchangeability requirement for causal
inference from observational data, as well as the generalizabil-
ity of each estimate.

The effect estimates from the RDD andMSMwere not iden-
tical, but they were similar in magnitude, providing strong evi-
dence of a protective effect of ART against all-cause mortality
amongHIV-infected persons receiving care in rural SouthAfrica.
The fact that the IPW MSM estimate was similar to the RDD
estimate suggests that the regression discontinuity effect may
be generalizable to a wider range of CD4 counts from the 200-
cells/μL threshold. When covariate data are available and well-
measured, inclusion of an IPW MSM as a sensitivity analysis
may yield greater information than the regression disconti-
nuity effect alone. The use of both models provides estima-
tion of effects with alternative exchangeability assumptions
and yields complementary information regarding external
validity. Although the exact specification of the causal ques-
tion may differ slightly, using multiple methods to address the

same overarching question adds additional robustness to the
interpretation of results. When the data allow, approaches that
have different assumptions for validity should be used rou-
tinely to strengthen confidence in causal effect estimates.
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