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Abstract: Childhood apraxia of speech (CAS) commonly affects the production of lexical stress
contrast in polysyllabic words. Automated classification tools have the potential to increase reliability
and efficiency in measuring lexical stress. Here, factors affecting the accuracy of a custom-built
deep neural network (DNN)-based classification tool are evaluated. Sixteen children with typical
development (TD) and 26 with CAS produced 50 polysyllabic words. Words with strong–weak
(SW, e.g., dinosaur) or WS (e.g., banana) stress were fed to the classification tool, and the accuracy
measured (a) against expert judgment, (b) for speaker group, and (c) with/without prior knowledge
of phonemic errors in the sample. The influence of segmental features and participant factors on
tool accuracy was analysed. Linear mixed modelling showed significant interaction between group
and stress type, surviving adjustment for age and CAS severity. For TD, agreement for SW and WS
words was >80%, but CAS speech was higher for SW (>80%) than WS (~60%). Prior knowledge of
segmental errors conferred no clear advantage. Automatic lexical stress classification shows promise
for identifying errors in children’s speech at diagnosis or with treatment-related change, but accuracy
for WS words in apraxic speech needs improvement. Further training of algorithms using larger sets
of labelled data containing impaired speech and WS words may increase accuracy.

Keywords: childhood apraxia of speech; motor speech disorder; prosody; lexical stress; automatic
speech recognition; diagnosis

1. Introduction

Difficulty with the production of lexical stress has been identified as one of the core
deficits in both childhood and acquired apraxia of speech (CAS and AOS, respectively) [1,2]
and has been studied for its potential as a diagnostic marker (e.g., [3–5]). Assessment
of lexical stress production is traditionally impressionistic [6] and therefore vulnerable
to various sources of error and bias within and between rater [7]. Objective acoustic
measurement is advantageous for overcoming issues of perceptual bias or drift; however,
manual measurement is time-consuming for clinicians [8]. This study aims to further
the work of Shahin and colleagues [9–12] in the development of an automated lexical
stress classification tool for CAS. Here, we compare a tool-based classification of stress
patterns in isolated polysyllabic words (PSW) with expert auditory perceptual judgment
given that lexical stress in PSW has proven sensitive to the differential diagnosis of CAS
(e.g., [4]). We explore the potential for knowledge-driven systems to boost tool-based
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classification accuracy for mispronounced words and examine classification errors for
potential segmental factors, which may affect tool accuracy and so guide stimulus selection
for reliable assessment instruments in the future.

CAS is a speech sound disorder of neurological origin which affects the accuracy
and consistency of the movements and movement transitions required for speech sound
production [1]. The primary impairment is in the programming of the temporal and
spatial parameters of movement sequences, manifesting in speech sound and/or prosodic
errors [1]. Experts in CAS have reached some level of consensus around three segmental
and suprasegmental features that are consistent with deficits in the programming of speech
movements: “(a) inconsistent errors on consonants and vowels in repeated productions
of syllables or words; (b) lengthened and disrupted coarticulatory transitions between
sounds and syllables; and (c) inappropriate prosody, especially in the realisation of lexical
or phrasal stress” [1].

Prosodic deficits continue to demonstrate significance as a valid diagnostic feature
of CAS (e.g., [4,13,14]). Murray and colleagues [4] conducted a discriminant function
analysis using a set of 24 quantitative measures extracted from a comprehensive clinical
battery for diagnosing CAS. The gold standard comparison was expert diagnosis based on
ASHA’s 3-item consensus-based feature list (described above) [1] and Strand’s 10-point
checklist [15]. Perceptually judged error in producing lexical stress contrast in polysyllabic
words was the strongest predictor of CAS diagnosis in the regression models presented [4].
This warrants development of an objective and efficient assessment tool for lexical stress to
aid the clinical diagnosis of CAS.

1.1. Lexical Stress

The English language uses lexical stress patterns in which stressed (strong) syllables
and unstressed (weak) syllables tend to alternate both within words and across words
within a phrase or sentence [16,17]. Over 90% of English words are polysyllabic (contain
more than one syllable) (CELEX database, [18]) and therefore require control of stress
contrast [19]. Most polysyllabic English words are classified as having either strong–weak
stress (SW, e.g., DInosaur/"daIn@­sO/) or weak–strong stress (WS, e.g., poTAto/p@"teI­toU/)
over the first two syllables, with a tendency towards final syllable lengthening and medial
syllable shortening [16]. Vowels in stressed syllables tend to be longer (msec) [16,17], louder
(dB), and higher in fundamental frequency (f0) than vowels in unstressed syllables [20].
Duration and loudness make a greater contribution to listeners’ perception of prominence
than fundamental frequency [20], especially in single-word picture-naming tasks [21].
Lexical stress in English can signal differences in grammatical function, such as noun (e.g.,
REcord) and verb (e.g., reCORD), and can be influential in spoken word recognition tasks
(e.g., [22]).

The majority of polysyllabic words in English carry initial stress (CELEX database; [18]).
This statistical phenomenon most likely contributes to English-speaking children’s ten-
dency to omit weak-onset syllables early in development [23] and the reduced intelligibility
of apraxic speech where initial weak syllables are overstressed.

Difficulty with production of lexical stress contrasts affects speech perception and
speech intelligibility (e.g., [24]), reduces speech naturalness, and can lead to negative
perceptions about the communicative competence of the speaker [25].

1.2. Measuring Lexical Stress

Lexical stress is a good target for acoustic analysis as it involves manipulation of
segmental or syllabic duration, fundamental frequency, and intensity—all variables that
are readily measured by speech analysis software. Studies focused on acoustic analyses
of lexical stress have also returned findings which support this as a key feature of CAS
(e.g., [14,26–28]). While many of these studies did not directly compare acoustic and per-
ceptual judgments of lexical stress, two reported no acoustic differences between typically
developing and CAS groups in the production of lexical stress contrast, despite listeners
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perceiving less accurate stress production for speakers with CAS [26,27]. Skinder and
colleagues [26] suggested that listener perception may have been influenced by segmental
errors, while Munson and colleagues [27] proposed it may be influenced by the degree of
difference in prominence across syllables. This proposal is supported by listeners’ tendency
toward binary perception for stressed and unstressed vowels, despite acoustic measures
showing a more graded scale, including de-stressed but nonreduced vowels [29].

Two acoustic measures of lexical stress have shown strong validity when directly
compared with perceptual judgments of speech in CAS. Shriberg and colleagues [14]
developed the lexical stress ratio (LSR, a single index generated from acoustic variables of
vowel duration, intensity, and f0) and reported that inter-rater agreement for the global
judgment of whether a child should be diagnosed as suspected CAS was higher when
the child’s LSR fell in either the upper or lower extremes of the distribution [14]. Then,
Ballard, Robin, McCabe, and McDonald [28] reported high agreement between perceptual
judgment of lexical stress accuracy in words and their manually calculated normalised
pairwise variability indices (PVIs; [30]). PVI is used to calculate the degree of asymmetry
across two adjacent syllables in a string for vowel duration [30], as well as peak intensity or
peak f0 [5,28,31]. It provides a measure normalised for individual articulation rate, vocal
intensity, or f0, respectively.

Advances in technology have made objective/acoustic analysis readily available
through speech analysis freeware, such as Praat [32]. However, manual acoustic measure-
ment is perceived to be too time-consuming for regular clinical use [8]. Many clinicians
report that the analysis component of the assessment process is at least equally [33], if not
more, time-consuming [34] than direct assessment activities. Therefore, development of an
automated analysis system has high appeal.

1.3. Automated Analysis of Lexical Stress

Automated acoustic analysis of word- and phrase-level lexical stress has been in-
vestigated for its potential to support both foreign language learning (e.g., [35,36]) and
assessment and treatment of paediatric motor speech disorders [9,11,13,37], speech im-
pairment [38], and autism [39]. Of those tools applied to disordered speech, studies have
reported agreement with human judgment ranging between 10% and 77.6% ([38] and [11],
respectively), or moderate to strong correlations [13,39]. We propose applying a threshold
of 80% agreement between automated acoustic analysis and human judgment of lexi-
cal stress, as this is the threshold of clinically acceptable agreement often used between
two human raters (e.g., [40]). Across both the language learning and speech disordered
populations, the automated lexical stress analysis tools that achieved this 80% threshold
have done so for correctly pronounced words (i.e., words with no segmental substitutions,
distortions, deletions, or additions); however, these tools typically do not reach clinically
acceptable standards when analysing mispronounced words (see [41] for a review). The
best-performing tools reviewed by McKechnie and colleagues [41] that had been applied
to mispronounced or disordered speech had generally used knowledge-driven methods,
where the tools are supplied with data on the types of speech errors contained within the
speech samples analysed. This type of specificity limits the wider clinical applicability of
such tools and necessitates the use of confined dictionaries of words for analysis, as larger
dictionaries will increase the phonetic neighbourhood of words and increase the likelihood
of automated systems misrecognising a word based on phonetic similarity [42].

Shahin, Gutierrez-Osuna, and Ahmed [12] developed software which automatically
classifies children’s lexical stress patterns across each adjacent syllable pair in isolated
polysyllabic word productions. This tool calculates eight acoustic features for each syl-
lable in a word, derived from the duration, f0, intensity, and spectral energy of two
consecutive syllables:

1. Peak-to-peak Teager energy operator (TEO) amplitude over syllable nucleus;
2. mean TEO energy over syllable nucleus;
3. maximum TEO energy over syllable nucleus;
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4. nucleus duration;
5. syllable duration;
6. maximum f0 over syllable nucleus;
7. mean f0 over syllable nucleus;
8. 27 Mel-scale energy bands over syllable nucleus.

These features are combined into a single wide feature vector and input into a deep
neural network (DNN) classifier. From these combined features, the tool classifies each
production as having either a SW, WS, SS, or WW stress pattern across adjacent syllables
and assigns a confidence estimate for that classification, expressed as a proportion. The
confidence estimate is a mathematical expression of the degree of certainty that a given
word was produced with the recognised (i.e., automatically assigned) stress pattern. The
tool does output pairwise comparisons across all syllables for a word, but consistent with
work cited earlier, we focus here on the first two syllables. Typically developing children’s
productions of three- and four-syllable polysyllabic words initiated with these four different
stress patterns were entered into the DNN classifier with overall classification accuracy
against dictionary-defined stress patterns reaching 88% [12]. Using a binary classification
(SW, WS), the tool labelled stress patterns with 93% accuracy. However, for children with
CAS, accuracy with the binary classification compared with human perceptual judgment
was lower at 73.4%.

Shahin’s DNN tool [12] has advantages over previous models developed by the
same team [10,11]. First, the tool was trained using child speech rather than adult speech.
Second, the DNN classifier used raw syllable-level features rather than normalised PVI
measures to learn more sophisticated relationships, and so reduces error rates compared
with earlier versions [10].

Such automated tools have the potential to increase the objectivity, accuracy, and
efficiency of speech analysis and clinical diagnosis. These findings offer support for the use
of acoustic measures to profile prosodic difficulties and monitor treatment-related change.

1.4. Purpose

This study is an extension of Shahin’s work [12], which compared classification
accuracy for TD speakers with a dictionary-defined canonical stress pattern rather than
with human judgment of the child’s actually produced stress pattern, and analysed only
15 words from 10 children with CAS. Here, we compare this same tool’s classification
accuracy with human auditory perceptual judgment using speech samples from Australian
English (AE)-speaking children with typical development and with CAS. We extend on
earlier work by including a larger number of participants with CAS, and a wider range
of three-, four-, and five-syllable polysyllabic words. We also perform deeper analysis of
the tool’s classification accuracy using several methods. First, we explore the effects of
pretraining the tool with information about specific phonemic/segmental errors made by
the children, given the advantage for knowledge-driven methods identified in the review by
McKechnie and colleagues [41]. There has been limited investigation of phonetic context as
it applies to ASR using forced alignment. As such, we also explore the influence of phonetic
contexts within words, given that syllabic nuclei are influenced by phonetic context and
that phoneme boundaries may be more or less distinct depending on context [43]. Finally,
we investigate the potential influence of the age of the speaker and the severity of speech
impairment (as measured by percentage of phonemes produced correctly, PPC).

Our hypotheses were as follows:

1. An automated lexical stress classifier using acoustic features of duration, f0, intensity,
and spectral energy across adjacent syllables in polysyllabic words will achieve:

(a) ≥80% agreement with human perceptual judgments for TD speech;
(b) Higher classification accuracy for TD speakers than for CAS speakers, for

whom the likelihood of mispronunciation is high;
(c) Higher classification accuracy when using a knowledge-driven system trained

on the segmental errors represented in the disordered speech sample.
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2. Classification errors will be associated with within-word features known to reduce
human inter-rater reliability, such as equivocal stress across the first two syllables
(e.g., HAMBURger/"hæm"b3g2/); short-vowel phonemes in the stressed syllable
(e.g., BUTterfly/"b2t@­flaI); ambiguous phoneme boundaries (i.e., liquid consonants
at syllable onsets or offsets such as in “elephant”); or words in which weak syllables
have low intensity and/or undetectable pitch (i.e., unstressed vowels between two
unvoiced phonemes, such as “potato”).

2. Materials and Methods
2.1. Participants

Sixteen typically developing children (7 males, 9 females; M = 6 years, range = 4–10 years,
IQR = 3) and 26 children with CAS (22 males, 4 females; M = 4.5 years, range = 4–12 years,
IQR = 3) participated. All children were Australian English speakers.

Typically developing children were recruited via convenience sampling from the
local university community, and their inclusion criteria included: aged 4–12 years, parent
report of typically developing receptive and expressive language skills, age-appropriate
speech sound production skills as demonstrated by percent consonants correct (PCC; [44])
scores above 85% and developmentally appropriate phonology on the Single-Word Test
of Polysyllables [45], no reported history of hearing deficits, no oromuscular structural
deficits as indicated by age-appropriate oral structure and function scores on the Oral and
Speech Motor Protocol [46], and no other developmental diagnoses.

Children with CAS were drawn from a cohort recruited for studies of CAS at a large
metropolitan university. All children underwent a standard test battery for differential
diagnosis of CAS [4]. This battery consisted of five commonly used and culturally appropri-
ate (for Australian children) published tests: (1) the Diagnostic Evaluation of Articulation
and Phonology (DEAP) Inconsistency subtest [47], used to assess token-to-token inconsis-
tency in a single-word-naming task over 3 test administrations; (2) the Single-Word Test of
Polysyllables [45,48], a 50-word picture-naming task used to assess speech sound accuracy,
sound and syllable sequencing, and lexical stress accuracy; (3) a connected speech sample
of at least 50 utterances, used to detect perceptual features of CAS in connected speech; (4)
the Oral and Speech Motor Control Protocol including diadochokinesis (DDK; [46]); and (5)
the Clinical Evaluation of Language Fundamentals (CELF, 4th edition, or Preschool, 2nd
edition, Australian standardisations), used to assess receptive and expressive language
skills [49,50]. Phonemic errors were determined using broad transcription and relational
analysis (i.e., comparing the produced phonemes with the adult target production), tak-
ing age-appropriate developmental errors into consideration. Lexical stress errors were
determined with reference to the operationalised definition provided by Iuzzini-Seigel,
Hogan, Guarino, and Green [51]: “ . . . the appropriate stress is not produced correctly . . . .
if the stress is inappropriately equalized across syllables, or placed on the wrong syllable”
(p. 40). Inclusion criteria included: aged 4–12 years; age-appropriate receptive language
skills, indicated by a score of ≥85 on the receptive language index of the CELF-P2 [50] or
CELF-4 [49]; no reported history of hearing deficits; no oromuscular structural deficits or
evidence of dysarthria as indicated by age-appropriate oral structure and function scores
on the Oral and Speech Motor Protocol [46]; and no other developmental diagnoses. Table 1
presents demographic information, speech production test data, and statistical comparisons
for the participant groups. Note that the CAS group has significantly more males, reflecting
the male bias for paediatric speech sound disorders [52].
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Table 1. Participant demographic and diagnostic speech production data.

Variable
TD (n = 16) CAS (n = 26)

Statistics a
M (SD) Range M (SD) Range

Demographic
Age (years) 6.1 (2.0) 4–10 5.9 (2.5) 4–12 Z = −0.71 ns

Sex 7 male
9 female

22 male
4 female χ = 7.7 *

Test of Polysyllables b

PPC 95.2 (4.2) 85.6–99.3 61.8 (21.1) 23.9–96.7 t = 6.24 **
PCC 95.4 (4.8) 81.4–100 57.5 (24.7) 13.0–98.6 t = 5.66 **
PVC 93.9 (5.3) 82.5–100 67.5 (17.6) 38.5–94.2 t = 5.82 **
% Lexical stress
matches 88.8 (8.4) 77.3–100 51.0 (26.6) 6.3–93.8 t = 5.5 **

Severity Rating c

Typical–mild 15/16 5/26
Mild–moderate 1 d 5
Moderate–severe 0 5
Severe 0 11

Note: a ns not significant at p < 0.05, * p < 0.01, ** p < 0.001; b Gozzard, Baker, and McCabe (2008), percent phonemes (PPC), consonants
(PCC), or vowels (PVC) correct; c based on PCC from the Test of Polysyllables (>85% correct is typical–mildly impaired, 65–85% is
mild–moderate, 50–65% is moderate–severe, <50% is severe); d participant sp011 was the youngest participant, aged 4 years—all errors
were developmentally appropriate.

2.2. Stimuli

Single-word stimuli included 50 colour pictures, each representing a common 3- to
5-syllable word ([45,48]; see Appendix A). Twenty-eight of the words are produced with
unequivocal strong–weak (SW) stress across the first 2 syllables in Australian English (e.g.,
dinosaur, motorbike), 12 words with an unequivocal weak–strong (WS) stress pattern
(e.g., tomato, banana), and 10 with a strong–strong (SS) stress pattern (e.g., hamburger,
cucumber). The SS words typically involve some degree of stress contrast with primary and
secondary strong stress but do not have the vowel reduction to schwa that is characteristic
of weak syllables in Australian English. The Macquarie Dictionary Online for Australian
English was used to categorise target stress patterns (www.macquariedictionary.com.au,
accessed on 30 August 2017). The SS words were only included to analyse the tool’s confi-
dence estimate of stress assignment, to provide a broader range of relative stress contrasts
across syllables in the dataset. Words of 3 or more syllables were used in order to avoid con-
flating lexical stress pattern with final syllable lengthening effects in 2-syllable words [53].

2.3. Procedure

Each child was seated at a desk in a quiet room in the university speech pathology
clinic or in their own home. Stimuli were presented via a PowerPoint presentation on a
laptop computer. Slide advancement was controlled by the researcher, and for each slide,
the child was prompted to name the picture. If the child did not produce the target word,
he or she was first prompted with a forced-choice question (e.g., “Is it a watermelon or a
pear?”) and, finally, with a cue for delayed repetition (e.g., “This is a watermelon. Now
you say it”). This ensured a high response rate.

Speech samples were recorded with Audacity® [54] or Praat [32] at 44,100 KHz sam-
pling frequency using a Roland Quad-Capture UA-55 (Roland, Los Angeles, CA, USA) or
Avid Recording Studio M-Audio Fast Track Audio Interface (Avid, Burlington, MA, USA)
connected to a Dell Latitude laptop, and an adjustable head-worn microphone (AKG C520,
AKG Acoustics, Vienna, Austria) at 5 cm mouth-to-microphone distance. Each word for
each child was saved in a separate file, labelled with the target word (e.g., watermelon.wav),
for batch processing with the lexical stress classification tool.

Prior to analysis, words that did not match the syllabic structure of the target word (e.g.,
productions with syllables deleted or added) were excluded. This was done for two main
reasons: (1) the automated tool’s forced alignment procedure requires the correct number

www.macquariedictionary.com.au
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of syllables, and (2) the focus of this study was on lexical stress as defined by Iuzzini-Seigel
and colleagues [51] and not on syllable production skills. For TD speakers, 0.86% of all
sampled words were excluded at this step, and for CAS speakers, 22% of all sampled words
were excluded (inter-rater reliability: 97% agreement; Cohen’s kappa = 0.98). Forty-five of
the 50 individual stimulus words (see Appendix A) were amongst the excluded tokens,
with 9.4% of these tokens having SS stress, 56.1% SW, and 34.5% WS. The higher rate for
SW words is consistent with a predominance of SW words in the stimulus set.

The set of productions that matched the target word syllable structure was run through
the automated lexical stress classification tool. The tool consists of four main processes,
which are described below and represented in Figure 1 (see also Table 2 below).

Figure 1. Flowchart depicting the automated classification process. fi(1) and fi(2) are the ith feature of
the first and second syllable, respectively; nˆ((1)) and nˆ((2)) are the number of frames of the first and
second syllables’ nuclei, respectively; and N is the number of input frames.

Table 2. The extracted acoustic features.

Feature Description

f 1 Peak-to-peak TEO amplitude over syllable nucleus
f 2 Mean TEO energy over syllable nucleus
f 3 Maximum TEO energy over syllable nucleus
f 4 Nucleus duration
f 5 Syllable duration
f 6 Maximum pitch over syllable nucleus
f 7 Mean pitch over syllable nucleus
f 8 27 Mel-scale energy bands over syllable nucleus

Note: TEO = Teager energy operator.
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2.3.1. Forced Alignment

The tool took each individual wav file, linked to text information about that target
word, and aligned it with the expected phoneme sequence. This sequence was extracted
using a phonetic dictionary to estimate and mark phoneme boundaries within the word
using the Gaussian Mixture Hidden Markov Model (GMM-HMM), an acoustic model,
pretrained using the ANDOSL corpus of Australian English speakers [55]. The output of
the forced alignment process is an estimated time boundary of each phoneme as well as
nucleus and syllable durations.

2.3.2. Feature Extraction

From each syllable, a set of eight acoustic measures known to correlate with lexical
stress are extracted (see Table 2). Three energy-based features (f 1, f 2, f3) are extracted after
applying the nonlinear Teager energy operator (TEO), which provides a better estimate
of the speech signal energy and also reduces noise [56]. The pitch values are estimated
using the autocorrelation method and the mean and maximum values computed over
the duration of the nuclei [57]. These 7 stress detection features [58–61] are computed for
each syllable, resulting in 2 values per bisyllabic pair. In addition, we computed Mel scale
energies for each frame of the nucleus.

2.3.3. Concatenate Raw Features into 1 Wide Feature Vector

The tool then combined 8 acoustic features into 1 wide feature vector. Each syllable
has 7 scalar values f 1 − f 2 and 27 × n Mel-coefficients, where n is the number of frames
in each syllable’s vowel. To handle variable vowel lengths, we limit the number of input
frames provided to the DNN to a maximum N frames for each syllable. This provides the
DNN with a fixed-length Mel-energy input vector and allows the DNN to use information
about the distribution of the Mel-energy bands over the vowel. If the vowel length (n)
is greater than N frames, only the middle N frames are used. If the length of the vowel
(n) is smaller than N frames, input frames are padded to N frames. The final size of the
input vector to the DNN is 2 × (7 + 27 × N) for a pair of consecutive syllables, with N
tuned empirically.

2.3.4. DNN Classifier

The vector for each word was input to the DNN classifier, which then categorised each
word as either SW or WS, with an associated confidence level expressed as a probability.
The DNN classifier was trained using the minibatch stochastic gradient decent method
(MSGD) with an adaptive learning rate with data from the OGI corpus of American
English children [62].

All samples were run through the classification tool twice: (1) the GMM-HMM model
aligned the produced phoneme sequence against the expected sequence using a phonetic
dictionary, which contained a single canonical representation of the target word (i.e., single-
pronunciation HMM-based forced alignment), and (2) the GMM-HMM model aligned the
produced phoneme sequence against the expected sequence using a phonetic dictionary,
which contained multiple phonemic representations of the target words based on the range
of actual variations/mispronunciations produced by the participants in the study (i.e.,
multiple-pronunciation HMM-based forced alignment). This was done on the hypothesis
that mispronounced words may have generated errors in the forced alignment stage of
processing, which, in turn, may have affected the feature vector analysis and subsequent
stress pattern classification. Both sets of results were retained for analysis.

All productions were randomly ordered and played back to an experienced speech-
language pathologist (the first author) for perceptual rating of stress pattern using a 5-point
Likert scale (i.e., 1 = unambiguously weak–strong, 2 = somewhat weak–strong, 3 = equal
stress, 4 = somewhat strong–weak, and 5 = unambiguously strong–weak). Following
this, 48% of productions were randomly selected for independent rating by a second
experienced speech-language pathologist (the last author) to establish reliability. Both
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raters were blinded to the output of the automated analysis at the time of rating. Rater 2
was also blinded to the participant group. Inter-rater reliability analysis was performed
using the weighted Cohen’s kappa statistic [63]. The resulting reliability estimate indicated
substantial agreement, K = 0.695 [64]. Prior to data analysis, perceptual ratings of stress
patterns were collapsed to a 3-point scale, where 1 and 2 were combined into a single
category coded 1 for WS, and 4 and 5 were combined to a single category coded 2 for SW.

2.4. Statistical Analysis

First, the primary dependent measure was the agreement between the tool and the pri-
mary human rater for lexical stress pattern (SW, WS) assigned to a word, where 1 indicated
a match between automated and manual classifications and 0 indicated a mismatch. Percent
agreement and Cohen’s kappa statistic [63] were used to describe the strength of agreement
between the tool and the human rater by group, lexical stress type, and HMM-based forced
alignment method (single-pronunciation HMM model vs. multiple-pronunciation HMM
model), with data pooled across the participants.

Second, linear mixed model analyses were undertaken to determine whether the
percent agreement between human and tool was predicted by the fixed factors of group
(TD, CAS), stress type (SW, WS), and/or model type (single- or multiple-pronunciation
HMM model), with the participant entered as a repeated factor. This approach was used
as it is robust to missing data; WS percent agreement values were missing for 1 TD and
3 CAS children due to them having fewer than 3 tokens to calculate percent agreement
after excluding responses with weak syllable deletion. Age was considered as a covariate.
Post hoc testing with Sidak adjustment was undertaken to explore significant effects, the
alpha level set at 0.05. An additional linear mixed effects model was run for the CAS group
only, exploring PPC (i.e., speech disorder severity) as a covariate. All other components of
the model were unchanged.

Third, to further explore the performance of the classifier on CAS data only, Mann–
Whitney U tests were used to determine whether the lexical stress classifier had a different
level of agreement with perceptual judgment for words perceptually scored by raters
as having correct or incorrect lexical stress realisation. Incorrect productions were those
receiving a score of 3 (equal stress) on the 5-point Likert scale described above or those
where the perceived relative stress across the 2 two syllables was in the opposite direction
to the dictionary-defined target stress pattern. The alpha level was set at 0.01 to adjust for
multiple comparisons. Effect sizes were calculated using Hedges’ g, where values around
0.2 indicate a small effect, values around 0.5 indicate a medium effect, and values above
0.8 indicate a large effect [65].

Fourth, a series of correlation analyses were run for the TD and CAS children sepa-
rately. Point biserial correlation, using the nonparametric Spearman’s rho statistic, was
used to explore whether classification accuracy was associated with the tool’s confidence
estimate for the assigned classification, or with the presence/absence of segmental features
that may contribute to lower lexical stress contrastiveness or less reliable detection of
phoneme boundaries. These features included nasal or liquid phonemes adjacent to the
vowel, nonschwa unstressed vowels, or unvoiced plosives adjacent to an unstressed vowel,
which can lead to low vowel intensity. In addition, post hoc analyses were conducted to
further explore potential sources of classification error. We investigated whether classifi-
cation accuracy was associated with age or phonemic accuracy, as measured by percent
consonants correct (PCC), percent vowels correct (PVC), or percent phonemes correct
(PPC) [44]. For these latter analyses, Spearman rho was used for the TD children due to
non-normally distributed data, and Pearson’s correlation coefficient for the CAS group.

3. Results
3.1. Agreement between Classifier and Human Judgment

Figure 2 presents the percent agreement with human perceptual judgment for the
automated lexical stress classification tool using single- and multiple-pronunciation HMM-
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based forced alignment in the TD and CAS groups. For TD children, the 80% agreement
threshold was passed for both alignment methods for (i) pooled SW and WS words, (ii) SW
words only, and (iii) WS words only. For CAS children, SW words reached >80% agreement
under both alignment methods with WS words at about 60% agreement. Cohen’s kappa cal-
culations on pooled SW and WS words showed substantial tool–human agreement for both
single-pronunciation HMM-based forced alignment (κ = 0.78) and multiple-pronunciation
HMM-based forced alignment (κ = 0.71). For the CAS children, agreement was moderate
(κ = 0.52 and κ = 0.47, respectively).

Figure 2. Percent agreement and Cohen’s kappa values for automated classification with single- vs. multiple-pronunciation
HMM-based forced alignment compared with auditory perceptual judgment. TD = typically developing, CAS = childhood
apraxia of speech, SS = strong–strong stress, SW = strong–weak stress, and WS = weak–strong stress, * = moderate effect,
** = substantial effect.

3.2. Linear Mixed Effects Modelling

Comparing across groups, an unstructured linear mixed model including the fixed
effect of group (TD, CAS), the repeated effects of stress (SW, WS) and model (single, multi-
ple), and the group by stress by model interactions, covarying for age (F(1,38.518 = 8.208,
p = 0.007) was the model with the best fit, compared with a first-order regressive covariance
structure with or without the covariate (see Table 3). Residuals were normally distributed.
The main effects of group and stress type were significant, as well as the group by stress
type interaction. Post hoc testing using the Sidak adjustment revealed that percent agree-
ment was higher for the TD than CAS group for both stress types (see Figure 3), with the
difference being greater for the WS words (mean difference for SW words = 8.471, p = 0.005,
and for WS words = 22.937, p = 0.001). Within the TD group, percent agreement was not
significantly different for SW and WS words (mean difference = 8.670, p = 0.114), but for
the CAS group, agreement was higher for SW than WS words (mean difference = 23.137,
p < 0.001). The stress by model interaction was close to significance (p = 0.053), likely due
to a slightly higher agreement for the single- than multiple-pronunciation model for SW
words only (SW mean difference = 4.588, p = 0.005, 89.98% and 85.39%, respectively; WS
mean difference = 1.041, p = 0.688, 71.26% and 72.30%, respectively).
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Table 3. Test of fixed effects exploring the influence of group (TD, CAS), stress type (SW, WS), and
model (single, multiple) on tool–human percent agreement for lexical stress classification, accounting
for the effect of the child’s age.

Source Numerator df Denominator df F p

Intercept 1 49.346 365.151 <0.001
Group 1 32.858 18.645 <0.001
Stress 1 35.302 20.836 <0.001
Model 1 36.087 1.235 0.274
Age (covariate) 1 38.518 8.208 0.007
Group × Stress 1 35.328 4.314 0.045
Group × Model 1 36.084 0.118 0.733
Stress × Model 1 34.934 4.007 0.053
Group × Stress × Model 1 34.946 0.715 0.404

Figure 3. Percent agreement between human and tool for the typically developing (TD) and childhood
apraxia of speech (CAS) groups across words with strong–weak (SW) and weak–strong (WS) lexical
stress, pooled across single-pronunciation and multiple-pronunciation HMM model types. Error
bars represent 95% confidence intervals.

To test for a possible effect of speech disorder severity in the CAS group only, a second
model was run to analyse stress type and model type when PPC was entered as a covariate.
The effect of PPC was significant (F(1,23.196) = 9.529, p = 0.005) (see Table 4). The effect
of stress survived (see Figure 3), and model type continued to be nonsignificant (Model 1:
SW = 86.15% average agreement, SE = 2.15, WS = 58.21%, SE = 5.71; Model 2: SW = 80.93%,
SE = 2.33, WS = 61.14%, SE = 4.39).

Table 4. For the group with childhood apraxia of speech (CAS) only, test of fixed effects exploring
the influence of stress type (SW, WS), and model (single, multiple) on tool–human percent agreement
for lexical stress classification, accounting for the effect of speech disorder severity (i.e., percent
phonemes correct, PPC).

Source Numerator df Denominator df F p

Intercept 1 29.545 88.358 <0.001
Stress 1 20.894 22.864 <0.001
Model 1 22.420 0.214 0.648
PPC (covariate) 1 23.196 9.529 0.005
Stress × Model 1 20.592 3.362 0.081
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3.3. Words Perceived with Correct or Incorrect Lexical Stress

A total of 47 words from the analysed dataset were perceived as being produced with
incorrect lexical stress (i.e., 18 WS and 29 SW words). These 47 words were produced by 18
of the 26 participants with CAS, with the median number of errors for the 18 participants
being 3 (range, 1–5). Within the CAS group, SW words perceived by raters to have
correct lexical stress realisation (i.e., rating of 4 and 5) showed high levels of agreement on
stress classification with both the single- and multiple-pronunciation HMM-based forced
alignment methods (92% and 88%, respectively; see Figure 4). For the SW words perceived
as having equal stress (i.e., rating of 3) or incorrect/reversed assignment of lexical stress
contrast, the classification agreement with the automated methods dropped significantly
to just 7% and 10%, respectively (p < 0.0001; see Table 5). Although there was a tendency
for higher tool–human agreement for WS words perceived as correct (i.e., rating of 1 and
2) versus incorrect for both forced alignment methods, this did not reach significance
(see Table 5 and Figure 4). In all cases, agreement for WS words was well below the
80% threshold.

Figure 4. Percent agreement for automated classification with single- vs. multiple-pronunciation HMM-based forced
alignment compared with auditory perceptual judgment, for words produced with correct and incorrect lexical stress.
CAS = childhood apraxia of speech, TD = typically developing, SS = strong–strong stress, SW = strong–weak stress, and
WS = weak–strong stress.

Table 5. The lexical stress tool’s accuracy against human judgement for children with childhood apraxia of speech (CAS),
for words perceived by raters as having correct versus incorrect stress production.

Single Pronunciation Multiple Pronunciation

Comparison Statistic p g Statistic p g

All (excl. SS) U = 26
z = 4.95 <0.0001 3.215 U = 25

z = 4.98 <0.0001 3.617

SW U = 0
z = 5.48 <0.0001 7.468 U = 0

z = 5.48 <0.0001 6.683

WS U = 131.5
z = 0 1 0.079 U = 78.5

z = 1.17 0.242 0.430

Note: SS = strong–strong stress pattern (e.g., hamburger), SW = strong–weak (e.g., dinosaur), WS = weak–strong (e.g., tomato), alpha was
set at 0.01 to adjust for multiple comparisons.
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3.4. Confidence Estimates and Within-Word Features

Table 6 presents analyses of the relationship between tool–human agreement values
(i.e., the tool’s classification accuracy), the tool’s confidence estimates of lexical stress
classification for words, and within-word segmental features that were predicted to chal-
lenge the forced alignment procedure. For the TD samples, there was a strong positive
correlation between classification accuracy and confidence estimate values using single-
pronunciation HMM-based forced alignment and a weaker positive correlation for the
multiple-pronunciation HMM-based forced alignment method. There was also a weak
negative correlation between classification accuracy and presence of either a liquid or
glide consonant adjacent to one of the vowels in a word (e.g., elephant) for the single-
pronunciation method and a nonschwa vowel in the unstressed syllable (e.g., capsicum) for
both the single- and multiple-pronunciation HMM-based forced alignment methods. The
within-word features of long (e.g., motorbike) vs. short stressed vowel (e.g., butterfly) or
unvoiced plosive (vs. voiced phoneme) plus schwa in the unstressed syllable (e.g., potato)
were not associated with classification accuracy in this dataset.

Table 6. Correlation between classification accuracy for words using the single and multiple pronunciation HMM-based
forced alignment methods and (a) the tool’s confidence estimates in its classification, (b) within-word segmental features,
(c) age, and (d) speech disorder severity metrics for children with typical development (TD) or childhood apraxia of
speech (CAS).

Classification Accuracy for TD Classification Accuracy for CAS

Single Pronunciation Multiple Pronunciation Single Pronunciation Multiple Pronunciation

Confidence a

Single pronunciation 0.73 ** — 0.39 ** —
Multiple pronunciation — 0.35 * — 0.58 **
Segmental features a

Nasal phoneme adjacent to vowel −0.05 −0.13 −0.14 −0.12
Liquid/glide adjacent to vowel −0.28 * −0.27 −0.21 −0.26
Nonschwa unstressed vowel −0.35 * −0.33 * −0.22 −0.25
Long stressed vowel 0.01 0.02 −0.21 0.01
Unvoiced plosive + schwa vowel −0.09 −0.02 −0.20 −0.09

Single Pronunciation Multiple Pronunciation Single Pronunciation Multiple Pronunciation

SW +
WS SW WS SW +

WS SW WS SW +
WS SW WS SW +

WS SW WS

Age b 0.18 0.21 0.34 0.47 0.33 0.47 0.41 * 0.22 0.56 ** 0.43 * 0.31 0.52 **
Speech disorder severity b

PCC 0.04 −0.10 0.38 0.58 * 0.47 0.42 0.33 0.38 0.28 0.45 * 0.46 * 0.40 *
PVC 0.11 0.05 0.42 0.35 0.23 0.40 0.39 * 0.41 * 0.34 0.50 * 0.49 * 0.45 *
PPC 0.08 0.02 0.38 0.40 0.24 0.38 0.36 0.40 * 0.31 0.48 * 0.48 * 0.43 *

Note: a Spearman correlation coefficient; b Spearman correlation coefficient for TD children, Pearson correlation coefficient for CAS children
used for comparison with confidence estimates, SW = strong–weak (e.g., dinosaur), WS = weak–strong (e.g., tomato); PCC = percent
consonants correct, PVC = percent vowels correct, PPC = percent phonemes correct; * p < 0.05, ** p < 0.01 level (2-tailed).

For the CAS samples, there was a weak positive correlation between classification
accuracy and confidence estimate using the single-pronunciation HMM-based forced
alignment model and a moderate positive correlation for the multiple-pronunciation HMM-
based forced alignment method. None of the correlations for within-word features reached
significance (see Table 6).

3.5. Age and Severity

As the linear mixed model analyses revealed a significant effect of age and speech
disorder severity on tool–human agreement, these variables were explored further. Table 6
also presents data on the associations between classification accuracy and the child’s age
or speech disorder severity metrics. For the TD samples, there were no significant corre-
lations between age and classification accuracy for SW or WS words for either single- or
multiple-pronunciation HMM-based forced alignment. There were no significant correla-
tions between PCC, PVC, or PPC and classification accuracy using single-pronunciation
HMM-based forced alignment. Using multiple-pronunciation HMM-based forced align-
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ment, there was a significant and moderate positive correlation between PCC and classifi-
cation accuracy when SW and WS words were pooled.

For the CAS samples, classification accuracy was moderately correlated with age for
WS words and for pooled SW and WS words using both single- and multiple-pronunciation
HMM-based forced alignment. Classification accuracy demonstrated a moderate positive
correlation with all three severity measures for both SW and WS words using the multiple-
pronunciation HMM-based forced alignment model. Some comparisons were significant
for the single-pronunciation method but with lower correlation values compared with the
multiple-pronunciation method.

4. Discussion

While there have been major advances in automated speech analysis within the
past decade, this has focused almost exclusively on speech from healthy adults and on
recognising words rather than identifying speech or prosodic errors. Automated acoustic
analysis methods have great promise for improving the reliability of speech assessment for
children with speech sound disorders and reducing the time burden of manual analyses
for clinicians. Here, we compare the classification accuracy of the tool developed by
Shahin et al. [12] with human auditory perceptual judgment using speech samples from a
larger database of Australian English (AE)-speaking children with typical development and
with CAS. We hypothesised that Shahin et al.’s automated lexical stress classifier would
achieve ≥80% agreement with human perceptual judgments for speech of TD children
but not for CAS and that a knowledge-driven system would outperform an unguided one.
We also predicted that errors in automatic lexical stress classification would be associated
with reduced stress contrastiveness and challenges to phoneme identification (e.g., liquid
phonemes adjacent to vowels).

Our hypotheses were largely supported. The automated lexical stress classification
tool achieved >80% agreement with expert auditory perceptual judgments for TD speech
for both SW and WS stressed words. These results support previous studies exploring auto-
mated analysis methods with the speech of typically developing children (e.g., [10,36,58]).
As predicted, the classifier demonstrated lower agreement with auditory perceptual judg-
ments of lexical stress production in CAS speakers than TD speakers. These findings are
consistent with Munson et al. [27] and Skinder et al. [26], who demonstrated a mismatch
between acoustic evidence of lexical stress contrastivity and auditory-perceptual judgments
of lexical stress accuracy in CAS. Given that tool–human agreement was associated with
speech disorder severity, it is possible that segmental errors by the children with CAS
may have affected the performance of the forced alignment in the automated procedure,
or the perception of stress patterns by the human raters, as suggested by Skinder and
colleagues [26]. Difficulty with control of relative timing of vowels in polysyllabic words in
the children with CAS (e.g., [28,66]) may have contributed to these results, with the tool and
possibly human raters being less reliable in assigning tokens to the SW or WS category as
stress contrastiveness reduced. Human–tool agreement was particularly low for WS words
produced by children with CAS. This is supported by Fear, Cutler, and Butterfield’s [29]
findings that humans preferentially categorise de-stressed but unreduced vowels as strong
vowels, possibly leading to less reliable categorisations of stress pattern. Computational
neural modelling of speech motor control in CAS [67] demonstrated deviant coarticulation
patterns in the speech of children with CAS, specifically longer and stronger carryover
articulation from across adjacent phonemes. Such prolonged carryover coarticulation
could have an impact on the accuracy of the forced alignment process of the tool and the
subsequent extraction of features to determine lexical stress classification.

Here, classification accuracy for SW words from children with CAS also met the
clinical threshold of >80% agreement with human raters, whereas previous findings from
automated analyses of disordered speech samples have not met this clinically acceptable
threshold [11,35,38]. However, classification accuracy for WS words from children with
CAS was well below this 80% threshold. One possible reason is that producing segments of
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shorter duration is motorically more difficult than producing segments of longer duration
(e.g., [21]). Acoustic studies on the development of lexical stress contrastivity show that
typically developing children’s productions of WS words are not adultlike until the age of
12 years [68]. Children with CAS may make more significant phonemic mispronunciations
as well as timing errors when attempting WS words, and these variations may contribute
to poorer performance accuracy for the forced alignment processes of automated tools [41].
Such findings may explain the poorer performance of the tool for WS words in both TD
and CAS groups in this study, although the classifier here was trained using child speech
in the hope of mitigating the influence of maturation, and age was specifically included as
a covariate in our analysis.

Programming the dictionary of the tool’s HMM-based forced alignment model with
segmental information from the range of phoneme errors produced by the participants
was trialled here to determine whether this improved the tool’s performance. There
was evidence that the multiple-pronunciation model was influenced by the presence of
speech sound errors, with a significant correlation between classification accuracy and
disorder severity (i.e., PPC, PCC, and PVC) for the CAS group. When the variance due
to disorder severity was controlled, there was no difference between the single- and
multiple-pronunciation model’s performance. This suggests that a knowledge-driven
approach may be useful in the further development of automated clinical speech assessment
tools. Disorder severity aside, the single-pronunciation model outperformed the multiple-
pronunciation model on measures of percent agreement with human judgment for both
participant groups across most word categories.

Our findings of improved classification accuracy for SW words produced with percep-
tually correct lexical stress patterns suggest that the version of the automated lexical stress
classification tool tested in this study can determine stress patterns when productions are
correct. While it was not able to reliably classify productions with reduced stress contrast
across syllables, or equal stress, this may simply be a limitation of the tool’s design using
a binary classification. However, these are the tokens that are of interest to clinicians,
particularly given that children’s production of WS stress patterns continues to develop
until age 12 [68]. It is possible that allowing classification to a third reduced or equal stress
category would have improved the tool’s agreement with human raters. However, this was
not true for WS words, where there was no significant difference in the tool’s performance
between words produced with perceptually correct lexical stress and words produced with
perceptually incorrect lexical stress. Further refinement of the classifier and testing on
much larger samples of speech from typical and speech-impaired populations is required to
increase its accuracy and diagnostic utility [69]. Future research may focus on determining
specific cut-points along the continuum of stress contrast, where words with reduced stress
contrast can be assigned to a third ambiguous (incorrect) classification. Here, we explored
whether confidence estimates of the tool might guide the discovery of these cut-points, but
this approach was not successful.

Although the spectral features extracted and filter banks used by the classifier were
modelled on human speech perception and production, it is likely that there will continue
to be differences between the human system and the modelled system for the foreseeable
future. It is possible that there are differences between the acoustic features extracted by
such algorithms and the features to which the human ear is attuned when judging lexical
stress accuracy. For example, our study implemented a tool focused on proximal prosodic
contrasts (i.e., relative differences across adjacent syllables), when it is likely that the human
ear can attune to, and be influenced by, prosodic patterns across the entire speech stream
(e.g., [70]), as well as the perceptual tendency for humans to make binary classifications
of stressed versus not stressed for words in which the de-stressed syllable contains an
unreduced vowel [29]. Another suggestion is that a computer-driven algorithm will seek to
match the incoming signal to the pattern it has been trained to recognise, whereas human
clinicians are trained to tune in to the incoming acoustic signal, regardless of expectation,
and are able to use contextual information and sociological and linguistic factors to assist
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with parsing and perception of spoken language. One implication of these findings is that
such tools may not yet be ready for integration into therapeutic applications until such time
that they can provide accurate feedback on speech production, both correct and incorrect.

Our findings for TD children indicate support for the hypothesis that classification
errors are associated with more subtle lexical stress contrasts. Percent agreement with
human judgment tended to be lower for words in which the unstressed vowel was not
fully reduced to a schwa (i.e., when the word tended towards equivocal stress). While
these syllables represent a separate and distinct acoustic category compared with stressed
and unstressed syllables, the human ear has a tendency to categorise these with stressed
syllables [29]. In contrast, classification accuracy was not significantly improved by re-
moving words with equivocal stress from the CAS samples, nor was there any correlation
between percent agreement and the within-word feature of a nonschwa unstressed vowel.
This supports the hypothesis that children with CAS demonstrate reduced contrastiveness
between syllables and tend towards equalised lexical stress [28]. It also lends support to the
hypothesis that the perception of equal or excess stress in CAS may be a result of difficulty
with control of relative timing as opposed to difficulty with the correct assignment of lexical
stress (as suggested in [5,66]).

For TD samples using the single-pronunciation model, classification error was weakly
correlated with the within-word feature of liquid or glide phonemes adjacent to the vowel.
This class of phonemes has the least distinct acoustic and spectrographic boundaries [5,71].
Here, coarticulation effects may result in inaccurate time boundaries during the forced
alignment process, which will lead to inaccurate location of the vowel phoneme within the
speech stream and extraction of acoustic features from the incorrect frame. This hypothesis
was only weakly supported and did not hold true for both pronunciation models or in both
participant groups. One possible solution would be to model the vowel and consonant
together as one unit, in both the forced alignment process and the lexical stress classification
model. This would require a redesign of the tool’s architecture.

Although age and severity were controlled for during linear mixed model analysis,
their significant effects were explored more closely in the third set of analyses conducted
here. Within-participant factors only partly explained our findings. Age was correlated
with classification accuracy only for the CAS group, a finding likely to be due to the
relationship between age and severity of speech impairment. Phonemic accuracy was
moderately correlated with classification accuracy for some word types from the TD
group using the multiple-pronunciation HMM model. As might be expected, phonemic
accuracy was more influential in classification accuracy for the CAS group, where the
likelihood of mispronunciation was high. Here, consonant, vowel, and overall phoneme
accuracy each correlated moderately with tool classification accuracy in all word types for
multiple-pronunciation HMM-based forced alignment with vowel accuracy also correlated
with classification accuracy for all but the WS words in single-pronunciation HMM-based
forced alignment. Using percent consonants correct as a measure of severity of speech
involvement [44], classification accuracy was reduced as severity of speech impairment
increased but only for multiple-pronunciation HMM-based forced alignment. Vowel
accuracy was more significantly correlated with the tool’s performance accuracy across
the range of tool and word types. This was to be expected given that the vowel is the
nucleus of the syllable, and the tool performed its analysis of lexical stress at the syllable
level. It was surprising that phonemic accuracy was more influential to performance
accuracy of multiple-pronunciation HMM-based forced alignment than to the accuracy of
single-pronunciation HMM-based forced alignment. Since the dictionary in this model of
the tool had been primed with information about the phonemic variations produced by the
participants, one would expect to have a reduced likelihood that mispronunciations would
affect the tool’s ability to correctly classify lexical stress. Based on these data, this is not
the case.

One possible reason that the multiple-pronunciation HMM-based forced alignment
system did not significantly improve lexical stress classification accuracy is that the acous-
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tic model was trained on adult speakers. This may have caused alignment problems if,
instead of recognising mispronounced words, the aligner corrupted correctly produced
words where the phoneme sequence was actually matched to a sequence in the single-
pronunciation forced alignment system. Another explanation may be the fact that increas-
ing the size of the dictionary resulted in higher error rates based on erroneous activation
of phonetically similar targets [42]. However, it is likely that factors other than phonemic
mispronunciation and lexical stress errors are influencing automated classification accu-
racy, as vowel and phoneme errors accounted for approximately 26% of the variance in
classification accuracy in both the single- and multiple-pronunciation HMM-based forced
alignment models.

Limitations and Future Directions

This research raises as many questions as it has answered. Further research should
investigate whether children with CAS make more significant segmental errors and timing
errors in their productions of WS words and the influence this has on automated lexical
stress classification accuracy. Our dataset was unbalanced, with more SW words sampled
than WS words. This was due to the facts that: (i) SW polysyllabic words are more common
in English, particularly in nouns, while the WS pattern tends to be more common in
verbs [72,73]; (ii) the children were sampled using a picture-naming task, which resulted
in the dataset being comprised of nouns (i.e., picturable words) and therefore made up of
more SW words than WS words; and (iii) stimuli in picture-naming tasks are limited to
words that children will be familiar with. Future research could include a larger sample of
WS words, particularly those produced with perceptually correct lexical stress to explore
factors related to the tool’s significantly poorer performance on WS words.

Further exploration of the similarities and differences between acoustic features ex-
tracted by machine learning algorithms and those to which the human ear is attuned
when judging lexical stress accuracy is warranted. This would aid in determining why
the algorithm does not match human perception, particularly for words with inaccurate
stress patterns.

Deeper analysis of the phonemic errors and their influence on syllable structure
is required to further explain the finding that priming the acoustic model with specific
knowledge about the types of mispronunciations in the speech samples offered only partial
advantage to the tool’s classification accuracy.

The HMM-based forced alignment process of the tool was trained using adult speech
samples so that the phoneme segmentation process was not affected by accent differences.
This module of the tool may need to be further trained or adapted using data from children.
Future directions for this research include directly testing the forced alignment component
of the tool by comparing the sequence of recognised phonemes with the sequence of
phonemes actually produced by the child.

While the HMM-based forced alignment process was trained using Australian English
speech, the DNN-based classifier was trained using a corpus of typically developing
children using the US English dialect. This introduced the potential to negatively affect
classification accuracy. While the influence of accent needs to be directly tested, US
English and Australian English are dialectical variations of the same stress-timed language
and therefore have similar alternating lexical stress across adjacent syllables. The model
currently detects when a child clearly destresses a strong syllable or erroneously stresses
a weak syllable. To enhance its accuracy in detecting more subtle lexical stress errors
associated with the tendency towards excess and equal stress, the model needs to be trained
using speech samples from children with CAS. As the amount of labelled data available for
training increases, so too does the potential for improved accuracy of the algorithms.

There are some limitations inherent in using a forced alignment system. One is that
phonemes undergo coarticulatory adjustments so that any given phoneme will vary based
on its phonetic context. Therefore, phoneme boundaries are rarely discrete moments in time
but estimates of best fit. This is particularly the case for phonemes such as liquids/glides
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transitioning into or out of vowel phonemes [71]. Another is that such systems require a
constrained vocabulary and can only match the incoming speech signal to words within
the predefined dictionary. Additionally, the system requires adequate training such that it
can recognise words even when produced with speaker-dependent variations in the speech
signal [71]. Constraining tasks and vocabulary to reduce the potential sources of variability
in the speech signal may increase computerised analysis accuracy. However, it also has
the effect of limiting the ecological validity of the speech sample and reducing the clinical
utility and widespread application of computerised analysis processes if an ‘off the shelf’
tool cannot readily be applied to different populations and different word sets [71].

Further research could consider improving the acoustic model used in the forced align-
ment module of the tool. One way to achieve this would be to use a more advanced acoustic
model based on deep learning [74]—or alternatively, to use domain adaptation techniques,
suitable in instances where limited data from the target population are available, to adapt
an acoustic model built on adult speech to children’s speech or disordered speech [75].

5. Conclusions

This study has the potential to guide the development of a test of lexical stress pro-
duction for children, with an associated automated analysis tool for diagnosis relative to
normative and other-disorder populations. Error analysis can provide guidelines for refin-
ing the tool to maximise sensitivity and specificity, for example, by examining classification
errors for potential segmental factors, which may affect tool accuracy and so guide stimu-
lus selection for reliable assessment instruments in the future. Such automated analysis
tools may make the analysis of lexical stress difficulties more accessible to clinicians who
have limited time and experience with acoustic analyses. This may be especially salient
considering the availability of easily accessible technology to capture high-quality audio
recordings within the clinic.

Automated speech analysis remains a difficult problem for clinical populations in
the current state of technological development. However, the promising results from TD
samples and CAS samples of SW words in the current study suggest that, once trained on
larger datasets of disordered speech and with a greater range of WS exemplars, such tools
have the potential to reach clinically acceptable benchmarks of accuracy against human
raters in the near future.
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Appendix A

Stimuli of the Gozzard Single-Word Test of Polysyllables (in alphabetical order)
Aeroplane
Ambulance
Animals
Avocado
Banana
Broccoli
Bulldozer
Butterfly
Capsicum
Caterpillar
Cauliflower
Computer
Crocodile
Cucumber
Dinosaur
Echidna
Elephant
Escalator
Hamburger
Helicopter
Hippopotamus
Hospital
Kangaroo
Koala
Medicine
Microwave
Mosquito
Motorbike
Octopus
Pinocchio
Platypus
Policeman
Potato
Pyjamas
Rectangle
Rhinoceros
Sausages
Spaghetti
Stethoscope
Television
Thermometer
Tomato
Triangle
Umbrella
Vacuum cleaner
Vegemite
Vegetables
Washing machine
Watermelon
Zucchini
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