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Abstract A body of animal and human evidence points to the norepinephrine (NE) locus

coeruleus (LC) system in modulating memory for arousing experiences, but whether the LC would

recast its role along memory stages remains unknown. Sedation precluded examination of LC

dynamics during memory processing in animals. Here, we addressed the contribution of the LC

during arousal-associated memory processing through a unique combination of dedicated ultra-

high-field LC-imaging methods, a well-established emotional memory task, online physiological and

saliva alpha-amylase measurements in young adults. Arousal-related LC activation followed

amygdala engagement during encoding. During consolidation and recollection, activation

transitioned to hippocampal involvement, reflecting learning and model updating. NE-LC activation

is dynamic, plays an arousal-controlling role, and is not sufficient but requires interactions with the

amygdala to form adaptive memories of emotional experiences. These findings have implications

for understanding contributions of LC dysregulation to disruptions in emotional memory formation,

observed in psychiatric and neurocognitive disorders.

Introduction
Multiple decades of neuroscience and psychology research uncovered that arousal contributes to

enhanced memory performance and that norepinephrine (NE) transmission plays a pivotal role in

this phenomenon (van Stegeren, 2008; Roozendaal and McGaugh, 2011). The major source of NE

to the brain is the locus coeruleus (LC), a small structure in the brainstem. The NE-LC system has

widespread efferents to almost the entire brain and can modulate cognition, behavior and auto-

nomic tone via its effects on adrenoreceptors in target neurons (Sara, 2009; Sara and Bouret,

2012; Samuels and Szabadi, 2008a).

Research into NE-modulation of emotional memory enhancement has focused largely on the

amygdala (Hermans et al., 2014; Phelps and LeDoux, 2005; McIntyre et al., 2003), an important

target region of the LC and a critical nexus in memory for arousing experiences. Rodent work consis-

tently demonstrated that blocking b-adrenergic receptors in the basolateral amygdala (BLA) immedi-

ately after learning in arousing conditions impairs memory, while infusion of NE or b-adrenoreceptor

agonists enhances consolidation and rescinds the impairment, evaluated one to two days later
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(Roozendaal et al., 2008; Power et al., 2002). Correspondingly, stimulation of the LC during the

learning phase modulates activity in the BLA and synaptic plasticity in the CA1, CA3 and dentate

gyrus (Lemon et al., 2009; Wagatsuma et al., 2018). While these studies highlight the importance

of adrenergic signaling for plasticity and hippocampal-dependent learning, blocking b-adrenorecep-

tors prior to learning had no effect on subsequent retrieval 24 hr later (Wagatsuma et al., 2018;

Khakpour-Taleghani et al., 2008). It has been suggested that in the context of strong LC stimula-

tion tonic activity can be shifted into phasic activity and other neuromodulators may then elicit simi-

lar but possibly weaker plastic processes (Roozendaal and Hermans, 2017; Vazey et al., 2018;

Hansen and Manahan-Vaughan, 2015).

In humans, administration of propranolol 90 min before encoding attenuated expected amygdala

responses during encoding of emotional stimuli, and even though the propranolol was eliminated at

retrieval, hippocampal responses during retrieval of emotional stimuli were absent (Strange and

Dolan, 2004). In addition, propranolol impaired memory accuracy for emotional events and

decreased saliva measures of NE (Hermans et al., 2014; McIntyre et al., 2003; Strange and Dolan,

2004; Cahill et al., 1994). These findings suggest, consistent with animal studies, that emotional

memory is dependent upon b-adrenergic-related amygdala-hippocampus interactions.

These network interactions can vary over time or be task-dependent. For example, the LC is

involved in consolidation, but within a critical time period after learning, the time required for the

hippocampus to facilitate the reorganization and stabilization of storing information in the neocortex

(Khakpour-Taleghani et al., 2008). In humans, increases in NE-tone during encoding, but not during

retrieval, modulated memory performance (Rimmele et al., 2016). This dynamic behavior stems

from the idea that release of NE due to LC-activation modulates, gates and tunes neural activity in a

way that optimizes the signal-to-noise ratio (Sara, 2009; Sara and Bouret, 2012). Thus, NE selec-

tively reinforces brain activity and memory representations only if arousal-related LC activation

occurs at the right time and magnitude (Mather et al., 2016). When increases in NE are coupled to

arousal, they can lead to hippocampal synaptic plasticity (Lemon et al., 2009; Hansen and Mana-

han-Vaughan, 2015), and facilitate the dynamic reorganization of neural networks (Bouret and

Sara, 2005; Zerbi et al., 2019). So far, arousal-induced dynamic changes in LC activity and connec-

tivity with its key target regions during task performance has not yet been examined in animals

(Zerbi et al., 2019).

Motivated by the previous findings, we sought to examine the contribution of the LC directly in

vivo in humans to arousal-related memory enhancement and hypothesized that interactions between

the LC and MTL regions vary across memory stages, dependent on the level of arousal.

Examining the LC in vivo functionally and obtaining a robust signal in humans is exceedingly diffi-

cult given its small size, proneness to noise (pulsatility of surrounding vessels and motion) and its

location adjacent to the fourth ventricle. Our recent efforts in ultra-high-field imaging, providing bet-

ter spatial resolution and signal-to-noise ratio, open up exciting possibilities. Here, we combined 7T-

fMRI scanning during an established emotional memory paradigm, our novel 7T-MRI sequence which

allows to image the LC at high resolution (Priovoulos et al., 2018), with objective measures of

arousal, viz. online physiological measures and serial saliva measures, a proxy for NE, in young

adults.

Results
Twenty-seven young right-handed adults (13 female, 20–30 years, mean ± SD = 22.95±1.96) under-

went 7T MR imaging which included structural scans (T1-weighted scan, dedicated LC imaging) and

ultra-high-resolution blood oxygenation level-dependent (BOLD) signal fMRI. The functional imaging

part consisted of a baseline resting-state scan and an emotional memory task, in which participants

were required to memorize face-name associations (Figure 1). Faces had an emotional (negative) or

neutral expression as determined by independent rating. After the encoding phase, a second rest-

ing-state scan (termed ‘consolidation’) was collected. This was followed with a recollection fMRI-

scan, during which participants had to indicate whether they recognized the face and, upon endorse-

ment, had to select the name of the face out of three options (all options were seen previously to

stimulate recollection instead of recognition processes). During the functional imaging, we collected

breathing (respiratory bellows), cardiac information (pulse oximeter) and serial saliva samples for

alpha-amylase (sAA) measures, a proxy for catecholaminergic activity. Three fMRI-datasets were
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Figure 1. Experimental design. (A) Task procedure. The salivettes indicate the time points of collection of saliva samples. For the 7T fMRI part,

anatomical scans and a baseline 6 min resting state with a fixation cross were collected first. Then a memory task was completed, consisting of

encoding, consolidation (a resting-state with a fixation cross) and recollection. (B) Encoding consisted of the presentation of 90 face-name pairs (45

emotional- 45 neutral valence; permission of use obtained from PERT96 group). Recollection consisted of 135 trials (45 new faces (23 with emotional

valence)) for which participants had to decide if the face was presented before. Upon endorsement, they were asked to indicate the name that was

presented with the face during encoding. Throughout the fMRI experiment, breathing and pulse rate data were collected.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sagittal and axial slices of the T1-weighted and fMRI average in the MNI space at the level of the hippocampus and brainstem.

Figure supplement 2. Comparison of the temporal signal-to-noise ratio (tSNR) per participant across fMRI pipelines.
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excluded due to technical reasons, one due to spiking because of coil failure one due to a recon-

struction error and one due to temporary failure of the response-recording device.

Supplementary file 1 summarizes the neuropsychological test performance of the participants.

Emotional memory performance is linked to sAA and heart-rate
variability changes
We first evaluated the effect of emotional valence on memory performance, as it is well established

that emotional information is better remembered than neutral information. All participants per-

formed the task above chance level in recollection (33.3%), with a median number of hits (correctly

recollected) of 48.33% (IQR = 40.78, 54.89) and median number of miss rate (incorrectly recollected)

of 51.67% (IQR = 45.11, 59.22). There was no significant difference (Wilcoxon paired test:

Z = �1.17, p-value=0.244) between the recognition hit rate for emotional (Median = 53.33%

(IQR = 45.56, 61.11)) compared to neutral faces (Median = 53.33% (IQR = 44.44, 67.79, Figure 2A).

However, more false alarms were detected (Wilcoxon paired test: Z = 3.81, p-value<o0.001) for

emotional (Median = 22.73% (IQR = 18.19, 34.09) compared to neutral faces (Median = 13.63%

(IQR = 9.09, 22.78); Figure 2B). We observed no recollection difference (Wilcox test: Z = 0.06,

p-value=0.95, Figure 2D) between emotional (median = 0.5 (IQR = 0.43, 0.54)) and neutral valence

trials (median = 0.45 (IQR = 0.38,0.59), Table 1). However, given that performance in the recollec-

tion phase may be affected by a response bias in the recognition phase (Figure 2E–F), we calculated

the false alarm rate and the response bias using the likelihood ratio beta from signal detection the-

ory. A paired t-test revealed a bias in misclassifying emotional faces during recognition (t(27)=5.34,

Figure 2. Behavioral performance (N = 27). (A) Hit rate for emotional and neutral conditions during recognition (paired Wilcoxon test: Z = �1.17,

p=0.244). (B) False alarm rate for emotional and neutral conditions during recognition (paired Wilcoxon test = 3.81, p<0.001). (C) Recognition bias for

emotional and neutral conditions (paired t-test, p=0.019). (D) Uncorrected recollection rate for emotional and neutral conditions (p=0.95). (E) Emotional

condition: scatter-plot between recollection rate and bias c (robust linear regression: b = �30.99,t = �9.77, p<0.001). (F) Neutral condition: scatter-plot

between recollection rate and bias c (robust linear regression: b = �23.78, t = �6.35, p<0.001). (G) Corrected recollection rate for emotional and neutral

conditions (paired Wilcoxon test: p<0.001). Boxplots inside the violinplots show median, quartiles (boxes) and range (whiskers). Shaded regions depicts

the 95% confidence interval.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Behavioral performance on the face-name association task.

Figure supplement 1. Schematic representation of the procedure used to calculate bias-free emotional recollection scores.
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p-value<0.001, Figure 2B) and a higher response bias for the emotional recognition condition (t(27)

=2.49, p-value=0.019, Figure 2C), towards responding that they had seen the face before. We

decided to focus on recollection because of this response bias, our focus on the medial temporal

lobe regions and the notion that recollection is more likely to elicit hippocampal activity than

recognition (Rugg and Vilberg, 2013).

Repeating the analysis after correcting for the bias (partial residuals), showed that participants

recollected on average more names with an emotional (median = 38.68, IQR = 36.68, 39.46) relative

to those with a neutral valence (median = 29.97, IQR = 28.01, 33.39; paired Wilcoxon test: Z = 4.41,

p-value<0.001, Figure 2G), in accordance with an expected memory advantage for emotional trials.

No reaction time difference between emotional (median = 1.90 (IQR = 1.68,2.10)) and neutral condi-

tions (median = 1.88 (IQR = 1.71, 2.02)) was detected in recollection (Z = 0.09, p-value=0.93) or rec-

ognition (Z = �0.43, p-value=0.68; emotional (median = 1.50 (IQR = 1.32, 1.65)); neutral

(median = 1.52 (IQR = 1.32, 1.61))). In the remaining analyses, we used this bias-corrected emotional

recollection score (Figure 2—figure supplement 1; Table 1 for an overview of all scores). Males and

females did no differ in the corrected recollected rate (b = 1.49, z = 1.18, p=0.24), nor did we

observe a possible modulation by valence (interaction sex by valence: b = 0.20, z = 0.91, p=0.91).

For task clarification, see Figure 1. The ‘Recollection Hit Rate Raw’ expresses the number of cor-

rect recollection of old names divided by the total number of old faces. The ‘Recollection Hit Rate

(correct recognition)’ expresses the recollection success normalized for recognition, that is the num-

ber of correct recollection of old names divided by the number of correct recognition of old faces

(%Hits). The %False Alarm is 1- %Hits (or Recollection Hit Rate (correct recognition)”). The ‘Bias-cor-

rected Recollection Hit Rate’ is the bias-corrected recognition rate, as described in Figure 2—figure

supplement 1. Note that the recollection hit rate for new faces is by definition 0, since they have

not been shown in association with a name during encoding.

While there is general agreement in the valence of these images, individual differences in the eli-

cited arousal are common. Therefore, we collected autonomic tone measures. We recorded heart

Table 1. Behavioral results of the memory task for emotional and neutral valence.

Note: numbers provided are median and interquartile range (IQR). Differences between emotional

and neutral stimuli were tested with a paired Wilcoxon test. All scores, except for the bias express %.

Emotional
(Median (IQR))

Neutral
(Median (IQR)) Z p-value

Recognition Hit Rate
(Old faces)

53.33
(45.56, 61.11)

53.33
(44.44, 67.78)

�1.17 0.244

Recognition Miss
Rate (Old faces)

46.67
(38.89, 54.44)

46.67
(32.22, 55.56)

1.2 0.229

Recognition Correct
Rejection Rate
(New faces)

77.27
(65.91, 81.82)

86.36
(77.27, 90.91)

�3.77 <0.001

Recognition False
Alarm Rate (New faces)

22.73
(18.18, 34.09)

13.64
(9.09, 22.73)

3.81 <0.001

Recognition Hit
Rate - Recognition
False Alarm Rate

23.94
(17.02, 32.83)

37.68
(28.23, 50.81)

�3.16 <0.001

Recognition Response Bias 0.90
(0.81, 0.92)

0.84
(0.74, 0.9)

2.29 0.02

Recollection Hit Rate Raw 24.44
(18.89, 31.11)

26.67
(18.89, 33.33)

0.35 0.726

Recollection Hit
Rate (correct recognition)

50
(43.43, 54.01)

44.83
(37.97, 58.77)

0.06 0.953

Recollection Hit Rate
(Old faces) - Recollection
False Alarm Rate (Old faces)

0.00
(�13.14–8.01)

�10.34
(�24.07–17.54)

0.06 0.953

Bias-corrected
Recollection Hit Rate

38.68
(36.68, 39.46)

29.97
(28.01, 33.39)

4.41 <0.001
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rate variability (HRV), a proxy of heart rate variability and an index of parasympathetic modulation,

particularly in the high (0.15–0.4 Hz) and low-frequency band (0.03–0.15 Hz) (Hedman et al., 1995).

Root-mean square differences of successive peak-to-peak intervals (rMSSD) were calculated over

each time period. RMSSD correlates tightly to parasympathetic activity (Kleiger et al., 2005) and is

relatively free of respiratory influences. In addition, we measured sAA, a sensitive marker for the

sympathetic nervous system, in particular NE.

To facilitate analyzing rMSSD and sAA at similar time points along the paradigm, we calculated

the difference in sAA (DsAA) levels before and after each of the stages of the fMRI task (resulting in

four values per participants, except for missing values due to insufficient saliva; Supplementary file

2). Linear mixed effects models with DsAA across the task stages revealed an increase in DsAA dur-

ing consolidation relative to encoding (b = �65.95, t(47.92) = �2.91, p=0.033, Figure 3A). No differ-

ences in DsAA were found when comparing the other task stages (Supplementary file 3A). These

findings did not change when covarying for the baseline sAA measurement outside the scanner or

when covarying for sex. To further probe the increase in DsAA during consolidation, correlation anal-

yses showed a positive, at trend level, association with emotional memory performance (r = 0.452,

N = 18, p-value=0.059, Figure 3B).

For the rMSSD, the linear mixed effects models showed no significant change in rMSSD across

the task stages (Figure 3C, Supplementary file 3B). Given that both measures relate to the

Figure 3. Associations between autonomic tone measures and memory performance across the task stages. (A) sAA change during the task (encoding,

consolidation and recollection) relative to the baseline resting-state. A significant increase in sAA was observed between consolidation and baseline

(linear mixed effects model, p=0.033, N = 21, 68 observations). (B) Association between DsAA (consolidation – baseline) and emotional memory

performance (correlation, r = 0.452; p=0.059, N = 18). (C) Distributions of the rMSSD during the task (encoding, consolidation and recollection) relative

to the baseline resting-state (no significant differences, linear mixed effects model, p=0.23, N = 18, 63 observations). (D) Repeated measures correlation

plot between DsAA and rMSSD across all task stages (Rrm = �0.387; p=0.018, N = 17, 56 observations). Boxplots inside the violinplots show median,

quartiles (boxes) and range (whiskers). Shaded region in the scatterplot depicts the 95% confidence interval.

The online version of this article includes the following source data for figure 3:

Source data 1. Autonomic tone and memory performance across the entire paradigm.
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autonomic system, we then correlated DsAA to RMSSD across the stages using bootstrapped

(n = 5000) repeated measures correlations and observed a negative relationship (Rrm(df)=�0.387,

(35), p=0.018, CI (95%)=[�0.638,–0.061], Figure 3D). These observations suggest that perturbations

of arousal with a NE-dominant response, reflected in increases in sympathetic and decreases in para-

sympathetic tone, can enhance memory performance in healthy adults.

LC activity couples with autonomic tone across the task stages
The LC is the centerpiece of the brain’s sympathetic noradrenergic system, and is known to control

autonomic function. Therefore, we examined the relationship between LC fMRI and HRV timeseries

across the task stages.

Using brainstem-specific group-level independent-component-analyses (ICA) on the baseline rest-

ing-state fMRI in combination with a custom anatomical LC template from our MT-TFL sequence, we

identified a bilateral LC component (Figure 4A and B). To assess the specificity of our findings to

the LC, we also investigated a control component in the pons (reference ROI). In addition, sensitivity

analyses were done by evaluating the outcomes across four different preprocessing pipelines, each

time adding in more physiological noise correction (Figure 4—figure supplement 1).

Linear mixed effects models showed no differences across task stages for LC BOLD variability

(Supplementary file 3C). Consistent with our previous analyses, we applied repeated measures cor-

relation and observed a negative correlation between LC variance and rMSSD across task stages

(Rrm(df)=�0.326,(63), p-value=0.008, CI (95%)=[�0.531,–0.084], Figure 4C). We found no correlation

between rMSSD and variance in a control region, a component close to the 4th ventricle that

explained a similar amount of variance in the ICA (Rrm(df)=�0.201(63), p=0.11, CI (95%)=[�0.494,

0.427], Figure 4D). We also observed no correlation between LC variance and DsAA (Rrm(df)

=�0.006,(38), p-value=0.971, CI (95%)=[�0.325, 0.314], Figure 4E) or between the reference com-

ponent variance and DsAA (Rrm(df)=�0.012,(38), p-value=0.943, CI (95%)=[�0.309, 0.330],

Figure 4F). These findings were reproduced across preprocessing pipelines indicating the robust-

ness of our results (Figure 4—figure supplement 2).

In the previous analyses, we demonstrated a negative correlation between LC variability and

rMSSD or DsAA across the entire paradigm. These results echo previous work demonstrating that

blocking b-adrenoreceptor increases HRV (Bittiner and Smith, 1986). However, rMSSD reflects

beat-to-beat variance in HR in the time-domain and is relatively non-specific to the frequency-

domain. Autonomic fluctuations due to emotionally salient stimuli can alter the power of frequencies

in the HRV and this can occur in concert with changes in LC BOLD responses (Bittiner and Smith,

1986; Akselrod et al., 1981; Lane et al., 2009). Therefore, we applied spectral analyses to assess

the nature of autonomic modulations on LC activity at each task stage by calculating the coherence

magnitude squared between the timeseries of the HRV and LC for each task stage (see example in

Figure 5A). By using a within-subject design with a baseline measure we can eliminate interindividual

differences in blood pressure, respiration and, by combining HRV fluctuations with other measures

related to the autonomic system, we are well-positioned to differentiate autonomic contributions to

LC activity due to emotion or arousal across the different memory stages. Here, we will use the

FIXed+explicit Phys pipeline to remove respiratory confounding.

We ran linear mixed effect models to examine whether the relationship between frequency and

coherence varied across task stages (Supplementary file 7A), followed by simple slopes analyses to

determine the region of significant (RoS) moderation at a <0.05. Greater LC-HRV coherence levels

were observed during baseline compared to consolidation (b = �0.20, t(7889) = �6.65, p<0.001,

RoS:<0.27 Hz), during encoding compared to consolidation (b = 0.13, t(7889) = 4.31, p<0.001, RoS:

<0.29 Hz), during recollection compared to baseline (b = �0.20, t(7889) = �6.55, p<0.001, RoS:

>0.25 Hz) and during recollection compared to encoding (b = �0.12, t(7889) = �4.17, p<0.001,

RoS:>0.27 Hz; Figure 5C).

For the control region (Figure 5B and D, Supplementary file 7B), coherence between the refer-

ence region and HRV coherence was greater during recollection compared to baseline (b = �0.13, t

(7889) = �4.15, p=0.001, RoS:>0.28 Hz), or at trend-level compared to consolidation (b = �0.09, t

(7889) = �2.95, p=0.050, RoS:>0.33 Hz). These findings were replicated across preprocessing pipe-

lines, except for the spatially normalized pipeline where associations between frequency and coher-

ence were noisier (Figure 5—figure supplements 1–2, Supplementary file 4–5). These patterns

indicate greater LC activity coupled to greater parasympathetic inhibition during baseline and
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Figure 4. Associations between LC BOLD and autonomic tone measures using repeated measures correlations. (A–B) LC component visualization. (A)

Group average t-map from the dual-regression showing a robust bilateral LC component, thresholded at p<0.01 FWE, after denoising with FIX

(N = 24). (B) LC template from all scans. A hyperintensity can be observed close to the 4th ventricle. (C–F) Repeated correlations between LC variability

rMSSD (p=0.008, N = 23, 92 observations) or DsAA (not significant, p=0.971, N = 17, 56 observations) (C,E). Similar associations are shown for variability

Figure 4 continued on next page
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recollection, which has been associated with better discrimination between emotional versus neutral

faces, attentional resources and better retrieval of context information from stored representation to

perform memory task successfully (Lane et al., 2009; Thayer et al., 2012). On the other hand, con-

solidation demonstrated lower coherence compared to encoding or baseline, which is consistent

with the premise that lower HF-HRV is associated with higher arousal. The latter is consistent with

the increase in DsAA during consolidation (Figure 3B).

To further probe the importance of coupling between autonomic tone and LC variability, we

defined the frequency band of maximum coherence as the confidence interval of the median of the

maximum-individual coherence between LC and HRV (median = 0.217, 95% CI=[0.189, 0.317]. Inter-

estingly, the width of this CI also nicely fits with the standard definition of high-frequency band of

parasympathetic influence on HRV [0.15, 0.4 Hz]). The median coherence within this band was

extracted for each individual across conditions to obtain a single point-estimate for our repeated

measures correlation analyses with DsAA. We observed a negative relationship between LC-HRV

median coherence and DsAA (Rrm(df)=�0.383 (34), p-value=0.021, CI (95%)=[�0.64,–0.05],

Figure 5E). We replicated this analysis across preprocessing stages. Additionally, we repeated this

analysis for the reference component, but observed no significant relationship with DsAA (Rrm(df)

=0.218 (34), p-value=0.201, CI (95%)=[�0.13, 0.52], Figure 5F). Finally, no significant correlation was

detected between LC-HRV coherence during any of the stages and emotional recollection rate (all

ps > 0.05). The covariation between LC activity and HRV demonstrate that even though both emo-

tion and cognition operate simultaneously, encoding and recollection are coupled to moment-to-

moment autonomic regulation supporting cognitive functions required for the task at hand. How-

ever, this LC-parasympathetic coupling, appertaining to the central autonomic network, is not suffi-

cient to predict accurate emotional memory recollection. Conversely, LC BOLD signal during

consolidation may be specifically tied to arousal-related sympathetic tone, an inference supported

by our DsAA analyses and the at-trend correlation between DsAA during consolidation and memory

performance. We should note that the physiological relevance of high-frequency fMRI signal remains

unclear, but it has indeed been linked to rapid modulation of the brainstem driving information

exchange (Billings et al., 2018).

Arousal-related successful encoding elicits LC activation
We hypothesized that the LC and amygdala would be activated during encoding of emotional com-

pared to neutral faces. The GLM within our predefined mask (Figure 6—figure supplement 1)

largely confirmed this, by showing activation in the CA1 and 3, bilateral BLA (extending into the cen-

tromedial amygdala) and right entorhinal cortex during successful encoding versus no successful

encoding (Supplementary file 8A, Figure 6A). However, no significant clusters were detected for

emotional >neutral or for emotional successful encoding >neutral successful encoding.

Given our evidence of the LC’s role in modulation of the autonomic system, we examined con-

trasts from HRV-convolved clusters. No significant clusters were observed after cluster correction in

the MTL or pons. But given the limited signal-to-noise ratio typical for brainstem responses and the

small-elongated shape of the LC (10–12 voxels in our high-resolution images), we performed our

analyses at an uncorrected p<0.05 within a small-volume search space. The high arousal (local HRV

minima) events (High Arousal > Low Arousal) showed significant bilateral activation at the LC (peak

z-value = 3.3, Figure 6C), consistent with our previous results examining HRV-LC coherence during

encoding. In addition, significant voxels of LC activation were observed for the interaction of high

compared to low arousal during successful encoding (High Arousal successful Encoding > Low

Arousal successful Encoding; peak z-value = 5.2; Figure 6B), successfully encoding versus forgotten

Figure 4 continued

in the reference component (D,F) (no significant relationships, p=0.109 and p=0.942, respectively, N = 17, 56 observations). Each marker signifies a

participant and distinct shapes show the different task stages.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Locus coeruleus BOLD and autonomic tone measures across the entire paradigm.

Figure supplement 1. Functional template of the locus coeruleus during resting-state.

Figure supplement 2. Relationship between LC variability and rMSSD across the task stages for each preprocessing pipeline.
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Figure 5. Coherence between LC and HRV across the task stages. (A) LC coherence magnitude squared plotted against frequency for each task stage

for a single participant. The high-frequency HRV band is depicted in a lighter shade. (B) Reference ROI-HRV coherence magnitude squared for the

same participant. (C) The association between frequency and the predicted magnitude squared coherence between the LC and HRV across the various

task stages (based on linear mixed effects models, N = 24 (7920 observations), p-values for all comparisons are provided in Supplementary file 7).

Shaded regions in C and D show the 95% confidence intervals. (E) Repeated correlations between LC-HRV coherence and DsAA (Rrm(df)=�0.383 (34),

p-value=0.021). (F) Reference ROI-HRV coherence and sAA change levels (not significant, Rrm(df)=0.218 (34), p-value=0.201).

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Coherence between locus coeruleus BOLD and HRV.

Figure 5 continued on next page
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trials during high arousal (High Arousal successful Encoding > High Arousal forgotten, peak

z-value = 2.9, Figure 6D) and bilaterally for encoding of emotional stimuli relative to neutral during

high arousal (High Arousal Emotional Encoding > High Arousal Neutral Encoding, peak z-value = 5.8,

Figure 6E).

The extracted beta-coefficients of this contrast correlated with emotional memory performance

(r = 0.506, N = 24, p=0.019), indicating that higher LC activity in emotionally encoded trials under

high arousal as compared to neutral trials was related to better memory performance. These results

suggest that the MTL and BLA is involved in the accuracy of learning, while LC clusters are involved

in encoding of emotional stimuli, a role that is particularly modulated by arousal.

The hippocampus predominates successful recollection
We expected substantial involvement of the hippocampus during successful recollection, but poten-

tially also involvement of the LC and amygdala during emotional recollection. The GLM revealed

activation in the left CA1 and subiculum for successful recollection (Supplementary file 8B,

Figure 6F). We found no significant clusters for the emotional versus neutral contrast or for the inter-

action between recollection success and valence (emotional successful recollection >neutral success-

ful recollection). While we did see a cluster encompassing voxels in the LC region for the emotional

vs. neutral and emotional successful recollection >neutral successful recollection contrasts, this clus-

ter contained voxels in the 4th ventricle and the peaks of the clusters were not located in the LC and

therefore should be interpreted with caution. No clusters were observed in the MTL or pons related

to the HRV local minima or when convolving arousal with the memory regressors. Therefore, involve-

ment of the LC during recollection could not be confirmed in our data.

Interactions between the LC and MTL transition across task stages
To compare interactions between regions across the task stages we performed seed-to-voxel analy-

ses using cross-correlation at lag = 0 s (denoted as functional connectivity FC) between the LC using

the component of the baseline resting-state (Figure 4—figure supplement 1) and the predefined

MTL regions (Figure 6—figure supplement 1): hippocampus (HIPP), amygdala (AMY) and entorhinal

cortex (EC). We observed a decrease in FC during consolidation compared to baseline between the

LC and left BLA, (para)subiculum and EC (Supplementary file 8C, Figure 7A). No effects were

observed when comparing baseline with encoding or recollection and these findings were repro-

duced across preprocessing pipelines (Figure 7—figure supplement 1).

Areas related to arousal and salience processing, such as the LC, have particularly variable behav-

ior that can result in a negative FC value, complicating their interpretation (Chang and Glover,

2010). As our FC analyses assume stationarity within the fMRI timeseries, we aimed to understand

these negative FC changes by exploring the frequency-specific magnitude and phase correlation

changes in the follow-up spectral coherence analyses. Phase or magnitude changes in the frequency

plane can result in reduced cross-correlation values.

To understand whether timeseries from specific regions were leading or lagging during the task

stages, we estimated the median phase lag and coherence across the frequency band of maximum

coherence between the timeseries of the LC and MTL regions. Similar to previously determined LC-

HRV median maximum coherence (Figure 5), we calculated the confidence interval of the median of

the maximum-individual coherence between timeseries. Linear mixed effects models were imple-

mented with either median coherence or phase at maximum coherence between the task changes

as outcome and task stage, timeseries combination and their interaction as fixed effects. We

observed an increase in HIP-AMY coherence for encoding compared to baseline (b = �0.13, t(821)=-

4.39, p<0.001, 95% CI[�0.20,–0.052]), a decrease in recollection compared to encoding (b = 0.10, t

(821)=3.37, p=0.004, 95% CI[0.023, 0.171]) and a trend for consolidation decrease compared to

Figure 5 continued

Figure supplement 1. Coherence between LC and HRV across the task stages for the spatially normalized pipeline.

Figure supplement 2. Coherence between LC and HRV across the task stages for the FIXed pipeline Note: Coherence between LC and HRV across the

task stages.

Figure supplement 3. Coherence between LC and HRV across the task stages for the FIXed + Explicit Resp pipeline.
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Figure 6. LC and MTL activity during the task stages (N = 24). (A) Bilateral hippocampus, bilateral amygdala and entorhinal cortex activation during

encoding (Encoding >Not Encoding; thresholded at p<0.05, uncorrected). (B–E) LC activation during encoding (z-values thresholded at p<0.05,

uncorrected). (B) LC activation during successfully encoded events with high arousal (HRV minima) (High Arousal successful encoding >Low Arousal

successful encoding). (C) LC activation during High Arousal Encoding >Low Arousal Encoding and during D) High Arousal successful Encoding >High

Arousal forgotten. (E) Activation of LC for emotionally high arousal encoding events (High Arousal Emotional Encoding >High Arousal Neutral

Encoding). (F) Bilateral CA1 activation during recollection of correctly encoded trials (Successful recollection >Forgotten recollection) (z-values

thresholded at p<0.05, uncorrected). Boxplots inside the violinplots show median, quartiles (boxes) and range (whiskers). The layer containing white

Figure 6 continued on next page
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baseline (b = �0.07, t(821)=-2.35, p=0.088 95% CI[�0.141, 0.007]) and a change in phase from AMY

leading the LC in encoding to the LC leading the AMY in recollection (b = 0.91, t(821)=2.73,

p=0.033, 95% CI[0.051,1.772] Figure 7B). Coherent behavior between timeseries may be influenced

by other brain regions. Therefore, we calculated partial coherences and compared these against a

null distribution consisting of partial coherences from randomized time-series with matched auto-

regressive coefficients. The surviving significant coherent relationships between timeseries are visual-

ized in Figure 7 (B–E) in terms of coherence magnitude and phase. Accounting for timeseries of the

AMY reduced HIPP-LC coherence during encoding, and accounting for HIPP timeseries significantly

reduced coherence between AMY and LC during consolidation.

When relating emotional memory to coherence for these ROI pairs using linear regressions

(adjusted for baseline coherence), we observed that greater memory performance was associated

with greater AMY-EC coherence during encoding (b = 0.28, t(21)=2.62, p=0.038, 95% CI

[0.057,0.508]), and EC-HIP coherence during encoding (at trend level: b = 0.27, t(21)=2.38, p=0.054,

95% CI[0.033,0.512]).

LC structure is associated with sAA and memory performance
Previous studies related LC structure (intensity) to cognitive and autonomic tone measures

(Hämmerer et al., 2018; Mather et al., 2017). The LC segmentation is depicted in Figure 8A–B

(see also Figure 8—figure supplement 1). The LC TFL intensity normalized to a pontine tegmentum

ROI showed a positive correlation with emotional recollection scores (r = 0.56, p=0.004, Figure 8D).

Increased motion correlated borderline with TFL intensity ratio (r = 0.38, p=0.071) and emotional

recollection (r = 0.34, p=0.108), but adjusting for motion did not alter the positive relationship

between normalized TFL intensity and emotional recollection (p=0.004). When subdividing the LC

into three equisized parts (Figure 8C), we observed a positive correlation with emotional recollec-

tion (Figure 8D) for the medial (r = 0.52, p=0.009) and caudal (r = 0.43, p=0.034) parts of the LC,

not rostral (r = 0.37, p=0.074).

We then related the mean TFL intensity ratio to our measure of autonomic tone and observed a

positive relation with DsAA during consolidation (r = 602, p=0.008, N = 18). When examining the dif-

ferent sections of the LC, this positive relationship was only observed for the caudal part of the LC

(r = 0.79, p<0.001, N = 18). No association was observed between TFL intensity and rMSSD or LC

BOLD variability.

Discussion
The LC is connected with evolutionary ancient brainstem regions involved in autonomic functions,

but also with the associative neocortical regions, allowing it to be ‘the cognitive limb of a globally

conceived sympathetic nervous system’ (Aston-Jones et al., 1991). We set out to investigate the

contribution of the LC and its interactions with MTL regions during arousal-related memory enhance-

ment by combining dedicated ultra-high-field MRI methods, an established emotional memory task,

physiological and saliva measures. Consistent with previous work, we observed that forming adap-

tive memories in response to arousing events was predominantly associated with NE- activity. Con-

siderably less is known about the LC’s interactions with MTL regions during the different memory

processing stages. Our results now demonstrate that LC’s role during these memory processing

stages was shaped by arousal-related autonomic changes and its close interactions with the amyg-

dala. During encoding, stimuli eliciting arousal-related autonomic changes were associated with LC

activity following amygdala activation during successful learning. During consolidation, the role of

Figure 6 continued

voxels demonstrates the location of the Keren template as reference (Keren et al., 2009). Individual brainstem results for the encoding contrasts are

shown in Figure 6—figure supplement 2.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Locus coeruleus and medial temporal lobe activity during the task stages.

Figure supplement 1. Mask of regions used in the GLM and functional connectivity analyses.

Figure supplement 2. Individual brainstem results for the GLM contrasts during encoding.

Figure supplement 3. Encoding-related brain activation for recognition contrasts.
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Figure 7. Integration of LC and MTL timeseries across the task (N = 24). (A) Functional connectivity (FC) from LC component to MTL structures across

task stages. Clusters of decreased FC in hippocampus, amygdala and entorhinal cortex were observed comparing consolidation to baseline (p<0.05,

uncorrected). (B-E) Median maximum coherence and phase across task stages between timeseries from the LC and the clusters from the hippocampus,

amygdala and entorhinal cortex from the FC analysis (B: baseline resting-state; C: encoding; D: consolidation; E: recollection). Confidence intervals of

maximum coherence were calculated per timeseries and the median maximum coherence and phase were extracted. The significant partial coherence

Figure 7 continued on next page

Jacobs et al. eLife 2020;9:e52059. DOI: https://doi.org/10.7554/eLife.52059 14 of 30

Research article Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.52059


the LC gradually changed from being arousal-driven to maintenance or updating internal models

during recollection, involving predominantly hippocampal activity. These results highlight the

dynamic nature of neuromodulatory brain networks during arousal-related memory processes

(Hermans et al., 2011). Understanding the neural mechanisms underlying memory for emotional

experiences increases our understanding of diseases in which a dysregulation or decoupling of one

of these systems could lead to affective, autonomic or neurocognitive disorders (Samuels and Sza-

badi, 2008b; Jacobs et al., 2019).

Activation of the LC occurs in parallel with the autonomic system, and modulates cognition:

across the entire memory task greater variability in LC BOLD signal was associated with lower para-

sympathetic activity (rMSSD), which in turn was associated with greater sympathetic modulation

(DsAA) and better memory performance. Beyond function, we also observed that structural proper-

ties of the LC, the middle section, related to better emotional memory performance, and greater

caudal LC intensity was related to greater NE. These correlations fit with the well-described topo-

graphic projections of the LC, where the rostral and middle part project densely to higher-order

associative regions of the brain and the caudal part of the LC to the nucleus ambiguus and dorsal

motor nucleus of the vagus (Sara, 2009; Samuels and Szabadi, 2008a), which both modulate the

parasympathetic outflow based on sympathetic signals.

We also observed task-stage-specific associations between LC’s connectivity to the MTL regions

and autonomic tone measures. During consolidation, we observed a different LC-MTL functional

connectivity coupling relative to baseline, possibly reflecting transient processes related to less para-

sympathetic tone (lower coherence in the high frequency domain). Correspondingly, increases in

sAA during consolidation correlated positively with emotional performance. Such increases in sym-

pathetic tone may reflect arousal-related NE-synaptic consolidation processes (Packard et al.,

1994).

While systems consolidation requires years, synaptic consolidation represents the initial phase

after learning where mnemonic representations change and new memory tracers are formed. Previ-

ous reports demonstrated that synaptic consolidation may be captured by the resting-state signal

after learning a task (Vilberg and Davachi, 2013; Tambini et al., 2010; Jacobs et al., 2014). This

consolidation phase may be a transitional stage, where the role of the LC slowly alters from an

arousal-based learning experience to maintenance of memories via long-term potentiation (LTP).

LTP depends on the activation of the BLA, highlighting the critical role of the amygdala (Frey et al.,

2001). A myriad of animal studies have demonstrated that elevated NE in the amygdala affects

memory consolidation for stress-induced events and can facilitate hippocampal synaptic

plasticity (Hermans et al., 2014; McIntyre et al., 2003).

In support of this premise, we observed mainly arousal-related LC activity during encoding. Dur-

ing encoding, the LC was activated during (successful) acquisition of information that was associated

with elevated arousal. However, amygdala and hippocampal activation was only detected for suc-

cessful learning, independent of valence of arousal. Arousal-related amygdala activation may have

been attenuated by the cognitive task during encoding (Lange et al., 2003). Nonetheless, arousal-

related LC-activation with neural input from amygdala-entorhinal co-activation was associated with

memory enhancement. This is largely consistent with work reporting that sympathetic arousal can

predict memory performance for high-arousing stimuli when this coincides with amygdala

activation (de Voogd et al., 2016). During recollection, we observed no arousal-related activity, but

successful recollection was associated with CA1 activity. Activation of b-adrenoreceptors in the CA1

during consolidation is required for later retention of the memory task, but not for the aversive com-

ponent of the task (Mello-Carpes and Izquierdo, 2013; Chen et al., 1992). The markedly higher fre-

quency window of the HRV-LC coherences during recollection, suggests less NE-sympathetic

Figure 7 continued

(regressing out timeseries from other regions) is visualized. The thickness of the edges indicates the strength of coherence. The absolute phase

difference between timeseries is shown in transparencies. Arrows indicate the direction of the phase lag from leading to lagging.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Coherence and phase between time series of the locus coeruleus and medial temporal lobe clusters.

Figure supplement 1. Functional connectivity from LC to MTL during consolidation compared to baseline across preprocessing steps.
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Figure 8. Structural segmentation of the LC and associations with emotional memory performance (N = 24). (A) 3D visualization of the LC placement in

the pons. (B) The LC template, coronal view (hyperintense rod-like shape). (C) Segmentation of the LC in template (green). (D) TFL mean intensity

normalized with a pontine reference region of the entire LC correlated with emotional memory recollection rate (r = 0.562; p-value=0.004) E) The LC

was divided into three equisized subsegments. (F–H) LC segments intensity correlation with emotional memory recollection rate: (F) caudal (r = 0.523;

p-value=0.034) (G) medial (r = 0.523; p-value=0.009) and (H) LC rostral (r = 0.523; p-value=0.074). Shaded regions depict the 95% confidence interval.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Structural locus coeruleus intensity and memory performance.

Figure supplement 1. Template of the locus coeruleus for structural analyses.
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responsiveness at this stage. Increases in LC-hippocampus and LC-amygdala coherence variability

during recollection are possibly related to increased parasympathetic inhibitory modulation support-

ing cognitive operations. Alternatively, it could be speculated that spill-over from NE- sympathetic

processes during consolidation drive retention processes.

In addition to different activation patterns across stages, we also observed a switch in the role of

LC’s connectivity with MTL regions. During encoding, the LC is on the receiving end, in particular

from the amygdala, whereas this changes to a leading role in recollection. This phase switch

between the LC and amygdala conforms with functional and anatomical descriptions of projections

between the LC and central amygdala or BLA. The LC receives afferents from the central amygdala

mainly at the periLC-region (Bergado et al., 2007). The central amygdala controls stress responses

and is involved in salience processing and attention processes, important for efficient

encoding (Phelps and LeDoux, 2005; Roozendaal et al., 1996). While the central amygdala has no

effect on hippocampal LTP, the BLA has memory-enhancing effects on the subiculum and CA1 via b-

adrenergic mechanisms (Phelps and LeDoux, 2005; Roozendaal et al., 1996). The NE-input to the

BLA arrives mainly from the LC (Chen and Sara, 2007). The BLA does not project directly to the LC,

but via a small direct projection to the central amygdala (Bouret et al., 2003).

Recent general theories of brain function, such as the active inference theory (Friston et al.,

2015), posit that NE responses from the LC can be considered as a prediction error during learning

originating from information from the amygdala, whereas signals from the LC to the amygdala and

cortex guide transfer of information and model updating (Sales et al., 2019). In these models, the

amygdala is critical to maintain allostasis. The central amygdala network would control the arousing

physiological responses through its descending predicting signals to the brainstem, whereas the

BLA would be part of a neutral signal uncertainty network as it receives prediction errors from the

LC. It has been suggested that NE increases accuracy of episodic memories (Barsegyan et al.,

2014). While our study was not designed to test the active inference theory, the proposed models

are consistent with our phase-differences across stages. Future in-vivo recordings, computational

and carefully designed studies are warranted to test these models in detail.

No study is without limitations. First, as our focus was on the LC and MTL, we specifically opted

to acquire fMR images with a high isotropic spatial resolution. This limited our field of view and

therefore, we did not investigate distant modulatory effects. Second, the LC is challenging to investi-

gate in humans due to limits in spatiotemporal resolution and lower signal-to-noise ratio in the brain-

stem compared to neocortical signal. We had to eschew cluster-based correction. The small in-plane

diameter of the LC means that only low-levels of smoothing can be applied, which would reduce the

signal-to-noise, and the probability of discovering a contiguous cluster in the highly-elongated axial

plane of the structure. Ultimately, this would result in an overly stringent multiple comparison adjust-

ment. Nevertheless, we are confident that our GLM findings do not represent false positives due to

their reproducibility across preprocessing pipelines, correlation to behavior and consistent anatomi-

cal co-localization with an ex-vivo validated template and anatomical atlases.

To conclude, interactions between the NE-LC, amygdala and hippocampus, drive arousal-related

memory processing, but transitions in interactions occur along the memory processing stages. Dur-

ing successful encoding, we observed high-arousal-related LC activation, possibly reflecting atten-

tional processes, in conjunction with amygdala activation. During consolidation, LC-MTL connectivity

is dynamic and associated with NE increases possibly reflecting LTP. This gradually transitions to

learning and updating internal models during recollection, which mainly involves hippocampal activ-

ity. These findings contribute to our understanding of LC activation for forming adaptive memories

of emotional experiences and can serve as a basis for understanding how LC dysregulation may

potentially disrupt this adaptive behavior.

Materials and methods

Participants
In total, 27 healthy young right-handed adults (13 female, age 20–30 years old,

mean ± SD = 22.95±1.96) were recruited via local advertisements. All participants were screened to

exclude a history of major psychiatric or neurological disorders, having a history of brain injury of

brain surgery, taking medications that may influence cognitive functioning or being not eligible for
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MRI-scanning. All participants had normal or corrected-to-normal visual acuity and reported normal

hearing abilities. Since depression has been linked to LC atrophy, all participants were screened on

the Hamilton Rating Scale for Depression (all within normal range = 0–10; mean ± SD = 3.1±3.3). All

participants also endorsed a degree of appraisal of stress-full events that was within the normative

range on the Perceived Stress Scale-10. The Perceived Stress Scale-10 is a questionnaire tapping

into global non-specific appraisal of stress that also relates to glucocorticoid levels and the number

of stressful life events. All participants received monetary compensation for their participation and

provided written informed consent. Approval of the experimental protocol was obtained from the

local ethical committee of the Faculty of Psychology and Neuroscience at Maastricht University.

Neuropsychological assessment
All participants underwent a comprehensive battery of cognitive tests covering episodic memory

(15-word learning test (WLT): learning and delayed recall), working memory (digit span forward and

backward), language (semantic and category verbal fluency), attention (concept shifting task (CST)),

information processing speed (Letter Digit Substitution Test (LDST)) and executive functions (Stroop

Color Word Task (SCWT)). All cognitive tests were presented in the same order to each participant.

Experimental paradigm
To investigate emotional memory a well-established face-name association task (Sperling et al.,

2001) was modified by including faces with negative or neutral valence.

Stimuli selection
Several databases consisting of emotional and neutral faces (Ekman, PERT96, ER40, MMI facial

expressions, Radboud faces, Utrecht ECVP) (Ekman, 1992; Gur et al., 2002; Langner et al., 2010)

were concatenated. All faces were transformed to gray-scale and resampled at the same resolution

(750 � 830 pixels2) using Matlab and were manually cropped to the same template and resolution.

Distinctive details beyond the face were darkened manually. Pictures that still contained potential

distinctive features, such as facial hair, were excluded. All images had the same mean luminance and

were presented on a black background. An independent sample of 10 individuals between 20–30

years old (five women) were shown the faces and asked to rate the emotional valence of each face

on a 5-point Likert Scale (0: completely neutral, 5: very emotional). These ratings were ranked and

135 faces were selected (68 faces (50% male) with the highest emotional rating, 68 faces (50% male)

with the lowest emotional rating (neutral)). Two Dutch native speakers (NV and HILJ) matched these

135 faces to an age-appropriate name from a list of the 400 most popular Dutch names (http://

www.behindthename.com/top/lists/netherlands/).

Task description
The face-name association task (event-related design) consisted of encoding, consolidation, recogni-

tion and recollection stages. During encoding the participants were shown 90 faces (45 emotional,

45 neutral, gender-matched across conditions) along with their name for 4 s. The participants were

asked to memorize the face-name association. To keep their attention to the task they were also

asked to make a subjective judgment as to whether the face matched the name or not. A jitter of

average length of 2 s (0.5–6 s, created with optseq [Dale, 1999]) was entered between trials, during

which a fixation cross was shown. During the consolidation phase, which lasted approximately 8 min,

the participants were asked to stare at a fixation cross. During the recollection stage, the partici-

pants were shown the 90 faces shown in encoding along with 45 new faces, matched for sex and

emotion intensity to the initial 90 ones in a random order. The participants had 3 s to decide

whether or not they had seen the face during encoding (recognition phase). If participants indicated

they had seen the face before, they subsequently were asked to choose the name that was previ-

ously associated with that face (participants received three options, recollection phase). The three

names shown were chosen randomly from the list of sex-specific names that were already shown in

encoding, to avoid easy name recognition. Recognition or familiarity represents a fast process, the

feeling that the face was seen previously without recollecting it. In contrast, recollection is a slow

process that involves the active retrieval of details of the face-name pair (Yonelinas et al., 2010).
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A jitter of average length of 1.5 s (0.5–6 s) was employed between trials, during which a fixation

cross was shown. No more than two consecutive faces of emotional valence were shown during any

of the task stages. Stimuli were viewed on a back-projection display via a mirror mounted onto the

head coil. Behavioral responses were collected through a MR-compatible button box (Current

Designs, eight-button response device, HHSC-2 � 4 C). All stimuli, event identities and timings were

presented and logged using E-Prime 2.0 (Psychology Software Tools).

We calculated hits and false alarms for both the emotional and neutral condition during encoding.

For the recollection (identification of the name), we calculated hits and false alarms for both the neu-

tral and emotional condition. Reaction times were also analyzed. Performance in the recollection

condition may be affected by the response bias in the recognition phase between emotional and

neutral stimuli. Therefore, we calculated the likelihood ratio beta, as a measure of the response bias

(beta = exp (d’ x c)) (d’ index calculated as by Stanislaw and Todorov, but corrected for ceiling

effects [Jacobs et al., 2015]). This response bias was derived from the signal detection theory, a

method that allows us to differentiate the signal from the noise (Stanislaw and Todorov, 1999). The

bias measure indicates the extent to which a certain type of response is more probable than another,

such as for example responding in a more conservative manner. We performed a paired t-test to

compare the bias between emotional and neutral during the recognition phase. This bias was then

regressed our from the emotional and neutral recollected hits in two separate regressions (Figure 2).

The residuals of each regression represented the bias-corrected emotional and neutral recollection

rate. Finally, to obtain an individual emotional recollection rate, we calculated an adjusted emotional

memory performance score ¼ Emotional retrieval rate
Emotional retrieval rateþNeutral retrieval rate

(Figure 2—figure supplement 1). This

measure was used throughout the manuscript.

Imaging parameters
MR scans were performed in a 7T Magnetom Siemens (Siemens Healthineers, Erlangen, Germany)

with a 32-channel head coil (Nova Medical, Wilmington, MA, USA). First, we acquired a Magnetiza-

tion Prepared 2 Rapid Acquisition Gradient Echoes (MP2RAGE) sequence (Marques et al., 2010) for

whole brain imaging (TR = 5000 s, TE = 2.47 ms, flip angle = 5o/3o, voxel size = 0.7�0.7 � 0.7 mm3,

number of slices = 240). An in-house developed magnetization transfer-weighted turbo flash (MT-

TFL) sequence sensitive to LC contrast (Priovoulos et al., 2018) was performed to image the LC at

high resolution. The sequence consisted of a multi-shot 3D readout (TR = 538 ms, TE = 4.08, flip

angle = 8o, voxel size = 0.4�0.4 � 0.5 mm3, number of slices = 60) with center-out k-space sam-

pling, preceded by 20 long off-resonant Gaussian sinc pulses (pulse length = 5.12 ms, band-

width = 250 Hz, B1 = 0.25mT). For the MT-TFL sequence, the field-of-view (FOV) was placed

approximately perpendicular to the pons and covered the area between the inferior colliculus and

the inferior border of the pons. A matched TFL sequence but with the MT pulses turned off was sim-

ilarly acquired. For high resolution BOLD fMRI imaging we acquired multiband EPI

sequences (Moeller et al., 2010; Setsompop et al., 2012) (TR = 2000 ms, TE = 19 ms, isotropic

voxel size = 1.25�1.25 x.125 mm3, number of slices = 50, M-factor = 2, GRAPPA R = 3). The field of

view was placed at an angle of 45o to the brainstem, to reduce the effect of physiological movement

at the pons level and to be approximately perpendicular to the hippocampus to optimize subfield

differentiation. After each BOLD fMRI acquisition, five more volumes were acquired with reversed

phase encoding direction to facilitate distortion correction. Four functional runs were collected: ini-

tial resting-state, an encoding phase, second resting-state and a recognition phase.

Saliva samples collection
Salivary alpha-amylase (sAA) is a sensitive marker for sympathetic nervous system reactivity that cor-

relates with plasma norepinephrine and shows similar dynamics (Rohleder and Nater, 2009). Sam-

ples of sAA were collected at various time points throughout the scan session: before entering the

bore, before the first resting-state scan, before encoding, after encoding, before recollection, after

recollection and 30 min after the scan session. This sampling scheme allows us to measure acute

responses. Saliva samples were obtained with cotton swabs (Sarstedt, Nümbrecht, Germany) that

were exchanged with the participants via a MRI-compatible arm extension. Each test session was

scheduled at the same part of the day. Participants were instructed to refrain from food consump-

tion or brushing their teeth one hour before scanning and to abstain from caffeinated drinks for four
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hours prior to the scanning. Compliance was checked with a questionnaire and all participants fol-

lowed the instructions. Before the first saliva sample the participants were asked to rinse their mouth

with water. The participants were instructed to place the cotton roll between their cheek and their

teeth or beneath their tongue and to not chew on it; after one minute the cotton rolls were

retrieved. The saliva samples were stored at �20˚C until their processing at the Dresden University

of Technology. After thawing, saliva samples were centrifuged at 3000 rpm for 5 min. Alpha-amylase

was measured by a quantitative enzyme kinetic method Nater and Rohleder, 2009). When inade-

quate amount of saliva was collected at specific time points, these time points were excluded from

the saliva analysis. Missing data for the sAA time point are provided in Supplementary file 2.

Pulse rate preprocessing
Heart rate and chest movements were measured concurrently during the fMRI acquisitions with a

pulse oximeter and respiratory bellows respectively. The pulse rate signal was preprocessed in R

with the package RHRV. Automatic removal of outliers was performed by adaptive thresholding

(beats whose value exceeded the cumulative mean threshold were rejected) and by rejecting beats

with physiologically improbable values (less than 25 and more than 200 beats-per-

minute) (Vila et al., 1997). To allow power spectral analysis, we interpolated to an evenly spaced

pulse rate series with a cubic space interpolation and pulse (heart) rate variability (HRV)

timeseries (Hill and Siebenbrock, 2009; Pinheiro et al., 2016) (differences of successive R-R inter-

vals, sampled equidistantly at the TR) were extracted. Root-mean square differences of successive

R-R intervals (rMSSD) were calculated as a measure of high-frequency (0.15–0.40 Hz) arousal over

each time period. rMSSD has been shown to tightly correlate with parasympathetic activity and be

relatively free of respiratory influences (Hill and Siebenbrock, 2009). Lower rMMSD is associated

with poor vagus-mediated HRV and indicative of higher stress of arousal. For the analyses focused

on the time-domain, we used the rMSSD metric and for the frequency domain, we used the HRV ter-

minology. Datasets with missing cardiac physiological signal for more than 10% of the time points

were excluded (Supplementary file 2).

Preprocessing of MRI data
Preprocessing of structural data
The T1-weighted MP2RAGE images were processed using FreeSurfer (FS) version 6.0.0 (https://

surfer.nmr.mgh.harvard.edu/) using the software package’s default, automated reconstruction proto-

col as described previously (Fischl et al., 1999). Briefly, each T1-weighted image was subjected to

an automated segmentation process involving intensity normalization, skull stripping, segregating

left and right hemispheres, removing brainstem and cerebellum, correcting topology defects, defin-

ing the borders between grey/white matter and grey/cerebrospinal fluid and parcellating cortical

and subcortical areas. The hippocampal-amygdala segmentation algorithm in FS 6.0 predicts the

location of subregions by using a probabilistic atlas built from a combination of manual delineations

of the hippocampal formation from ultra-high resolution ex-vivo MRI scans showing definitive bor-

ders and manual annotations of the surrounding subcortical structures (e.g. amygdala, cortex) from

an independent dataset (Iglesias et al., 2015a). Using FS’s visualization toolbox, freeview, we visu-

ally inspected and, if necessary, edited each image for over- or under-estimation of the gray/white

matter boundaries and to identify brain areas erroneously excluded during skull stripping. In addi-

tion, we checked that the hippocampal/amygdala subregion mask was well positioned and that the

ranking of subfield-specific volumes was consistent with the literature. An automated segmentation

of the pons of the brainstem with Bayesian inference was applied (Iglesias et al., 2015b). The T1 to

MNI template registrations were calculated using a diffeomorphic transform with the antsRegistra-

tionSyN.sh function (ANTS 2.1 (http://stnava.github.io/ANTs/) [Avants et al., 2011]). This algorithm

has been shown to provide superior performance compared to most other registration algorithms

used in neuroimaging (Avants et al., 2011; Klein et al., 2009).

The partial field-of-view high resolution MT-TFL scans were registered to the T1 data using the

boundary-based registration. A study-specific template of the LC scans was created with an iterative

diffeomorphic warp estimate using the buildtemplateparallel.sh script of the ANTS package. The LC

was segmented on the template (by NP). This segmentation was repeated 4 weeks later and only

voxels that were identified during both sessions were used in the final segmentation. The left LC was
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12 mm in length (108 voxels, 9.918 mm3) while the right LC measured 10 mm in length (103 voxels,

9.459 mm3). The LC was divided in three equisized segments (rostral, medial and caudal) for further

analyses. The segmented LC was projected to the high-resolution LC specific sequences, including

MTR, MT-TFL and TFL to extract the mean intensity. MTR was calculated as

MTR¼
MTweighted�TFL

TFL

The reference region for normalization was defined as a 10 � 10 voxels ROI in the pontine teg-

mentum at the same level as the LC). Normalization was done by dividing the LC intensity values

with the reference region intensity. Given that motion affects MR images, a retrospective motion

metric (AES) was also calculated with the homonymous Matlab toolbox.

Preprocessing of BOLD fMRI data
Image preprocessing of the fMRI data was performed with FSL 5.0.9 (https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/). The first five volumes were removed to ensure that data within steady-state were examined.

The functional images were motion-corrected to the last image with a 6-dof transform using

MCFLIRT (Jenkinson et al., 2002). To reduce EPI-distortions a displacement field was calculated

and applied with FSL-TOPUP by using the last 5 frames of each fMRI scan and the following reversed

phase encoding direction scans. As the brainstem is known to be sensitive to physiological artefacts,

we prepared four separate denoising pipelines, to allow us to check the reproducibility of our find-

ings (Figure 1—figure supplement 2). The pipelines consisted of 1) minimally processed data (dis-

tortion-, motion- and slice-timing corrected; denoted as ‘Spatially normalized’ data), 2) spatio-

temporally denoised data (distortion-, motion-, slice-timing corrected and with the ICA-FIX algorithm

applied (Griffanti et al., 2014) and smoothed; denoted as ‘FIXed’ data), 3) spatio-temporally

denoised data along with respiration temporal regressors (distortion-, motion-, slice-timing, FIXed

corrected and with respiration regressors regressed out with PNM and smoothed; denoted as ‘FIXed

+ explicit Resp’ data) 4) spatio-temporally denoised data along with respiration and pulse temporal

regressors (distortion-, motion-, slice-timing, FIXed corrected and with both respiration and pulse

regressors regressed out and smoothed; denoted as ‘FIXed + explicit Phys’ data). To apply the FIX

algorithm, the already available CMRR-based 7 T HCP dataset with a similar multiband factor and

resolution was used as a trained-weight file; the noise component classification was checked against

manual classification performed by NP and LP. The interrater difference between FIX and the manual

classification was smaller compared to the interrater difference between the two manual raters and

therefore, FIX was preferred. FIX removed a similar percentage of noise components across the task

stages (median baseline: 48.52% [IQR = 41.76–52.45%]; median encoding: 54.47% [IQR = 35.42–

64.04%]; median consolidation: 48.93% [IQR = 33.99–59.68%]; median recollection: 49.67%

[IQR = 43.74–64.3%]).

The cardiac and respiratory waveforms recorded during the scan session were entered as slice-

specific regressors; three orders of cardiac, fours orders of respiratory and a single set of interaction

terms were used as suggested by Harvey and colleagues (Harvey et al., 2008). Because HRV is

known to vary depending on the respiration phase (respiratory sinus arrhythmia) (Yasuma and Hay-

ano, 2004), an additional binary slice-specific regressor was added that represented inhalation and

exhalation to model BOLD variance related to one of the two phases. The regressors were then

used to model the physiological noise in the fMRI signal; the noise signal was adjusted for interac-

tions with the ICA-FIX denoising regressors, so that artefacts were not re-introduced due to the suc-

cessive regressions. Finally, slice-timing correction was performed based on the multiband

acquisition matrix and a 3D spatial smoothing kernel of 1.5 mm FWHM was applied (size of the ker-

nel estimated in accordance with the minimum LC width). Throughout the main manuscript, the

FIXed data were employed (since this ensured the maximum possible sample size, due to no missing

pulse and respiration data). Results of the sensitivity analyses (reproducibility) by running the other

pipelines are indicated were applicable. A boundary-based registration was calculated for the linear

registration between the fMRI and T1data using FSL’s epi_reg based on the FreeSurfer segmenta-

tions. The T1 to MNI template registrations were done using ANTS as described in the preprocess-

ing of the structural data. The linear transformations were transformed to the ITK-SNAP reference

using c3d tools and combined with the warps, so that when transforming the data from native fMRI
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to MNI there was a single interpolation. The accuracy of the transforms was individually checked by

NP (Figure 1—figure supplement 1).

Initial resting-state (‘baseline’)
To robustly estimate the LC signal, we performed group-level ICA in the baseline resting-state data,

which included projection of the fMRI data to the MNI 1 mm template, masking for the brainstem

and temporal concatenation, followed by spatial ICA by maximizing non-Gaussian sources. The out-

put group-level component map was thresholded at p<0.01 FWE-corrected and binarized. One

component showed strong spatial correlation with our LC atlas (2.47% explained variance). We then

applied dual regression to estimate the individual LC timelines; statistical significance was set at

p<0.05 family wise error (FWE)-corrected for multiple comparisons with TFCE (Threshold-Free Clus-

ter Enhancement). A component that explained a similar amount of signal variance and was at a sim-

ilar location yet spatially unrelated to the LC was picked as an additional control component and the

individual timelines were also extracted. Finally, the dual regression (and the extraction of timelines)

was repeated with the same component map for all preprocessing stages (spatially normalized (after

motion, distortion and slice-timing correction), with FIX applied, with FIXed + explicit Resp applied

and with FIXed + explicit Phys) to ensure that the LC response was consistent across different steps

of denoising and therefore not the result of physiological noise or the steps taken to remove it.

Task-related fMRI analyses
At individual level, a small-volume corrected general linear model was fit at each voxel with FMRI

Expert Analysis Tool (FEAT), using generalized least squares with a voxel-wise, temporally and spa-

tially regularized autocorrelation model. A high-pass filter (cutoff at 100 s) and minimal spatial

smoothing (kernel = 1.5 mm) were applied before the fit. The area of interest (ROI) was defined in

advance and consisted of the LC and surrounding region projected to the native fMRI space (LC,

HIPP, AMY and EC being our a-priori ROIs; the 4th ventricle and pons were also included to ensure

the spatial specificity of the effect and that it was not due to uncorrected motion due to proximity to

a CSF space (total mask size in native space approximately = 18000 voxels). The regressors consisted

of the emotional trials that were later successfully recollected, the neutral trials that were later suc-

cessfully recollected, the emotional trials that were not recollected, the neutral trials that were not

recollected and their respective convolutions with the HF-HRV local minima. Contrasts of interests

were emotional trials vs neutral trials (Emotional >Neutral), successfully recollected trials vs. not suc-

cessfully recollected (Successful encoding >Not successful encoding) and the interaction (Emotional

successful encoding >neutral successful encoding).

The HRV local minima calculated over a rolling window of 15 s was also added as a regressor to

account for the main effect of arousal on LC. Additionally, we examined (emotional) encoding during

the local HRV over a sliding window of 15 s (high arousal). These regressors were convolved with the

high arousal regressor and we contrasted high arousal events with the rest of the timeline (High

Arousal vs. Low Arousal), as well their interactions with encoding (High Arousal Successful

encoding >Low Arousal Successful Encoding, High Arousal Successful Encoding >High Arousal Not

Successful Encoding). To examine the effect of emotional valence on encoding events under high

arousal we calculated (High Arousal Emotional Encoding vs. High Arousal Neutral Encoding). These

contrasts were examined both in the encoding and recollection task stages.

Contrasts related to recognition were not our primary interest, however, we fit encoding regres-

sors for emotional trials that were later successfully recognized, the neutral trials that were later suc-

cessfully recognized, the emotional trials that were not recognized and the neutral trials that were

not recognized. Contrasts of interests were emotional trials vs. neutral trials (Emotional >Neutral),

successfully recognized trials vs. not successfully recognized (Successful recognition >Not successful

recognition) and the interaction (Emotional successful recognition >neutral successful recognition).

Results are presented in Figure 6—figure supplement 3.

All regressors were convolved with a double gamma haemodynamic response function before

entered in the model. The contrasts of the coefficients and their variance estimates were subse-

quently warped to the MNI 1 mm space and a group-level linear mixed effects regression was fit at

each voxel, using generalized least squares with a local estimate of random effects variance and out-

lier de-weighting. The Z-maps were cluster-wise corrected with a cluster significance threshold of

Jacobs et al. eLife 2020;9:e52059. DOI: https://doi.org/10.7554/eLife.52059 22 of 30

Research article Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.52059


p<0.05 after being thresholded at Z > 2.3. Cluster peaks are reported with respect to the Freesurfer

atlas.

To extract beta estimates from the LC, we first dilated the LC-segmentation by 2.3 mm and

excluding voxels that overlapped with the 4th ventricle mask. The dilation was performed to match

the physiological point spread function (FWHM) of the BOLD effect at 7T for gradient-echo

acquisitions (Shmuel et al., 2007). Then, the z-map was thresholded at p<0.05 and extracted the

mean subject-specific beta values using the dilated LC mask.

LC Functional connectivity across all memory stages
Seed-to-voxel functional connectivity analyses were performed between the LC and regions of inter-

est in the MTL (hippocamus, amygdala and entorhinal cortices) across all task stages. The LC ROI

was defined based on ICA component in the baseline resting-state scan (see ‘initial resting-state’).

Correlation maps were generated by correlating the average BOLD time course from the LC-seed

with the BOLD timeseries of each voxel within our a-priori defined ROIs (hippocampus (HIPP), amyg-

dala (AMY) and entorhinal cortices (EC)). These ROIs were dilated by 2 mm to include surrounding

voxels in the ventricles to scrutinize for possible partial-volume or motion-related false-positives in

the CSF. The correlation coefficients were converted to normally distributed scores using Fisher’s

r-to-z transformation. Individual maps were warped to the 1 mm MNI template and fed into the sec-

ond-level analyses with a voxelwise t-test to compare functional connectivity between the LC and

the ROI’s comparing encoding, consolidation, recollection with baseline. The second-level statistical

analysis consisted of a non-parametric, permutation test with threshold free cluster enhancement;

results were family-wise error corrected (p-value<0.05).

Coherence analysis
Given that autonomic influences in the HRV are known to be most prominent in specific frequency

bands (Shaffer and Ginsberg, 2017), it is of interest to examine the correlation between fMRI and

HRV measures per frequency. The magnitude squared coherence between timeseries can then be

expressed as:

CA;B fð Þ ¼
jPA;B fð Þj2

PA;A fð Þ2�PB;B fð Þ2
;

with PA;B fð Þj2 being the cross power spectral density and Px;x fð Þ2 being the power spectral density

for timeseries A and B. We estimated the coherence magnitude squared over 90 frequency bins with

Hamming windows (20 % overlap) within the 0 - 0.5 Hz range for the LC and HRV, as well as LC and

FC clusters. Similarly, the phase lag between the timeseries per frequency bin was estimated as:

�fMRI;HRV ¼ tan�1
Re PfMRI;HRV fð Þ
� �

Im PfMRI;HRV fð Þ
� �

 !

:

To obtain a robust single-point coherence metric, we estimated the median across the frequency

band of maximum coherence. This was defined as the confidence interval (CI) around the median of

the distribution of individual maximum-coherence frequencies between LC (or reference) and HRV at

baseline (given that the frequency of maximum coherence between LC and HRV varies between indi-

viduals). These CIs were obtained for all timeseries and we extracted the median coherence and

phase lags within the CIs. A coherence-magnitude null distribution was created by fitting an AR1

model for each timeseries, creating a randomized timeseries with a matched AR coefficient and cal-

culating the respective coherences. These null-distributions are similar to the bootstrap and hence,

the resampled timeseries have similar properties as the original data (distribution, autocorrelation)

and have less bias in the rejection rates of the null-hypotheses.

Statistical analyses
Statistical analyses were performed using statistical software (R version 3.4.2). Group characteristics

are presented in median and interquartile range. Differences between emotional and neutral trials in

the behavioral data were tested with Wilcox signed-rank test or robust linear regression using the

Huber-M estimator. Robust regression is a more conservative test compared to linear least-square
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regression methods, as the resulting models are stout against outliers. Changes in the autonomic

measures (sAA and HRV) across the task stages (baseline, encoding, consolidation, recollection)

were assessed with mixed effects linear regression using the maximum likelihood estimation with the

autonomic measure as outcome measure, stage as predictor and a random intercept for each sub-

ject. The linear mixed effects model can account for missing data in longitudinal datasets. The most

complex linear mixed effects models in this manuscript follows this formula:

Outcomeij ¼ b1 þb2PredictorAiþb3 Task stageijþ ½b4 predictorAi�Task stageij�
þb1iþ �i;

Outcome = outcome variable measured over time
Predictor A: variable of interest depending on the investigated model
Task stageij = Task stage (time)
b1i=random intercept for each subject

To obtain sAA measures over the same time frame as the HRV (rMSSD) measure, we calculated

DsAA as: sAA end - sAA beginning for each task stage. To understand relationships between DsAA,

HRV and LC activity across the task stages, we performed bootstrapped (n = 5000) repeated meas-

ures correlation.

For the frequency-specific effects of task stage on LC-HRV coherence, we entered the coherence

magnitude squared into a linear mixed effects models with task stage, frequency and the interaction

between task stage and frequency as fixed factors and participants as random intercept effect, using

the maximum likelihood estimation. We performed simple slopes analyses to determine the region

of significance of frequency for the fitted relationship between coherence and the task stages (where

the 95% confidence interval did not include zero). The extracted point of maximum coherence

(based on the defined confidence intervals) across task stages was correlated with DsAA using boot-

strapped (n = 5000) repeated measures correlation.

For the fMRI analyses, we additionally correlated the extracted subject-specific mean LC-related

beta-coefficients with emotional memory performance.

To determine which areas were lagging or leading in the spectral coherence analyses, we used

the point of maximum coherence and extracted within the CIs the median coherence and phase lag

per person. Two linear mixed models were fitted with median coherence or phase at maximum

coherence as dependent variables and task stage, timeseries combination (LC, AMY, HIPP or EC)

and the task stage by timeseries interaction as fixed effects and participants as random intercept fac-

tor. To examine that significant coherence between timeseries were independent of other timeseries

of the network, partial coherences were calculated. For example, for three coherences between

timeseries, we calculated the partial coherence in cases where significant coherence magnitude

existed between region A – region B, region B and region C, and region A and region C and where

the coherence phase of A < phase of B < phase of C. The spectral matrix between these timeseries

was calculated and partial coherences within the CIs of median maximum coherence were extracted.

The results were compared with Wilcoxon tests against a null distribution determined from the par-

tial coherences of the matched-AR randomized timeseries. In addition, linear regressions were used

to test associations between emotional memory performance and coherence at specific task stages

per ROI pair. Coherence at baseline was entered as covariate.

Finally, within the structural LC analyses, we correlated the mean intensity of the LC from the

MTR, MT-TFL, TFL and normalized TFL images to emotional memory performance. Similarly, Pearson

correlations were also used to assess the relationship between the AES motion metric, normalized

TFL mean intensity and emotional memory performance; and between LC intensity, DsAA, rMSSD

and LC variance for each task stage.

All p-values were two-sided. Contrasts for interactions within the linear mixed effects models

were computed using estimated marginal mean trends with reference grids and smooth functions

and these results were corrected with the Tukey’s test. Separate models, including correlations and

regressions, were corrected for multiple comparisons using the False Discovery rate (FDR)-approach.
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