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With as many as 300,000 United States troops in Iraq and Afghanistan having suffered
head injuries (Miller, 2012), traumatic brain injury (TBI) has garnered much recent attention.
While the cause and severity of these injuries is variable, severe cases can lead to lifelong
disability or even death. While aging is the greatest risk factor for Alzheimer’s disease
(AD), it is now becoming clear that a history of TBI predisposes the individual to AD
later in life (Sivanandam and Thakur, 2012). In this review article, we begin by defining
hallmark pathological features of AD and the various forms of TBI. Putative mechanisms
underlying the risk relationship between these two neurological disorders are then
critically considered. Such mechanisms include precipitation and ‘spreading’ of cerebral
amyloid pathology and the role of neuroinflammation. The combined problems of TBI and
AD represent significant burdens to public health. A thorough, mechanistic understanding
of the precise relationship between TBI and AD is of utmost importance in order to
illuminate new therapeutic targets. Mechanistic investigations and the development of
preclinical therapeutics are reliant upon a clearer understanding of these human diseases
and accurate modeling of pathological hallmarks in animal systems.
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INTRODUCTION TO TRAUMATIC BRAIN INJURY
It is estimated that as many as 300,000 U.S. troops in Iraq and
Afghanistan have suffered head injuries (Miller, 2012). In the gen-
eral population, roughly 1.7 million brain injuries are reported,
leading to more than 52,000 deaths (Faul et al., 2010). The cause
and severity of these injuries is variable, but severe cases can lead
to lifelong disability or even death. It is estimated that as many as
5.3 million people have traumatic brain injury (TBI)-associated
disabilities. Moreover, TBI-associated direct and indirect costs are
approximated to be more than 75 billion dollars a year (Coronado
et al., 2012). Beyond the effects of acute injury, troubling new
findings indicate that even minor brain injury can predispose to
neurodegeneration and dementia in later life. While aging is gen-
erally accepted to be the greatest risk factor for Alzheimer’s disease
(AD), it is now widely recognized that a history of TBI is a key
risk factor for the disease (Sivanandam and Thakur, 2012). For
example, incidence of AD is significantly increased in individuals
who have a documented history of TBI (Sivanandam and Thakur,
2012).

ALZHEIMER’S DISEASE: SEVERITY OF THE PROBLEM
Largely due to population-wide increases in life-span, AD is
rapidly becoming the public health crisis of our time. There
are currently over three million Americans afflicted with the

disease, a figure that is projected to increase to nearly nine
million Americans and over 100 million world-wide by 2050
(Brookmeyer et al., 2007). Unfortunately, AD prevalence will con-
tinue to rise in parallel with the aging of the world’s populations
unless something is done (Brookmeyer et al., 2007). Because of
the long prodromal phase leading to clinical manifestation of AD,
TBI early in life would not impact AD diagnosis until decades
later. At that point, the full impact of TBI-induced AD on soldiers
and their families would place an unprecedented burden on the
United States public health system.

AD is a devastating, mind-robbing neurodegenerative disease
that is defined at autopsy by β-amyloid plaques [chiefly comprised
of amyloid-β (Aβ) peptides], neurofibrillary tangles (NFTs), and
widespread loss of cortical neurons (Selkoe, 2001). Although
these features are pathognomonic of AD, Alois Alzheimer him-
self originally identified a third pathology—inflammation of the
brain’s glial supporting cells (Alzheimer et al., 1995). While one
interpretation is that all forms of neuroinflammation are delete-
rious for the aging brain, we have hypothesized that re-balancing
inflammatory signals as opposed to shutting them off com-
pletely might limit AD progression (Town et al., 2005; Weitz
and Town, 2012). In that vein, it has been shown that genetic
or pharmacologic blockade of a key pathway responsible for
suppressing inflammation, the transforming growth factor-beta
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(TGF-β)-Smad 2/3 signaling cascade, reduces AD-like pathology.
Specifically, peripheral blockade of the TGF-β-Smad 2/3 signal-
ing pathway leads to brain penetration of peripheral macrophages
and amelioration of the defining pathology of AD—β-amyloid
plaques—in the Tg2576 transgenic mouse model of cerebral amy-
loidosis (Town et al., 2008; Rezai-Zadeh et al., 2009; Town, 2009;
Gate et al., 2010). These results have importance, because there is
currently no treatment or cure available for AD.

TRAUMATIC BRAIN INJURY AND ALZHEIMER’S
DISEASE RISK
The term “TBI” encompasses a wide variety of traumas. In
fact, any form of brain injury is broadly classified as a TBI.
Nevertheless, brain traumas can grossly be divided into two cat-
egories: (1) closed head injuries (where a rapid deceleration or
blow to the head causes brain damage) or (2) penetrating head
injuries (caused by a foreign object piercing the skull). Closed
head injuries can come in the form of skull fractures, brain con-
tusions caused by brain-skull impact, hematomas, and diffuse
axonal injuries brought on by shearing forces. Notably, closed
head injuries associated with concussions from contact sports
and shockwave blasts from improvised explosive devices have gar-
nered much recent attention. TBIs may range from mild to severe,
with about 75% of injuries coming in the form of concussions or
other mild TBIs (Hyder et al., 2007).

Pathological analyses of human TBI tissue have led to vari-
able conclusions as compared with animal model studies. This
is likely attributable to both the heterogeneity of the injury itself
and methods of tissue collection. Nonetheless, several broad
patterns of results have emerged. One of the most notable
findings concerns the association between AD pathological fea-
tures and TBI. For example, by examining cortical regions from
TBI patients with survival times ranging from 4 h to several
years, increased expression of the amyloid precursor protein
(APP; which gives rise to the Aβ peptides that comprise senile
plaques) has been demonstrated in the acute response to brain
injury (Roberts et al., 1994; Graham et al., 1996). Another study
reported that APP could be used as a general marker for axonal
injury in human post-mortem material (Gentleman et al., 1993).
More recently, Aβ deposits have been observed in roughly a third
of TBI patients and as early as 2 h after injury (Ikonomovic
et al., 2004). Overall, the conclusions were that Aβ plaques devel-
oped rapidly after injury, while NFTs formed during the chronic
phase of disease (Ikonomovic et al., 2004). Follow-up stud-
ies have documented that severe TBI can induce Aβ42 (widely
regarded as the more pathogenic species of the peptide), poten-
tially leading to increased risk of AD later in life (DeKosky et al.,
2007).

A very recent study examined survivors of a single TBI 1–47
years after the trauma, and reported that NFTs and Aβ pathology
were present in approximately one-third of these patients. Such
findings demonstrate the long-term consequences of a single TBI
event (Johnson et al., 2012). On the other hand, more chronic,
mild TBIs are associated with a distinct pathology, termed chronic
traumatic encephalopathy (CTE) (McKee et al., 2010). Notably
in CTE, NFTs are typically found with gliosis, but β-amyloid
deposits are less obvious as compared with AD (Costanza et al.,
2011). Unfortunately, CTE has become increasingly recognized in

war veterans, boxers, and athletes in other impact sports (McKee
et al., 2010; Costanza et al., 2011; Gavett et al., 2011; Stern et al.,
2011; Goldstein et al., 2012; Miller, 2012; Shively et al., 2012;
McKee et al., 2013). These troubling findings are no doubt cause
for concern.

MECHANISMS TO ACCOUNT FOR THE RISK RELATIONSHIP
BETWEEN TRAUMATIC BRAIN INJURY AND ALZHEIMER’S
DISEASE
As mentioned above, TBI is a strong epigenetic risk factor for
development of AD later in life. Strikingly, several defining AD
pathological hallmarks have been observed following TBI in
patient brains and in numerous TBI animal models. In addition
to neuronal and synaptic loss (Kotapka et al., 1992; Smith et al.,
1997; Maxwell et al., 2010), AD-characteristic lesions include
accumulation of Aβ peptides, hyper-phosphorylated tau protein
(the principle component of NFTs), and persistent microgliosis.
A key question that arises from these observations is: what are
the mechanism(s) responsible for development of AD in patients
with a clinical history of TBI?

Aβ PATHOLOGY AND SPREADING
Aβ deposits and widespread axonal Aβ accumulation have been
found in patients’ brains shortly after TBI (Roberts et al., 1991,
1994; Graham et al., 1995; Smith et al., 2003a; Ikonomovic et al.,
2004; Uryu et al., 2007) and are still present many years after a
single severe head trauma or repetitive mild TBIs (Tokuda et al.,
1991; Johnson et al., 2012). Remarkably, following TBI, the major
type of soluble and deposited Aβ peptide found in patients’ brains
is Aβ42, well-known for its neurotoxicity and high propensity to
aggregate (Gentleman et al., 1997; DeKosky et al., 2007). Several
studies have described dramatic APP accumulation in swollen
axons after TBI, which would provide an abundant source of sub-
strate for Aβ production (Gentleman et al., 1993; Sherriff et al.,
1994; Gorrie et al., 2002). Axonal swelling observed after TBI
has been ascribed to cytoskeletal alteration and interruption of
protein transport (Maxwell et al., 2003).

In an attempt to clarify mechanisms of plaque appearance after
brain trauma, several non-transgenic rodent and rabbit mod-
els have been utilized. While these animal models have proved
useful to characterize axonal Aβ accumulation after TBI, wild-
type rodents and rabbits did not manifest cerebral β-amyloid
plaques. This is likely owed to the fact that these TBI ani-
mal models have relatively low abundance of brain endogenous
Aβ species that do not reach a critical threshold for aggrega-
tion (Lewen et al., 1995; Pierce et al., 1996; Bramlett et al.,
1997; Hoshino et al., 1998; Iwata et al., 2002; Stone et al.,
2002; Hamberger et al., 2003; Abrahamson et al., 2006). Another
strategy has been to rely on transgenic mice that develop age-
dependent Aβ plaque deposition. Unlike their wild-type counter-
parts, these animal models have contributed to our understanding
of mechanisms of Aβ deposition after TBI. Like their non-
transgenic counterparts, these transgenic mice manifest axonal
Aβ post-TBI. However, and unlike wild-type animals, these trans-
genics demonstrate enhanced accumulation of β-amyloid plaques
after TBI (Smith et al., 1998, 1999; Hartman et al., 2002; Uryu
et al., 2002; Abrahamson et al., 2009). Moreover, studies in var-
ious animal models indicate that expression of amyloidogenic
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β- and γ-secretases and their substrate—APP—is increased after
TBI, suggesting that Aβ peptides are generated de novo follow-
ing brain trauma (Cribbs et al., 1996; Blasko et al., 2004; Chen
et al., 2004; Nadler et al., 2008; Loane et al., 2009; Tran et al.,
2011a; Yu et al., 2012). Thus, long-lasting elevation of Aβ follow-
ing TBI is likely to result in Aβ pathology, up to and including
senile plaque formation.

An important related concept is the idea of Aβ pathology
“spreading.” Interestingly, studies from Mathias Jücker’s labora-
tory and others have shown that intracerebral infusion of brain
extracts containing aggregated Aβ can initiate Aβ deposition
in brains of APP transgenic mice (Kane et al., 2000; Walker
et al., 2002; Meyer-Luehmann et al., 2006; Eisele et al., 2009).
Furthermore, it has been shown that Aβ seeds can migrate
between axonally interconnected areas, suggesting that Aβ pep-
tides can spread from the site of injection to other brain regions
(Walker et al., 2002; Eisele et al., 2009). These results provide a
potential mechanism for TBI-induced amyloid pathology spread-
ing from the site of the TBI to other brain areas classically
associated with AD-type pathological lesions but not directly
subjected to the TBI.

TBI has also been shown to induce tauopathy. In that regard,
it is important to note that a similar process has been described
for spreading of NFTs by axonal transport after injection of
abnormally folded tau filaments into a mouse model of cerebral
amyloidosis (Clavaguera et al., 2009). Such findings suggest the
possibility of abnormal tau protein seeds that spread following
TBI. These results are summarized in Table 1.

NEUROINFLAMMATION
In patients’ brains as well as in experimental animal models,
TBI has been associated with microglial activation (Carbonell
and Grady, 1999; Koshinaga et al., 2000; Davalos et al., 2005;
Morganti-Kossmann et al., 2007; Ojo et al., 2013). The early
phase of microglial activation in response to brain injury is
accompanied by increased levels of interleukin-10 and TGF-β,
which are generally regarded as anti-inflammatory cytokines that
are capable of mediating neural protection and regeneration
(Knoblach and Faden, 1998; Csuka et al., 1999; Tyor et al., 2002).
Anti-inflammatory microglia with phagocytic properties have the
potential to clear Aβ species and β-amyloid plaques; remarkably,
Aβ-containing microglia have been found in association with
plaques after TBI (Chen et al., 2009). Such findings suggest that
microglia play a principle role in remodeling cerebral amyloid
following brain injury (Giunta et al., 2008).

Depending on their activation state, microglia can be delete-
rious or beneficial in the context of cerebral amyloid deposition
(Town et al., 2005; Weitz and Town, 2012). However, in rodents,
primates and humans, microglial activation persists for months
or even years after TBI, indicative of chronic neuroinflammation
(Smith et al., 1997; Csuka et al., 2000; Gentleman et al., 2004;
Nagamoto-Combs et al., 2007; Nagamoto-Combs and Combs,
2010; Ramlackhansingh et al., 2011; Shitaka et al., 2011). Chronic
cerebral inflammation is typically associated with increased abun-
dance of proinflammatory cytokines such as IL-1β, TNF-α and
IL-6 and an array of chemokines (Stover et al., 2000; Morganti-
Kossmann et al., 2001; Rothwell, 2003; Dietrich et al., 2004;

Israelsson et al., 2008). This phenotype is remarkably similar
to the low-level pro-inflammatory, chronic microglial activation
state that occurs in AD and ultimately fails to restrict amyloid
deposition. Additionally, it has been extensively reported that
aging microglia undergo structural deterioration and cellular
senescence, which likely predicts poor Aβ clearance aptitude
(Flanary and Streit, 2004; Fiala et al., 2005; Hickman et al.,
2008; Njie et al., 2012). Furthermore, TBI is classically followed
by oxidative stress and hypoxia, which are known to stimulate
microglia and astrocytes and induce release of IL-1β, TNF-α,
interferon-γ and IL-6 (Luth et al., 2001). These pro-inflammatory
cytokines can stimulate γ-secretase activity and enhance APP
levels and amyloidogenic APP processing, potentially exacerbat-
ing Aβ pathology (Tamagno et al., 2003; Blasko et al., 2004;
Liao et al., 2004; Rogers et al., 2008; Agostinho et al., 2010). In
addition, increased expression of presenilin-1 and nicastrin in
TBI-activated microglia has been described in mice, reinforcing
the probable implication of microglia in post-injury Aβ pathol-
ogy (Liao et al., 2004; Nadler et al., 2008). Altogether, these
mechanisms could perpetrate a chronic vicious cycle involving
inefficient activation of microglia, cerebral Aβ accumulation and
spreading, and development of AD-type pathology. In summary
then, the early inflammatory response after TBI may negatively
impact AD pathology later on.

ANIMAL MODELS: PRESENT AND FUTURE
The development of clinically-relevant animal models is crit-
ically important to enable future study at the intersection of
TBI and AD research. Animal models of AD fail to exhibit
some of the key pathological earmarks of the human syn-
drome, even after significant brain injury (Uryu et al., 2002;
Tran et al., 2011a,b). For example, one of the principle symp-
toms lacking in transgenic mouse models constructed with
mutations that cause early-onset familial AD is fulminant neu-
ronal loss (Duyckaerts et al., 2008). For while most transgenic
mouse models display amyloid deposition, and some exhibit tau
pathology, almost all do not have appreciable neuronal death
(Duyckaerts et al., 2008). For instance, the principle readouts after
TBI in a widely-used mouse model of AD, the 3× Tg-AD mouse,
consist primarily of hyperphosphorylated tau and β-amyloid
plaques, because the model does not allow insight into the
widespread cortical neuronal loss observed in the human disease
(Tran et al., 2011a).

By contrast, we have recently published a novel rat transgenic
model of AD, line TgF344-AD. This transgenic line expresses
mutant human APP and presenilin-1, which are each indepen-
dent genetic causes of early-onset familial AD. Notably, this rat
displays the full spectrum of human AD hallmarks, including
cerebral amyloidosis, tauopathy, gliosis, and most importantly,
large-scale apoptotic loss of neurons in cortical and hippocam-
pal regions. Moreover, these animals display significant age-
dependent cognitive disturbance (Cohen et al., 2013). The precise
reason(s) for the differences between this new transgenic rat
model and analogous mouse models are unclear. Rats are four-
to-five million years closer to humans on the evolutionary tree
than mice. In addition, rats, like humans and unlike mice,
have all six tau isoforms. Therefore, rats have a physiology
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Table 1 | Alzheimer’s disease-type lesions induced by various TBIs in humans and in animal models.

AD-like lesions induced by TBI Species Type of injury involved References

Amyloidogenic APP processing and Aβ

accumulation
Mouse Focal Cribbs et al., 1996

CCI Hartman et al., 2002; Abrahamson et al.,
2006, 2009; Loane et al., 2009; Tran et al.,
2011a; Yu et al., 2012

Closed head Nadler et al., 2008

Rat Mild compression contusion Lewen et al., 1995

Lateral fluid-percussion Pierce et al., 1996; Bramlett et al., 1997;
Hoshino et al., 1998; Iwata et al., 2002

Cortical electro-coagulation Luth et al., 2001

Traumatic axonal Stone et al., 2002

CCI Blasko et al., 2004

Rabbit Rotational acceleration Hamberger et al., 2003

Pig Rotational acceleration Smith et al., 1999; Chen et al., 2004

Human Single severe head Roberts et al., 1991, 1994; Gentleman
et al., 1993, 1997; Graham et al., 1995;
Ikonomovic et al., 2004; DeKosky et al.,
2007; Uryu et al., 2007; Johnson et al.,
2012

Dementia pugilistica Tokuda et al., 1991; Schmidt et al., 2001

Tauopathy Mouse Repetitive mild Yoshiyama et al., 2005; Ojo et al., 2013

Blast and/or concussive Goldstein et al., 2012

CCI Tran et al., 2011a

Rat Lateral fluid percussion Hoshino et al., 1998

Pig Rotational acceleration Smith et al., 1999

Human Repetitive mild trauma/Dementia
pugilistica

Tokuda et al., 1991; McKenzie et al., 1996;
Geddes et al., 1999

Severe closed head Zemlan et al., 1999

Single acute brain Smith et al., 2003b; Johnson et al., 2012

Blast and/or concussive Goldstein et al., 2012

Neuroinflammation Mouse Repetitive mild Shitaka et al., 2011; Ojo et al., 2013

Fluid percussion Carbonell and Grady, 1999

CCI Israelsson et al., 2008

Laser-induced focal ablation Davalos et al., 2005

Rat CCI Smith et al., 1997; Koshinaga et al., 2000

Monkey Surgical lesion Nagamoto-Combs et al., 2007

Human Various Gentleman et al., 2004;
Morganti-Kossmann et al., 2007;
Ramlackhansingh et al., 2011; Johnson
et al., 2013

(Continued)

Frontiers in Aging Neuroscience www.frontiersin.org July 2013 | Volume 5 | Article 26 | 4

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Breunig et al. Brain injury, neuroinflammation and Alzheimer’s disease

Table 1 | Continued

AD-like lesions induced by TBI Species Type of injury involved References

Neuronal loss/apoptosis Mouse CCI Lewen et al., 2001; Yatsiv et al., 2005;
Tehranian et al., 2006

Weight-drop Hutchison et al., 2001

Rat Fluid percussion injury Cortez et al., 1989; Dietrich et al., 1994;
Rink et al., 1995; Sinson et al., 1997;
Yakovlev et al., 1997; Conti et al., 1998;
Pierce et al., 1998; O’Dell et al., 2000;
Raghupathi et al., 2002

CCI Sutton et al., 1993; Clark et al., 1997, 2001

Weight-drop Pravdenkova et al., 1996

Human Various Mantyla, 1981; Bigler et al., 1992; Clark
et al., 2000; Ng et al., 2000; Liou et al.,
2003; Hausmann et al., 2004; Nathoo
et al., 2004

AD, Alzheimer’s disease; CCI, controlled cortical impact.

FIGURE 1 | Modeling the risk relationship between traumatic brain injury and Alzheimer’s disease. Presence (+) or absence (−) of various pathological
features is indicated. AD, Alzheimer’s disease; TBI, Traumatic Brain Injury; CTE, Chronic Traumatic Encephalopathy.

that is more similar to the human and may be more permis-
sive to neurodegenerative disease. For these reasons, it will be
highly informative to test whether TBI precipitates earlier neu-
ronal loss and tauopathy in this line of rats. Moreover, the
behavioral correlates of neuronal damage and loss can be care-
fully related in a way that more closely approximates human
trauma and associated cognitive decline. Specifically, if TBI
leads to neuronal loss in the long term, these rats might be

used to determine if therapeutic intervention(s) could be intro-
duced to attenuate or prevent neurodegeneration and cognitive
impairment (Figure 1).

CONCLUSIONS AND FUTURE DIRECTIONS
The correlation between brain injury and neurodegenerative dis-
ease is now well-established (Szczygielski et al., 2005; Shively
et al., 2012). The combined problems of TBI and AD will become
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increasingly significant burdens to society. Both diseases will
require early identification in the form of imaging or biomarkers
to allow for therapeutic intervention at the earliest possible stages.
Unfortunately, a treatment or therapy does not currently exist for
either disease. A thorough, mechanistic understanding of the pre-
cise relationship between TBI and AD is of utmost importance in
order to illuminate new therapeutic targets. However, as we have
highlighted, key questions remain regarding the precise mecha-
nisms linking the many forms of brain injury with precipitation
of AD-type neurodegeneration.

These mechanistic investigations and the development of
pre-clinical therapeutics will rely critically on a clearer under-
standing of both human pathologies. A key limiting factor
is the large gap in our knowledge of the link between post-
mortem observations in humans after TBI with animal model
systems. Part of the uncertainty can be attributed to limita-
tions inherent to experimental models of TBI. Therefore, it is

expected that more precise modeling of pathological hallmarks
in animal models will allow us to fill the knowledge gap.
Specifically, it will be critical to develop models that accu-
rately mimic the forces impacting the human brain under a
variety of circumstances (Morales et al., 2005; Blennow et al.,
2012).
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