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Abstract

Data from both toxin-based and gene-based models suggest that dysfunction of the microtubule system contributes to the
pathogenesis of Parkinson’s disease, even if, at present, no evidence of alterations of microtubules in vivo or in patients is
available. Here we analyze cytoskeleton organization in primary fibroblasts deriving from patients with idiopathic or genetic
Parkinson’s disease, focusing on mutations in parkin and leucine-rich repeat kinase 2. Our analyses reveal that genetic and
likely idiopathic pathology affects cytoskeletal organization and stability, without any activation of autophagy or apoptosis.
All parkinsonian fibroblasts have a reduced microtubule mass, represented by a higher fraction of unpolymerized tubulin in
respect to control cells, and display significant changes in microtubule stability-related signaling pathways. Furthermore, we
show that the reduction of microtubule mass is so closely related to the alteration of cell morphology and behavior that
both pharmacological treatment with microtubule-targeted drugs, and genetic approaches, by transfecting the wild type
parkin or leucine-rich repeat kinase 2, restore the proper microtubule stability and are able to rescue cell architecture. Taken
together, our results suggest that microtubule destabilization is a point of convergence of genetic and idiopathic forms of
parkinsonism and highlight, for the first time, that microtubule dysfunction occurs in patients and not only in experimental
models of Parkinson’s disease. Therefore, these data contribute to the knowledge on molecular and cellular events
underlying Parkinson’s disease and, revealing that correction of microtubule defects restores control phenotype, may offer a
new therapeutic target for the management of the disease.
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Introduction

Parkinson’s disease (PD) is the most common motor neurode-

generative disorder, characterized by the loss of dopaminergic

neurons in the substantia nigra. Although it has been extensively

studied, its molecular etiopathogenesis is not well understood [1].

Monogenic forms of the disorder account for up to 10% of

parkinsonisms, and mutated parkin and leucine-rich repeat kinase 2

(LRRK2) are responsible for the majority of genetic PD cases [2].

Although parkin and LRRK2 seem to act on different physiolog-

ical processes, being parkin an E3 ligase catalyzing the addition of

ubiquitin to target proteins [3] and LRRK2 a multi-domain

protein involved in the regulation of neuronal process elongation

[4], their actions converge on microtubules (MTs) [5,6].

MTs are cytoskeletal polymers built up by a/b tubulin

heterodimers, which participate in many cellular functions, such

as morphology acquisition, cell migration and intracellular

transport. MTs usually show a dynamic behavior switching

between slow growth and rapid depolymerization [7]. a-Tubulin

post-translational modifications (PTMs) correlate with subsets of

MTs that behave differently: tyrosinated (Tyr) MTs are the most

dynamic subset, acetylated (Ac) or detyrosinated (deTyr) MTs are

more stable pools [8].

Several recent studies have highlighted the crucial role of MTs

during PD progression. Indeed, many PD-linked proteins, such as

parkin, LRRK2 and a-synuclein, are able to modulate the stability

of MTs [9–11]. However, nothing has been reported about

their ability to regulate a-tubulin PTMs. Further evidence has

been obtained from neurotoxic models of PD: both rotenone and

1-methyl-4-phenyl-piridinium (MPP+) destabilize MTs in vitro

[12,13] and in neuronal cells [14,15]. Moreover, we have

demonstrated the importance of a-tubulin PTMs in PD pathology,

reporting that MPP+ causes an early change in MT stability [15].

All these data highlight the importance of MT dysfunction in PD

experimental models, but the demonstration of MT involvement

in human disease is still lacking.

Post-mortem analyses of human brain could reveal molecular

alterations present in the very late phases of neurodegenerative

diseases, with the great disadvantage of working with dead tissues.

On the other hand, peripheral tissues are a unique source of

human living cells, and in the last few years they have become

reliable models for the identification of molecular alterations and

possible therapeutic targets in neurodegenerative disorders,

including PD [16–19]. As recently highlighted [20], human skin

fibroblasts are an easy available and robust PD experimental

model, due to some of their peculiarities: they express most of the

gene relevant to PD and mirror the polygenic risk factors of

specific patient; they comprise the chronological and biological

aging other than the environmental exposition, reflecting all the

cumulative cell damage of the patient; they make very dynamic

contacts as neurons do.
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On this basis, here we analyzed fibroblasts from patients with

idiopathic PD or from patients carrying mutations in either parkin

or LRRK2 to establish whether MT alterations are present in

baseline conditions or not. The principal findings we report are the

considerable reduction in fibroblast MT mass in PD patients with

respect to controls and the rescue resulting from either pharma-

cological or genetic approaches that stabilize MT system. Thus,

our results highlight that MT destabilization occurs in PD patients

and it seems to represent a point of convergence of genetic and

idiopathic parkinsonisms.

Materials and Methods

Ethics Statement and Patients
Primary fibroblasts were obtained by skin biopsies from 25

individuals, whose phenotype and genotype data are summarized

in Table 1, and that included 10 healthy volunteers as control

group and 15 patients affected by PD, divided into three different

pathological groups. Age distribution of each group is reported in

the scatter plot (Figure S1), and the statistical analyses did not

reveal significant differences in age between control and patient

groups. All patients were examined by movement disorder

neurologists and clinical diagnosis of PD was established

according to the UK Parkinson Disease Society Brain Bank

criteria [21,22]. The LRRK2 G2019S missense mutation and

mutations on the parkin (PRKN) gene were screened as previously

described [23,24].

The study was approved by the local ethics committee (Istituti

Clinici di Perfezionamento, July 13th 2010) and all participants

gave written informed consent.

Cell Culture and Morphometric Analyses
Human fibroblasts were cultured in RPMI 1640 (Hyclone,

Logan, UT, USA) containing 15% foetal bovine serum (HyClone)

supplemented with 2 mM L-glutamine, 100 U/ml penicillin,

100 mg/ml streptomycin, at 37uC in a humidified atmosphere,

5% CO2. For transfection experiments, human fibroblasts were

plated at the density of 5000 cells/well. The day after cells were

transiently transfected using Lipofectamine 2000 (Invitrogen) (1:3

DNA to Lipofectamine ratio, 1.5 mg of DNA per well) and

analyzed 24 h after transfection. All the plasmids for parkin

silencing and over-expression (Figure S2) were supplied by

Dr. Sassone (IRCCS Istituto Auxologico Italiano, Milano, Italy)

The plasmids encoding untagged human parkin was generated by

in-frame insertion of a PCR-amplified DNA fragment encoding

human parkin into the pcDNA4-Myc-HIS vector. The fragment

was then subcloned in the pECFP-C1 vector to produce in frame

CFP-tagged parkin. As negative control a plasmid encoding EGFP

mRNA was used. Plasmid encoding short hairpin RNA (shRNA)

selective for human parkin was generated with the GatewayH

Table 1. Phenotype and genotype characterisation of investigated individuals.

COD PHENOTYPE GENOTYPE SEX AGEa AGE OF ONSET b

CONT FFF0311991 HEALTHY F 39

FFF0541986 HEALTHY M 41

FFF0191992 HEALTHY M 43

FFF0531978 HEALTHY F 44

FFF0961978 HEALTHY M 44

FFF0401991 HEALTHY F 46

FFF0521978 HEALTHY M 51

FFF0421991 HEALTHY M 54

FFF0422011 HEALTHY M 69

FFF0412011 HEALTHY F 64

PARK FFF0302009 AFFECTED c.C815G (p.C238W); exon 6–7 del. F 57 30

FFF1072009 AFFECTED c.del202_203AG (p.Q34/X43); exon 4–6 del. M 53 40

FFF0142009 AFFECTED c.C924T (p.R275W); exon 3 del. F 41 22

FFF0292009 AFFECTED exon 3 del (homozygotes) F 69 39

FFF0902009 AFFECTED c.del202_203AG (p.Q34/X43) (homozygotes) M 51 20

FFF0072010 AFFECTED c.del202_203AG (p.Q34/X43) (homozygotes) F 59 39

LRRK2 FFF0642009 AFFECTED p.G2019S (heterozygotes) F 58 41

FFF0962009 AFFECTED p.G2019S (heterozygotes) M 47 40

FFF0112010 AFFECTED p.G2019S (homozygotes) M 68 63

FFF0092009 AFFECTED p.G2019S (heterozygotes) M 46 35

FFF0502009 AFFECTED p.G2019S (heterozygotes) F 61 46

FFF0452009 AFFECTED p.G2019S (heterozygotes) M 79 72

PD FFF0562009 AFFECTED X M 71 66

FFF0542009 AFFECTED X M 68 52

FFF0202010 AFFECTED X M 50 42

aAge at time of skin biopsy and establishment of fibroblast cell line.
bThe age at which the patient first noticed a PD-related symptom was considered the age of onset of the disease.
doi:10.1371/journal.pone.0037467.t001
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recombination cloning technology (Invitrogen, Carlsbad, CA).

The sequence is: sh-183: 59 CACCGGATCAGCAGAG-

CATTGTTCACGAATGAACAATGCTCTGCTGATCC 39.

The double stranded DNA oligo encoding a sense-loop-

antisense sequence to the targeted gene was cloned into the

pENTRTM/U6 entry vector. The shRNA cassettes was then

transferred into the plasmid pBLOCK-iT 3-DEST, suitable for

GeneticinH selection. As negative control a plasmid encoding

shRNA for bacterial lacZ mRNA was used. LRRK2 constructs

[25] were kindly gifted by Dr. Greggio (Department of Biology,

University of Padova, Padova, Italy).

For pharmacological treatment, control and patient fibroblasts

were plated at the density of 5000 cells/well. The day after cells

were incubated 2 h with 10 mM of Paclitaxel dissolved in

methanol (Sigma-Aldrich, St Louis, MO), Nocodazole dissolved

in methanol (Sigma-Aldrich) or Thiocolchine dissolved in DMSO

(provided by Dr. Passarella, Dep. of Industrial and Organic

Chemistry, Univ. of Milan, Italy) and then analyzed.

In all assays, the fibroblast passage numbers were matched

(,10). For morphometric analyses, 5 to 10 random images per

plate were captured using an Axiovert 200 M microscope (Zeiss,

Oberkochen, Germany), and analyses were made using digital

image processing software (Interactive measurement module,

Axiovision, Zeiss). All cells in each image were analyzed.

Immunofluorescence Microscopy
Cells were fixed with cold methanol or 4% paraformaldehyde

and incubated with the following primary antibodies and probes:

a-tubulin mouse IgG (clone B-5-1-2, Sigma-Aldrich, St Louis,

MO); deTyr tubulin rabbit IgG (Chemicon, Temecula, CA); Tyr

tubulin mouse IgG (clone TUB-1A2, Sigma-Aldrich); Ac tubulin

mouse IgG (clone 6-11B-1, Sigma-Aldrich); vimentin mouse IgG

(clone V6, Sigma-Aldrich); Phalloidin-Tetramethylrhodamine B

isothiocyanate and 49,6-Diamidino-2-phenylindole dihydrochlo-

ride (Sigma-Aldrich). As secondary antibodies we used Alexa

FluorTM 568 donkey anti-mouse, and Alexa FluorTM 488 goat

anti-rabbit (Invitrogen, Carlsbad, CA). The coverslips were

mounted in MowiolH (Calbiochem, San Diego, CA)–DABCO

(Sigma-Aldrich, St Louis, MO) and examined with the Axiovert

200 M microscope.

Western Blot Analysis
Whole cell extracts, Triton X-100 soluble and insoluble

fractions of human fibroblasts were prepared as previously

reported [26]. Equal proportions of each fraction or protein

samples from whole cell extracts (25 mg per lane) were separated

by 7 or 15% SDS-PAGE and blotted onto PDVF membranes

(ImmobilonTM-P, Millipore, Billerica, MA). Membranes were

probed with the following antibodies: a-tubulin mouse IgG (clone

B-5-1-2, Sigma-Aldrich, St Louis, MO); b-tubulin mouse IgG

(clone Tub 2.1, Sigma-Aldrich); deTyr tubulin rabbit IgG

(Chemicon, Temecula, CA); Tyr tubulin mouse IgG (clone

TUB-1A2, Sigma-Aldrich); Ac tubulin mouse IgG (clone 6-11B-

1, Sigma-Aldrich); microtubule-associated protein 1 light chain 3

rabbit IgG (Sigma-Aldrich); vimentin mouse IgG (clone V6,

Sigma-Aldrich); actin mouse IgM (N350, Amersham, Little

Chalfont, UK); Caspase 3 rabbit IgG (Enzo Life Sciences Ag.,

Lausen, Switzerland), GADPH mouse IgG (Biogenesis, Poole,

UK); Heat Shock Protein 70 mouse IgG (clone 3A3, Chemicon);

Glycogen synthase kinase 3 beta rabbit IgG (Abcam, Cambride,

UK); Phospho-Glycogen synthase kinase 3 beta (Ser9) rabbit IgG

(Cell Signaling Technology, Beverly, MA); p38 alpha MAP Kinase

mouse IgG (clone L53F8, Cell Signaling Technology); Phospho-

p38 MAP Kinase (Thr180/Tyr182) rabbit IgG (clone 3D7, Cell

Signaling Technology); p44/42 MAPK (Erk1/2) rabbit IgG (clone

137F5, Cell Signaling Technology); Phospho-p44/42 MAPK

(Thr202/Tyr204) rabbit IgG (clone D13.14.4E, Cell Signaling

Technology); parkin mouse IgG (clone prk8, Sigma-Aldrich).

Next, immunoblots were incubated with HRP donkey anti-mouse

IgG and HRP goat anti-rabbit IgG (Pierce, Rockfort, IL) or HRP

goat anti-mouse IgM (Sigma-Aldrich), and developed using

enhanced chemioluminescence (Supersignal West Pico Chemilu-

minescent, Pierce, Rockford, IL). Immunoblots were scanned with

JX-330 color image scanner (Sharp Electronics Europe) and

analyzed by ImageJ software (National Institute of Health).

Statistical Analysis
Statistical analysis was performed using STATISTICA (StatSoft

Inc., Tulsa, OK), and significant differences of PD patients versus

control fibroblasts, or between groups in rescue experiments, were

assessed by one-way ANOVA with Tukey HSD post hoc test. Data

are expressed as means 6 SEM.

Results

Morphological Alterations Characterize PD Fibroblasts
We observed striking differences between the cultured human

fibroblasts collected from PD patients and those collected from

controls in terms of morphology and behavior. Looking at the

general morphology of the cells, control fibroblasts were elongated

and flanked each other, whereas fibroblasts from PD patients were

wider, larger, and partly overlapped, as they lost the ability to

sense each other (Figures 1 and 2). Morphometric analyses

underlined the decrease of the ratio between maximum and

minimum axis (Figure 1B), and the measurement of the area

corroborated the idea that PD fibroblasts were larger than control

cells (Figure 1C), at least in the presence of mutated parkin or

LRRK2. Furthermore, parkinsonian fibroblasts showed a different

spatial organization, being much more enshrouded, as pointed out

by the increase in overlapping regions (Figure 1D). These data

highlight that fibroblasts deriving from PD patients are charac-

terized by altered morphology.

PD Fibroblasts Show Subtle Cytoskeleton Differences
Since changes in cell morphology are likely mediated by

rearrangements of cytoskeletal architecture, we investigated the

levels (Figure 2A–B) and organization (Figure 2C) of all the

three cytoskeletal polymers: intermediate filaments (IFs), MTs

and actin filaments. The levels and localization of vimentin, the

principal constituent of the fibroblast IFs, did not vary in PD

fibroblasts. Tubulin levels showed changes only in patients

carrying parkin mutations, whereas MT organization did not

appear to change in any of the experimental groups. It has

been reported that parkin promotes a- and b-tubulin degrada-

tion and that its PD-linked mutations remove this ability [5];

thus, the enrichment of b-tubulin in patients with parkin

mutation is not surprising. On the contrary, a-tubulin levels

were unexpectedly unchanged, suggesting possible different

regulatory mechanisms that need future and deeper investiga-

tions. Finally, we observed a dramatic increase in actin levels in

patients with idiopathic PD; phalloidin staining revealed a

higher amount of stress fibers that appeared to be randomly

oriented whereas in the other experimental groups they were

aligned with the major axis of the cells. Thus, these data

demonstrate that alterations of the cytoskeleton occur in

fibroblasts obtained from patients with parkin mutations and

from idiopathic PD patients.

Microtubule Destabilization in Parkinson’s Disease
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Impairment of MT Stability is Shared by PD Fibroblasts
Since we have already reported that MT stability plays a crucial

role in cultured PC12 cells exposed to MPP+ [15], we undertook

an in-depth analysis of a-tubulin PTMs and MT mass in human

fibroblasts. Western blotting (Figure 3A–B) and immunofluores-

cence analyses (Figure S3) revealed severe alterations of tubulin

PTMs in PD fibroblasts. Parkin mutations induced an increase in

Tyr tubulin levels (Figure 3B, dark grey bars), meaning that in the

presence of mutated parkin the MT system seemed to be more

dynamic. On the other hand, LRRK2 mutation (Figure 3B, light

grey bars) caused the enrichment of Ac tubulin, and fibroblasts

from patients with idiopathic PD (Figure 3B, black bars) showed a

significant increase in deTyr tubulin levels, suggesting that MT

(over)stabilization has occurred. The LRRK2-mediated MT

stabilization agrees with the results of Gillardon [10], showing

that G2019S mutation, the same mutation carried by fibroblasts

used here, promotes phosphorylation of b-tubulin and enhances

MT stability. We looked further at the a-tubulin PTMs

localization (Figure S3). Control cells showed an intense perinu-

clear Ac tubulin decoration, whereas Ac MTs filled the entire cell

body of PD fibroblasts, suggesting that this particular subset of

stable MTs had spread, interfering with cell morphology and

behavior. Taken together, all these data point out that the

alteration of MT stability seems to be a common feature of PD

patient fibroblasts. As it has already been reported that PD-

inducing neurotoxins affect the state of tubulin polymerization

in vitro and in neuronal cells [12–15], we wondered whether the

observed changes in MT stability were correlated with abnormal

MT mass in patient fibroblasts. By Western blotting and

densitometric analyses (Figure 3C–D) we evaluated the amount

of a-tubulin associated with Triton-soluble, i.e. dimeric pool

(Dim), and with Triton-insoluble fraction, polymerized MT

fraction (MT). The ratio between free a-tubulin versus a-tubulin

incorporated into MTs was significantly increased in PD

fibroblasts in respect to control cells (Figure 3D), meaning that

polymerized MTs were reduced. Thus, our work shows that MT

depolymerization is shared by all patient fibroblasts here analyzed

and obtained from idiopathic and genetic PD.

GSK3b Phosphorylation is Reduced in PD Fibroblasts
Looking for a possible explanation for the observed MT

destabilization in PD fibroblasts, it is reasonable that Parkin and

LRRK2 mutations directly impact MT stability [9,10]. However,

since MT depolymerization is observed also in idiopathic PD

fibroblasts, we decided to evaluate the potential implication of

signaling pathways converging on MT system. Therefore, in all

the PD fibroblast groups, we investigated the level and the activity

of glycogen synthase kinase 3 beta (GSK3b), p38 protein (p38) and

extracellular signal-related kinases (Erk) that regulate MT stability

through the phosphorylation of MT-associated proteins (MAPs).

As shown in figure 4, the levels of total GSK3b were highly

variable but they did not reach any statistical significance, whereas

GSK3b phosphorylation was significantly reduced in all classes of

PD fibroblasts (Figure 4C). Total p38 showed a significant

reduction only in the presence of mutant LRRK2, whereas

phospho-p38 was completely unchanged. On the other hand,

LRRK2 induced also a slight decrease of Erk and the significant

elevation of phospho-Erk; accordingly to Ren and colleagues [27],

fibroblasts from patients with parkin mutation displayed an

increase of Erk phosphorylation, although without statistical

significance. Nevertheless, phosphorylated GSK3b is the inactive

form and the phosphorylation of MAPs by GSK3b promotes their

detachment from MT walls [28]. Therefore, showing the

significant activation of GSK3b, our data offer a possible

mechanistic explanation for the observed MT destabilization in

idiopathic PD fibroblasts, but also in cells deriving from patients

with genetic cases of the pathology.

Figure 1. Morphological alterations characterize PD fibroblasts. (A) Representative phase contrast micrographs of cultured human
fibroblasts of healthy and PD affected people. Scale bar: 25 mm. Morphometric analysis showed reduced ratio between maximum and minimum axes
in parkinsonian fibroblast (B) and increased area in the presence of mutated parkin or LRRK2 (C). (D) Histogram showing the increased number of
overlapping regions between cells in patient fibroblasts. *p,0.05 and ***p,0.005 vs control according to ANOVA, Tukey HSD post hoc test. All values
are expressed as mean 6 SEM. CONT = control (N = 10); PARK = patients with mutations of parkin (N = 6); LRRK2 = patients carrying mutations in LRRK2
(N = 6); PD = idiopathic Parkinson’s disease patients (N = 3).
doi:10.1371/journal.pone.0037467.g001
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Stress-induced Pathways are not Activated in
PD Fibroblasts

MT stability is crucial for the activation of apoptosis and

autophagy [29,30], processes variously related to neurodegener-

ation in PD [31]. Thus, we decided to analyze the levels of caspase

3 (CASP 3), which is a terminal executioner of apoptosis, and heat

shock protein 70 (HSP 70), which is a molecular chaperone with

anti-apoptotic properties that prevents aggregation and misfolding

of proteins [32]. First of all, the lack of the cleaved form of CASP 3

(Figure 5A) highlighted that there was no activation of the

apoptotic programme; moreover, we observed the reduction in the

inactive form of the enzyme in the presence of mutated parkin

(Figure 5B, dark grey bars). On the other hand, mutant LRRK2

induced a significant reduction in HSP 70 (Figure 5B, light grey

bars); interestingly, this finding could explain the higher sensitivity

of LRRK2 mutant induced pluripotent stem cell (iPSC)-derived

dopaminergic neurons to CASP 3 activation [33]. On the

contrary, HSP 70 levels were hugely increased in fibroblasts from

idiopathic PD patients (Figure 5B, dark bars). As it has already

been reported that HSP 70 prevents MT assembly [34] and

stabilizes actin filaments [35], these results, together with the

reduction of GSK3b phosphorylation, could easily explain the

above reported MT destabilization and the increase in actin

filaments in idiopathic PD fibroblasts. Finally, we also looked at

microtubule-associated protein 1 light chain 3 (LC3) I and II, well

known markers of autophagy. The amount of LC3-II correlates

with the extent of autophagosome formation and the conversion of

LC3-I to LC3-II is a reliable indicator of autophagic activity [36].

Our results showed no significant changes in the levels of LC3-I

and LC3-II (Figure 5), and therefore in PD fibroblasts the

autophagic machinery is active at basal level. The levels of LC3-I

Figure 2. PD fibroblasts show subtle cytoskeleton differences. (A) Immunoblot and (B) densitometric analyses of vimentin (Vim), a-tubulin (a-
Tub), b-tubulin (b-Tub) and actin (Actin) were performed in whole cell extracts from human fibroblasts deriving from control (CONT, white bars,
N = 10), mutated parkin (PARK, dark grey bars, N = 6), mutated LRRK2 (LRRK2, light grey bars, N = 6) and idiopathic PD (PD, black bars, N = 3). For the
quantitation, values of each protein were normalized on the level of GAPDH of the relative sample. All values are expressed as mean 6 SEM. *p,0.05
and ***p,0.005 vs control, ##p,0.02 vs PD, according to ANOVA, Tukey HSD post hoc test. (C) Cultured human fibroblasts were stained with anti-
vimentin and anti-a-tubulin primary antibodies or with TRITC-conjugated phalloidin to reveal the organization of intermediate filaments (Vim, top),
microtubules (a-Tub, middle) and actin fibers (Actin, bottom), respectively. Concurrent nuclear staining was made by using DAPI (Blue). Scale bar:
20 mm.
doi:10.1371/journal.pone.0037467.g002
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and -II in LRRK2-linked PD differed from those already reported

in knockout mice [37], suggesting that the lack or the mutation of

LRRK2 may affect autophagy differently. These data highlight

that there is no activation of stress-induced pathways in PD

fibroblasts. However, these fibroblasts show MT system alterations

that may eventually trigger neuronal death by other mechanisms.

Pharmacological Stabilization of MTs Rescues
Fibroblast Phenotype

To validate the idea that MTs and MT destabilization are

crucial players in altering cell functions and behaviors in PD

conditions, we decided to treat patient derived fibroblasts with

taxol (Figure 6), a potent MT stabilizer that has proven to be

neuroprotective in midbrain dopaminergic neurons in cultures

[14]. After 2 h of treatment with 10 mM of Taxol, tubulin was

completely shifted toward the Triton-insoluble fraction (Figure 6A),

meaning that there was an increase in the MT pool in patients

fibroblasts. The morphometric analyses (Figure 6B–D) showed

that the increase in MTs correlated with a correction of cell

morphology and behavior, pointed out by the increase of the ratio

between maximum and minimum axis and by the reduction of

overlapping regions. Furthermore, we treated control fibroblasts

with colchicine or nocodazole, two well known MT destabilizing

drugs. As expected, we observed almost all the tubulin associated

to the unpolymerized pool (Figure 6E), the reduction of the axes

ratio and the dramatic increase of overlapped cells (Figure 6F–H),

showing that a direct interference with the MT system is sufficient

to induce the same alterations we observed in PD fibroblasts

(Figure 1). Taken together, these data demonstrate that impair-

ment of MT stability in PD patient derived cells is directly

correlated to changes in morphology and behavior, and strongly

suggest that MT system may be a good ‘‘druggable’’ candidate for

restoring the proper cell mechanics.

Genetic Manipulation Restores MT Stability and Rescues
Fibroblast Phenotype

To further consolidate our results, we decided to perform rescue

experiments, by over-expressing the wild-type (WT) parkin or

LRRK2 in the fibroblasts from patients bearing the mutations in

parkin or LRRK2, respectively. Moreover, in order to validate the

idea that genetic manipulations of these proteins directly influence

MT system, and therefore cell architecture, we tried to affect

control fibroblasts either by parkin silencing or by mutant LRRK2

expression. As reported in figure 7A, transfection of WT parkin

increased polymerized MTs in patient fibroblasts, whereas parkin

silencing reduced MT fraction in control cells. Consistent with our

hypothesis, the analyses of cell morphology revealed that

expression of WT parkin increased the axes ratio and reduced

overlapping regions whereas its silencing exerted the opposite

effects (Figure 7B–D), mimicking changes observed in patient

fibroblasts. In the same way, over-expression of WT LRRK2 in

patient fibroblasts increased MT fraction (Figure 7E), and induced

a correction of cell morphology (Figure 7F–H), as highlighted by

increased ratio between maximum and minimum axis. Similarly,

the expression of mutant LRRK2 in control cells promoted MT

destabilization, represented by the increase of free tubulin

(Figure 7E), and worsened fibroblast morphology and behavior

(Figure 7F–H), as showed by the reduced axes ratio and by the

increased overlapping regions. Our data, not only demonstrate

that alteration of cell morphology and behavior in genetic PD

patient fibroblasts are dependent on impairment of MT stability,

but, further, our results make light on the capacity of WT parkin

or LRRK2 to correct cell defects by restoring MT stability. This

point is further sharpened by the absence of significant differences

between the morphology of patient fibroblasts transfected with

WT parkin or LRRK2 and the cells from healthy subjects

expressing control vectors, indicating that the correction of MT

system is sufficient to rescue the cell architecture. Together with

the pharmacological experiments, these data reinforce the idea of

a pivotal role of MT destabilization, and make concrete the

hypothesis of a possible MT-based PD therapy.

Discussion

In this study, we demonstrate that MT stability is impaired in

human fibroblasts derived from genetic PD patients and it is likely

compromised in idiopathic PD patients, reporting the alterations

Figure 3. Impairment of MT stability is shared by PD
fibroblasts. (A) Immunoblot and (B) densitometric analyses of Tyr,
deTyr, and Ac tubulin, were performed in whole cell extracts from
human fibroblasts deriving from control (white bars), mutated parkin
(dark grey bars), mutated LRRK2 (light grey bars) and idiopathic PD
(black bars). For the quantitation, values of each a-tubulin PTM were
normalized on the level of a-tubulin of the relative sample. Triton X-
100-soluble (free a-tubulin, Dim) and -insoluble fraction (a-tubulin
incorporated into MTs, MT) of human fibroblasts were analyzed by (C)
immunoblot and (D) densitometric analyses and are shown as ratio.
*p,0.05 and ***p,0.005 vs control, ##p,0.02 vs PD, according to
ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6
SEM. CONT = control (N = 10); PARK = patients with mutations of parkin
(N = 6); LRRK2 = patients carrying mutations in LRRK2 (N = 6); PD = idio-
pathic Parkinson’s disease patients (N = 3).
doi:10.1371/journal.pone.0037467.g003
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of a-tubulin PTMs and the significant MT depletion. It has been

already shown that human fibroblasts carrying parkin with the

deletion of the 4th exon, encoding the MT binding domains, show

a higher degree of MT depolymerization when they challenged

with a MT disruptor agent such as colchicine [27]. Here we report

that MT depolymerization occurs in PD fibroblasts even without

the addition of any stressor, and that MT destabilization seems to

be a common feature shared by idiopathic and genetic parkin-

sonism. It is noteworthy, as we demonstrate here, that both

pharmacological treatment and genetic approaches are able to

restore the proper MT stability and, therefore, to rescue cell

alterations deriving from MT destabilization. Thus, our work

highlights, for the first time, that MT dysfunction is present in

patients in baseline conditions and that correction of MT defects

recovers cell phenotype, underlining the central role of MT system

in PD.

Figure 4. GSK3b phosphorylation is reduced in PD fibroblasts. (A) Immunoblot and densitometric analyses of (B) total and (C)
phosphorylated glycogen synthase kinase 3 beta (GSK3b), p38 MAP Kinase (p38) and p44/42 MAPK (Erk) were performed in whole cell extracts from
human fibroblasts deriving from control (CONT, white bars, N = 3), mutated parkin (PARK, dark grey bars, N = 3), mutated LRRK2 (LRRK2, light grey
bars, N = 3) and idiopathic PD (PD, black bars, N = 3). For the quantitation, values of total protein were normalized on the level of GAPDH of the
relative sample, whereas the levels of phosphorylated form were normalized on the values of total protein. All values are expressed as mean 6 SEM.
*p,0.05 and **p,0.02 vs control, #p,0.05 vs PD according to ANOVA, Tukey HSD post hoc test.
doi:10.1371/journal.pone.0037467.g004

Figure 5. Stress-induced pathways are not activated in PD fibroblasts. (A) Immunoblot and (B) densitometric analyses of caspase 3 (CASP 3),
heat shock protein 70 (HSP 70) and microtubule-associated protein 1 light chain 3 (LC3) I and II were performed in whole cell extracts from human
fibroblasts deriving from control (CONT, white bars, N = 10), mutated parkin (PARK, dark grey bars, N = 6), mutated LRRK2 (LRRK2, light grey bars,
N = 6) and idiopathic PD (PD, black bars, N = 3). For the quantitation, values of each protein were normalized on the level of GAPDH of the relative
sample. All values are expressed as mean 6 SEM. *p,0.05 and ***p,0.005 vs control, ##p,0.02 vs PD according to ANOVA, Tukey HSD post hoc
test.
doi:10.1371/journal.pone.0037467.g005
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Tubulin PTMs have recently been linked to neurodegener-

ative processes [38]. Our results, indeed, reveal the importance

of a-tubulin PTM dysregulation in PD etiopathogenesis. Being

Tyr tubulin the newly synthesized a-tubulin [8], the parkin-

induced enrichment of Tyr tubulin can be viewed as an attempt

to produce new MTs, as a consequence of the depolymerizaton

of the older MTs. In addition, it is a clear sign of the increase

of dynamic MTs. On the other hand, the enrichment of stable

MTs, observed in idiopathic PD and in patients carrying

mutations of LRRK2, could be the extreme effort of the cell to

stabilize a collapsing system. In any case, both the hyper-

dynamicity caused by mutant parkin and the over-stabilization

associated with LRRK2, actually represent an imbalance of MT

dynamics. Thus, the first outcome of our work is the suggestion

Figure 6. Pharmacological MT stabilization rescues fibroblast phenotype. (A) Representative immunoblot of Triton X-100-soluble (free a-
tubulin, S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of patients fibroblasts treated with paclitaxel (Tax) or solvent (Met).
Morphometric analyses showing the ratio between maximum and minimum axes (B), the area (C) and the number of overlapping regions between
cells (D) of paclitaxel (TAX) or solvent (Met)-treated patient fibroblasts. ns = not significant, *p,0.05, **p,0.02 and ***p,0.005 according to ANOVA,
Tukey HSD post hoc test. All values are expressed as mean 6 SEM. PARK = patients with mutations of parkin (N = 4); LRRK2 = patients carrying
mutations in LRRK2 (N = 3); PD = idiopathic Parkinson’s disease patients (N = 3). (E) Representative immunoblot of Triton X-100-soluble (free a-tubulin,
S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of control fibroblasts treated with colchicine (COLC), nocodazole (NOC) or solvents
(DMSO or Met). Morphometric analyses showing the ratio between maximum and minimum axes (F), the area (G) and the number of overlapping
regions between cells (H) of colchine (COLC, N = 5), nocodazole (NOC, N = 5) or solvent (DMSO or Met, N = 5 respectively)-treated control fibroblasts.
ns = not significant and ***p,0.005 according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6 SEM.
doi:10.1371/journal.pone.0037467.g006
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of a new biological mechanism for LRRK2- and parkin-

mediated regulation of MT stability, i.e. the modulation of a-

tubulin PTMs.

Neurons are not-dividing cells with an extremely long life, and

in their axons accumulate very stable MTs, that remain for much

longer time than the usual MT half-life [39]. Thus, the

Figure 7. Genetic manipulation restores MT stability and rescues fibroblast phenotype. (A) Representative immunoblot of Triton X-100-
soluble (free a-tubulin, S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of fibroblasts collected from patients with parkin mutations
(PARK) transfected with control plasmid (VEC) or WT parkin (WT), and of control fibroblasts (CONT) transfected with short hairpin RNA, sh-183 (183) or
control shRNA (VEC). (B-D) Morphometric analyses of patients fibroblasts expressing control plasmid (PARK-VEC, N = 4) or WT parkin (PARK-WT, N = 4),
and control fibroblasts transfected with control shRNA (CONT-VEC, N = 4) or silenced with sh-183 (CONT-183, N = 4), showing the ratio between
maximum and minimum axes (B), the area (C) and the number of overlapping regions between cells (D). ns = not significant, **p,0.02 and
***p,0.005 according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6 SEM. (E) Representative immunoblot of Triton X-100-
soluble (free a-tubulin, S) and -insoluble fraction (a-tubulin incorporated into MTs, I) of fibroblasts collected from patients with LRRK2 mutations
(LRRK2) transfected with control plasmid (VEC) or WT LRRK2 (WT), and of control fibroblasts (CONT) expressing control plasmid (VEC) or G2019S
mutant LRRK2 (MUT). Morphometric analyses of patients fibroblasts expressing control plasmid (LRRK2-VEC, N = 3) or WT LRRK2 (LRRK2-WT, N = 3), or
of control fibroblasts transfected with control plasmid (CONT-VEC, N = 3) or G2019S mutant LRRK2 (CONT-MUT, N = 3), showing the ratio between
maximum and minimum axes (F), the area (G) and the number of overlapping regions between cells (H). ns = not significant, *p,0.05, **p,0.02 and
***p,0.005 according to ANOVA, Tukey HSD post hoc test. All values are expressed as mean 6 SEM.
doi:10.1371/journal.pone.0037467.g007
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accumulation of aberrant tubulin dimers is likely to occur,

especially if tubulin turnover is compromised. This is exactly the

scenario we hypothesize for PD patients carrying parkin mutations

on the basis that parkin promotes ubiquitination and degradation

of tubulin [5] and that b-tubulin significantly increases in the

presence of mutated parkin, as we reported in the present work.

Moreover, a particularly long life of MTs could lead to an

unconventional subset of tubulin PTMs, and the impairment of

tubulin PMTs could have further impacts on neuronal functions,

being crucial for the regulation of various MT-dependent

functions. Through the modulation of binding and velocity of

motor proteins, tubulin PTMs are supposed to be involved in the

regulation of axonal transport [40] whose impairment has recently

been suggested as a common and early event in neurodegener-

ation [41]. We have previously reported that imbalance of a-

tubulin PTMs results in impairment of axonal transport and in

mitochondrial damage in PC12 cells exposed to MPP+ [15]. Here

we show that parkin and LRRK2 modulate tubulin PTMs,

offering alternative explanations for the reported capacity of

parkin to arrest the movement of damaged mitochondria [42] and

for the ability of LRRK2 to modulate trafficking and distribution

of synaptic vesicles in cortical neurons [43]. Furthermore, we

observe the significant activation of GSK3b in PD fibroblasts, that

with its upstream and downstream regulators has key roles in

many neuronal processes [28], as neurite outgrowth, neuronal

polarization and, perhaps, axonal transport. Active GSK3b
phosphorylates MAPs with the consequent MT depolymerization

and the breakdown of the railways along which motor proteins

move; therefore, an increase in GSK3b activation can likely affect

axonal transport. Thus, having shown the ability of parkin and

LRRK2 to modulate tubulin PTMs and MT-related signaling

pathways, the present paper could be a good starting point to

analyze the ability of parkin and LRRK2 to regulate axonal

transport.

The proper regulation of MT dynamics is critical for the

survival and for the establishment of cell-cell contacts in different

cell types [44,45]. For example, when fibroblasts collide they

undergo contact inhibition of locomotion that involves cell

retraction and reversal of polarity, allowing cells to change the

direction of migration and to move in a cell free environment.

During aging, fibroblasts motility declines contributing to deficits

in wound-healing, and this impaired behavior has been associated

to disorganization of actin cytoskeleton [46]. Further data

confirmed that mechanical properties are altered in consequence

to the increased amount of polymerized actin in fibroblasts from

old donors, whereas no significant changes in vimentin or MTs

content are associated with aging process [47]. Very recently,

Kadir and colleagues [45] have shown that this behavior resides

on the fine tuning of MT dynamics and organization, especially at

the sites of cell contact, where MT dynamics shall rise above a

threshold to permits contact inhibition of locomotion; they also

reported that Y24632-treated cells, which have hyper-stable MTs,

are unable to re-orientate. Here, we demonstrate that PD patient

fibroblasts have altered morphology and spatial organization that

could be explained by the increased of stable MTs in LRRK2 and

idiopathic PD, but also by the spreading of Ac MTs in all PD

fibroblasts, that would locally interferes with the acceptable MT

dynamics. Therefore, our data show that changes in MT stability

are specifically associated to PD conditions and suggest that PD

pathology could reside on compromised cell mechanics due to a

failure of the MT system. This idea is strengthened by the fact that

the administration of taxol, a MT stabilizing agent, or the

expression of either WT parkin or WT LRRK2 in PD patient

fibroblasts, provokes an increase in the polymerized MTs and a

recovery of the cell morphology and behavior. Interestingly, the

MT destabilization observed in patient fibroblasts unravels a

possible intrinsic MT weakness in PD affected people that could be

crucial for neuronal survival and especially for dopaminergic

neurons, being shown to be particularly vulnerable to the

colchicine-induced MT depolymerization [14,48].

Mitochondrial dysfunction has been related to the pathogenesis

of PD for a long time, and recent papers show that both parkin

[17] and LRRK2 [18] can be important for the regulation of

mitochondria function and malfunction. In the last few years,

tubulin has proved to be able to modulate mitochondrial

respiration through its interaction with voltage-dependent anion

channels, the most abundant protein in the mitochondrial outer

membrane. In particular, it has been reported that tubulin

decreases the respiration rate of isolated mitochondria [49] and

that the increase in tubulin dimers induces mitochondrial

depolarization in human cancer cells [50]. Under this light, the

increased amount of free tubulin we observed in human PD

fibroblasts could be responsible for the mitochondrial alterations in

these cells, described elsewhere [17,18]. Thus, as we and others

have already suggested [14,15,51], MTs and mitochondria

collaborate in producing dopaminergic neuron death in PD.

Taken together, our results highlight, for the first time, that

proteins associated with PD, such as parkin and LRRK2, have an

impact on MT organization and stability in humans, and that

idiopathic PD seems to display MT impairment as well.

Furthermore, our analyses reveal that these MT alterations

profoundly affects cells morphology and behavior, but also that

MT stabilization, by taxol treatment or by expression of WT

parkin or WT LRRK2, is sufficient to restore the correct cell

mechanics. The groundbreaking technique of iPSC-derived

dopaminergic neurons [52] offers the noteworthy advantage of

recapitulating key molecular aspects in a human model of

neurodegeneration, and, moreover, iPSCs enable the production

of patient-specific cell lines, with the potential use for high-

throughput drug screening and personalized therapies. We will

move onto this exciting field soon to validate in human neurons

the occurrence of MT dysfunction and to seek a possible MT-

based therapy, trying to transfer to neurons our actual findings in

human fibroblasts as well as to deeper investigate the biological

relationship among parkin, LRRK2 and MTs. Thus, the present

work can be the launch pad for the study of MT system in PD

patients.

Supporting Information

Figure S1 Age distribution in the experimental groups.
Scatter plot representing the age distribution of the individuals in

each experimental group. CONT = control (N = 10); PARK = pa-

tients with mutations of parkin (N = 6); LRRK2 = patients carrying

mutations in LRRK2 (N = 6); PD = idiopathic Parkinson’s disease

patients (N = 3). Statistical analyses did not reveal differences in

age between control or patient groups (p = 0.168 according to

ANOVA).

(TIF)

Figure S2 Parkin over-expression and silencing. (A)

Representative micrographs of cultured fibroblasts deriving from

PD affected patients bearing parkin mutation transfected with

control plasmid (PARK+VEC) or WT parkin (PARK+WT). Scale

bar: 20 mm. (B) Representative immunoblot of parkin performed

on cultured fibroblasts deriving from healthy subjects transfected

with control shRNA (CONT+VEC) or silenced with sh-183

(CONT+183).

(TIF)
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Figure S3 PD fibroblasts show altered a-tubulin PMT
staining. Human fibroblasts were immunostained for Tyr, deTyr

and Ac tubulin, to investigate MT organization and stability. All

cells were concurrently stained with DAPI (blue), to visualize the

nucleus. Scale bar: 25 mm. CONT = control; PD = idiopathic

Parkinson’s disease; PARK = patients with mutations of parkin;

LRRK2 = patients carrying mutations in LRRK2.

(TIF)
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19. Grünewald A, Voges L, Rakovic A, Kasten M, Vandebona H, et al. (2010)
Mutant Parkin impairs mitochondrial function and morphology in human

fibroblasts. PLoS ONE 5: e12962.

20. Auburger G, Klinkenberg M, Drost J, Marcus K, Morales-Gordo B, et al. (2012)
Primary Skin Fibroblasts as a Model of Parkinson’s Disease. Mol Neurobiol.

[Epub ahead of print].

21. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (1992) What features improve

the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic
study. Neurology 42: 1142–6. Erratum in: Neurology 42: 1436.

22. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees A (2001) What features improve the

accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study.

1992. Neurology 57: S34–38.

23. Goldwurm S, Zini M, Di Fonzo A, De Gaspari D, Siri C, et al. (2006) LRKK2
G2019S mutation and Parkinson’s Disease: a clinical, neuropsychological and

neuropsychiatric study in large Italian sample. Parkinsonism Relat Disord 12:
410–419.

24. Sironi F, Primignani P, Zini M, Tunesi S, Ruffmann C, et al. (2008) Parkin

analysis in early Parkinson’s disease. Parkinsonism Relat Disord 14: 326–333.

25. Kumar A, Greggio E, Beilina A, Kaganovich A, Chan D, et al. (2010) The
Parkinson’s disease associated LRRK2 exhibits weaker in vitro phosphorylation

of 4E-BP compared to autophosphorylation. PLoS ONE 5: e8730.

26. Cappelletti G, Maggioni MG, Tedeschi G, Maci R (2003) Protein tyrosine

nitration is triggered by nerve growth factor during neuronal differentiation of
PC12 cells. Exp Cell Res 288: 9–20.

27. Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009) Parkin Protects Dopaminergic

Neurons against Microtubule-depolymerizing Toxins by Attenuating Microtu-

bule-associated Protein Kinase Activation. J Biol Chem 284: 4009–4017.

28. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat. Rev.
Neurosci. 11: 539–551.

29. Xiao D, Pinto JT, Soh JW, Deguchi A, Gundersen GG, et al. (2003) Induction

of apoptosis by the garlic-derived compound S-allylmercaptocysteine (SAMC) is
associated with microtubule depolymerization and c-Jun NH(2)-terminal kinase

1 activation. Cancer Res 63: 6825–6837.

30. Xie R, Nguyen S, McKeehan WL, Liu L (2010) Acetylated microtubules are

required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11: 89.

31. Levy OA, Malagelada C, Greene LA (2009) Cell death pathways in Parkinson’s
disease: proximal triggers, distal effectors, and final steps. Apoptosis 14:

478–500.

32. Witt SN (2010) Hsp70 molecular chaperones and Parkinson’s disease.

Biopolymers 93: 218–228.

33. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, et al. (2011) LRRK2
mutant iPSC-derived DA neurons demonstrate increased susceptibility to

oxidative stress. Cell Stem Cell 8: 267–280.

34. Mitra G, Saha A, Gupta TD, Poddar A, Das KP, et al. (2007) Chaperone-

mediated inhibition of tubulin self-assembly. Protein 67: 112–120.

35. Macejak DG, Luftig RB (1991) Stabilization of actin filaments at early times
after adenovirus infection and in heat-shocked cells. Virus Res 19: 31–45.

36. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy

research. Cell 140: 313–326.

37. Tong Y, Yamaguchi H, Giaime E, Boyle S, Kopan R, et al. (2010) Loss of

leucine-rich repeat kinase 2 causes impairment of protein degradation pathways,
accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc

Natl Acad Sci USA 107: 9879–9884.

38. Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme JC, et al. (2010) A

Family of Protein-Deglutamylating Enzymes Associated with Neurodegenera-
tion. Cell 143: 564–578.

39. Paturle-Lafanechere L, Manier M, Trigault N, Pirollet F, Mazarguil H, et al.

(1994) Accumulation of delta 2-tubulin, a major tubulin variant that cannot be
tyrosinated, in neuronal tissues and in stable microtubule assemblies. J Cell Sci

107: 1529–1543.

40. Janke C, Kneussel M (2010) Tubulin post-translational modifications: encoding

functions on the neuronal microtubule cytoskeleton. Trends Neurosci 33:
362–372.

41. Morfini GA, Burns M, Binder LI, Kanaan NM, LaPointe N, et al. (2009) Axonal

transport defects in neurodegenerative diseases. J Neurosci 29: 12776–12786.

42. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, et al. (2011) PINK1 and

Parkin target Miro for phosphorylation and degradation to arrest mitochondrial
motility. Cell 147: 893–906.

43. Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, et al. (2011) LRRK2

controls synaptic vesicle storage and mobilization within the recycling pool.

J Neurosci 31: 2225–2237.

44. Feinstein SC, Wilson L (2005) Inability of tau to properly regulate neuronal
microtubule dynamics: a loss-of-function mechanism by which tau might

mediate neuronal cell death. Biochim Biophys Acta 1739: 268–279.

45. Kadir S, Astin JW, Tahatamouni L, Martin P, Nobes CD (2011) Microtubule

remodelling is required fro the front-rear polarity switch during contact
inhibition of locomotion. J Cell Sci 124: 2642–2653.

46. Reed MJ, Ferara NS, Vernon RB (2001) Impaired migration, integrin function,

and actin cytoskeletal organization in dermal fibroblasts from a subset of aged
human donors. Mech. Ageing Dev. 122: 1203–1220.

Microtubule Destabilization in Parkinson’s Disease

PLoS ONE | www.plosone.org 11 May 2012 | Volume 7 | Issue 5 | e37467



47. Schulze C, Wetzel F, Kueper T, Malsen A, Muhr G, et al. (2010) Stiffening of

human skin fibroblasts with age. Biophys. J. 99: 2434–2442.

48. Liang Y, Li S, Wen C, Zhang Y, Guo Q, et al. (2008) Intrastriatal injection of

colchicine induces striatonigral degeneration in mice. J. Neurochem. 106:

1815–1827.

49. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, et al. (2008)

Tubulin binding blocks mitochondrial voltage-dependent anion channel and

regulates respiration. Proc Natl Acad Sci USA 105: 18746–18751.

50. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ (2010) Free tubulin

modulates mitochondrial membrane potential in cancer cells. Cancer Res 70:
10192–10201.

51. Choi WS, Palmiter RD, Xia Z (2011) Loss of mitochondria complex I activity

potentiates dopaminergic neuron death induced by microtubule dysfunction in a
Parkinson’s disease model. J Cell Biol 192: 873–882.

52. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, et al.
(2011) Direct generation of functional dopaminergic neurons from mouse and

human fibroblasts. Nature 476: 224–227.

Microtubule Destabilization in Parkinson’s Disease

PLoS ONE | www.plosone.org 12 May 2012 | Volume 7 | Issue 5 | e37467


