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Abstract

G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor
proteins in eukaryotes. Due to their significant roles in various physiological processes
such as vision, smell and inflammation, GPCRs are the targets of many prescription
drugs. However, the functional and sequence diversity of GPCRs has kept their prediction
and classification based on amino acid sequence data as a challenging bioinformatics
problem. There are existing computational approaches, mainly using machine learning
and statistical methods, to predict and classify GPCRs based on amino acid sequence
and sequence derived features. In this paper, we describe a searchable MySQL database,
named GPCR-PEnDB (GPCR Prediction Ensemble Database), of confirmed GPCRs and
non-GPCRs. It was constructed with the goal of allowing users to conveniently access
useful information of GPCRs in a wide range of organisms and to compile reliable train-
ing and testing datasets for different combinations of computational tools. This database
currently contains 3129 confirmed GPCR and 3575 non-GPCR sequences collected from
the UniProtKB/Swiss-Prot protein database, encompassing over 1200 species. The
non-GPCR entries include transmembrane proteins for evaluating various prediction
programs’ abilities to distinguish GPCRs from other transmembrane proteins. Each pro-
tein is linked to information about its source organism, classification, sequence lengths
and composition, and other derived sequence features. We present examples of using
this database along with its graphical user interface, to query for GPCRs with specific
sequence properties and to compare the accuracies of five tools for GPCR prediction.
This initial version of GPCR-PEnDB will provide a framework for future extensions to
include additional sequence and feature data to facilitate the design and assessment
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of software tools and experimental studies to help understand the functional roles
of GPCRs.

Database URL: gpcr.utep.edu/database

Introduction

G protein-coupled receptors (GPCRs) are a vast and diverse
group of transmembrane receptor proteins in humans.
GPCRs are involved in a wide range of physiological pro-
cesses including vision, taste, smell and pain (1) and are
implicated in many different diseases such as cancer (2),
infection (3) and inflammation (4). Because of their criti-
cal roles in intracellular signaling and biomedical relevance,
GPCRs are considered one of the most useful class of ther-
apeutic targets (5). Indeed, it has been estimated that about
34% of FDA-approved drugs in the USA target GPCRs (6).
Identification of GPCRs and understanding their molecular
mechanisms have been the subject of many research studies
(see, for example, the reviews articles (7, 8) and references
therein).

Each GPCR protein has a characteristic structure con-
sisting of an extracellular N-terminal, an intracellular
C-terminal, and between them seven hydrophobic trans-
membrane helices that are linked through three intracel-
lular and three extracellular loops as shown in Figure 1.
Based on this characteristic structure, many different bioin-
formatics software tools have been developed for predicting
GPCRs and then classifying them hierarchically to gain
insights into its possible biological functions. The sequences
in GPCRdb (9), for example, are classified into families,
subfamilies, sub-subfamilies and subtypes.

Table 1. Number of GPCR sequences in the extended

IUPHAR and GRAFS classification families

IUPHAR GRAFS No. of sequences

Class A Rhodopsin-like 2493
Adhesion-like 91

Class B
Secretin-like 113

Class C Glutamate-like 112
Class D Fungal pheromonea 13
Class E cAMP receptora 11
Class F Frizzled 82
Class T2Rb Taste2 receptorb 211

aThese invertebrate GPCR families are not in the original GRAFS system but are included
here as descriptive labels corresponding to Classes D and E of the IUPHAR system.
bThis class is not in original IUPHAR or GRAFS classifications.

GPCRs are commonly grouped into families according
to the International Union of Basic and Clinical Pharmacol-
ogy (IUPHAR) (10) and Glutamate, Rhodopsin, Adhesion,
Frizzled, Secretin (GRAFS) (11) systems. While IUPHAR
applies to all GPCRs in general, the GRAFS system focuses
more on vertebrate GPCRs. Table 1 displays the family
names in the two systems and the correspondence between
them. We extended the IUPHAR and GRAFS systems to
include fungal pheromones, cyclic adenosine monophos-
phate (cAMP) receptors and the Taste 2 receptor fami-
lies to account for GPCRs not covered by the standard

Figure 1. Different regions of a typical GPCRmolecule. GPCR consists of a single polypeptide chain of amino acids folded into seven transmembrane
helices (TMH1–7) between an extracellular N-terminal and an intracellular C-terminal. The seven transmembrane helices are connected by three
extracellular loops (ECL1–3) and three intracellular loops (ICL1–3).

https://gpcr.utep.edu/database
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classification systems. For simplicity, we will still refer to
the extended systems by their original names in this paper.

Aside from humans, GPCRs have been found in many
different species including other mammals, insects, fungi,
etc. As records of newly discovered GPCRs accumu-
late over the years, they have been collected in differ-
ent databases as summarized in the study by Kowalsman
and Niv (12). Some of these databases deal with proteins
in general while others are specialized for GPCRs only.
Among the specialized databases, GPCRdb (9) has served
the scientific community for over 20 years, providing a
comprehensive repository of GPCR sequence information
spanning a large number of species. Currently, it con-
tains over 15 000 proteins from more than 3500 species.
Many prediction and classification programs take sequence
data from GPCRdb as positive examples for their train-
ing and testing datasets. Another database is SeQuery (13),
which allows users to visualize the GPCR families’ pro-
teome or genome networks using a graph-based approach
and analyze the relationship of a query sequence with
the other GPCRs based on their structures and functions
from published literature. The SeQuery database con-
tains over 3100 reviewed GPCR sequences collected from
UniProt (14).

Some GPCR prediction and classification tools rely
on sequence similarities [e.g. BLAST (15)] or common
sequence motif profiles [e.g. Pfam (16), PRINTS (17) and
PROSITE (18)] in GPCRs, while others use machine learn-
ing or statistical classification algorithms (e.g. support
vector machines, K nearest neighbors and decision trees).
An informative compendium on the different computa-
tional approaches can be found in the study by Suwa (19).
A web-based GPCR prediction and classification tool,
called GPCR Prediction Ensemble (GPCR-PEn, accessi-
ble at gpcr.utep.edu), has been developed to let users
select combinations of existing bioinformatics tools to per-
form GPCR prediction and classification on their own
sequence data from different source organisms for differ-
ent research objectives. For example, potential GPCRs
were predicted from transcriptome data for the cattle ticks
Rhipicephalus microplus and Rhipicephalus australis with
the aim to facilitate development of new technologies for
better control of these agricultural pests (20, 21). To
estimate the collective performance of different combina-
tions of prediction tools, it is necessary to have a unified
and integrated dataset that satisfies the following basic
requirements:

(i) The dataset should contain both positive and nega-
tive examples of GPCRs.

(ii) There should be proteins from diverse taxonomic
classes in the dataset.

(iii) Positive examples should comprise confirmed
GPCRs supported by experimental evidence or
curator verification.

(iv) Negative examples should span a large variety of
proteins, including non-GPCR transmembrane pro-
teins, with different structures and functions.

With the above requirements in mind, we have devel-
oped GPCRPEn-DB as a searchable database with con-
firmed positive examples of GPCRs and a variety of
negative examples including non-GPCR transmembrane
proteins. This paper describes the content, design and con-
struction of the database along with its web-based user
interface and demonstrates its application in assessing the
accuracies for several GPCR prediction tools.

Materials and methods

Data collection

We retrieved proteins from the UniProt (Universal Pro-
tein Resource) database (14) at www.uniprot.org that pro-
vided protein sequence data and annotations. In particular,
we used the data in the Swiss-Prot section of UniPro-
tKB protein knowledgebase as they are better curated with
supporting experimental evidence.

UniProt’s advanced search option was used to conduct a
‘Family and Domains’ search with the ‘protein family’ func-
tion. The search terms were ‘G protein-coupled receptor
n family’ with n=1,…,5. These searches retrieved all the
GPCR sequences in the IUPHAR Classes A–E. The Class
F and Taste 2 sequences were searched using ‘G protein-
coupled receptor fz smo family’ and ‘G protein-coupled
receptor T2R family,’ respectively. In each search, we
included the ‘Reviewed Yes’ filter to select only those pro-
teins that have been reviewed and confirmed to be GPCRs.
Each family was downloaded and merged into one FASTA
formatted file. The header line for each sequence gives the
GRAFS then IUPHAR family classifications, along with
the UniProt ID and entry name. For example, the protein
sequence with header line

> Secretin-like | Class B | P34998 | crfr1_human

belongs to the Secretin-like family by GRAFS classifi-
cation, which corresponds to Class B in the IUPHAR
nomenclature. The third section gives its UniProt ID,
and the entry name in the fourth section says it is a
human GPCR called crfr1. Later, we matched the IDs
of our dataset with GPCRdb and downloaded the lower-
level classification (subfamily, sub-subfamily, subtype)
names for the sequences. As our GPCR collection con-
tains sequences that are not currently in GPCRdb [e.g.
the Rhodopsin-like (Class A) GPCRs such as the odor-
ant/olfactory, and opsin receptors], only around 70% of

https://gpcr.utep.edu/
www.uniprot.org
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our GPCRs were classified to are collected lower levels
using GPCRdb.

The negative examples in our database were obtained
by downloading all sequences from Swiss-Prot, which
were not in GPCR families 1–5 or fz/smo using UniProt’s
advanced search functions with the ‘protein families’ option
and the Boolean argument ‘NOT’ is used to get the non-
GPCRs. This collection of proteins was much larger than
our GPCR dataset. To make it more comparable in size
to our GPCR set, a random sample of 3000 sequences
was taken from the collection. We then used the version
of the CD-HIT program provided by UniProt (14) to clus-
ter sequences with≥50% sequence identity and only one
representative was collected from each cluster.

To enhance our negative dataset, a collection of trans-
membrane non-GPCRs, we searched specifically for the
‘transmembrane’ proteins that are not classified as GPCRs.
At first, the search is done using the Boolean argument
‘NOT G protein-coupled receptor family’ to avoid GPCR
families. Using CD-HIT with a threshold of≥50% ensures
that the sequences obtained are sufficiently diverse while
removing homologous sequences. Then using the ‘trans-
membrane’ property provided by Uniprot, only the proteins
that have one or more transmembrane helices are selected.
The sequences were again compiled into a FASTA file as
described for the positive examples above. However, the
header line contains the label ‘Negative’ instead of the
GPCR family classification.

Database implementation

GPCR-PEnDB is a relational database that contains infor-
mation about each protein starting from general overview
(e.g. name, id and gene), then different levels of classifica-
tion, source organisms and protein features (e.g. amino acid
and dipeptide percentages). To easily access information for
both the positive and negative datasets, we have created
seven tables, namely, Protein, Organism, AA_Dipeptide
(Amino acid and dipeptide), TMHMM_Length (Trans-
membrane hidden Markov model length), IUPHAR,
GRAFS and LL_classification (lower-level classification).
The entity relationship diagram is shown in Supplemental
Figure S1.

The Protein table (Primary key: Protein_ID) contains
the sequence ids, protein names, entry names, alternative
names, sequence lengths (in terms of number of amino acid
residues), the indicator distinguishing GPCRs from non-
GPCRs and the available PDB IDs of the GPCRs. In this
table, IDs have been assigned to the protein sequences based
on the GRAFS and IUPHAR system along with the IDs
assigned for the organism types. These allow the proteins
to connect with the GRAFS, IUPHAR and Organism tables

respectively using the foreign keys defined in the table as
GRAFS_ID, IUPHAR_ID, Organism_ID.

In the Organism table (Primary key: Organism_ID), all
the entities have their scientific names and common names
along with an identification number. For bacteria and
viruses, serotype and strain information are also included.
An additional column named ‘Frequency’ has the counts
of the sequences available in the dataset for each type
of organism. With this structure, user can construct
datasets that focus on a set of specified organisms.

The GRAFS and the IUPHAR tables (Primary keys:
GRAFS_ID, IUPHAR_ID) have the same structure with two
columns. The first column contains the IDs and the second
column has the family names of the classification system as
shown in Table 1.

The LL-Class table (Primary key: Protein_ID) contains
three fields to keep the lower level classification infor-
mation of subfamily, sub-subfamily and subtype for each
GPCR.

The AA_Dipeptide table (Primary key: Protein_ID) con-
tains amino acid and dipeptide percentages. It has 423
columns, with the first one containing the protein name.
The next 20 columns give the percentages of the common
types of amino acids (represented as A, C, D,…,W, Y) and
one more column for all other unidentified amino acids
found in the sequences. These are followed by the percent-
ages of the 400 dipeptides (AA, AC, AD, …., YW, YY) plus
one column for all unidentified dipeptides.

GPCR structural features that include the lengths of
the transmembrane helices, N- and C-terminals, as well
as the inside and outside loops are important character-
istics for prediction and classification. If the 3D structure
of a GPCR is available, such information can be obtained
from its record deposited in the Protein Data Bank (PDB).
Unfortunately, relatively few 3D structures for GPCRs
have been established to date. Our recent search through
PDB has found only 546 3D structures related to 108
distinct GPCRs, corresponding to less than 4% of our
GPCR collection. We have therefore decided to use the
hidden Markov model based transmembrane helix predic-
tion tool TMHMM2.0 (22) to estimate of the lengths of
the structural regions for the GPCR dataset and generated
the TMHMM_Length table (Primary key: Protein_ID).
This table contains the predicted lengths of the N- and
C-terminals, seven transmembrane helices, three inside and
three outside loops for the GPCRs whenever the estimation
is possible.

GPCR-PEnDB was implemented on a Dell PowerEdge
R430 rack server that uses dual Intel Xeon E5-2620 proces-
sors and two 16-GB DIMM memory modules. The server
utilizes the CentOS 7 operating system, a Red Hat Enter-
prise Linux derivative. The database was built withMySQL
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Version 14.14 Distribution 5.6.37, for Linux (x86_64)
using EditLine wrapper.

Web server interface

A web interface for GPCR-PEnDB (Figure 5), implemented
in the web.py framework (0.37 version), has been made
publicly accessible at gpcr.utep.edu/database. This web
server allows users who are not familiar with MySQL to
generate queries easily by specifying different input search
parameters. Two search options are available, quick and
advanced. The quick search allows users to specify only one
conditional clause (MySQL clause name: WHERE) from
only a single table. The output will display information
from all the tables for those proteins satisfying the search
criterion. In the advanced search, multiple conditional
clauses can be specified by the user to generate the query.

We have used Python scripts to transform the inputs
specified by the user into an SQL query to gather the
results from the database. These results are presented in
the ‘Results Table’ page of the webserver in a tabular
format. The saved outputs are used twice, first for writ-
ing the results in a TSV file and then for assembling the
protein sequences in a FASTA file. Links are given to down-
load both files. Clicking on the FASTA file link allows the
user to apply the CD-HIT tool (23) to select a representa-
tive sequence from highly similar sequence clusters before
downloading. This would ensure that the user is able to
capture the desired diversity of the results while reducing
the number of sequences downloaded.

GPCR prediction tools assessment

We conducted a study on several available GPCR pre-
diction tools to assess their performance using our con-
firmed positive and negative examples in GPCR-PEnDB.
We downloaded and implemented the programs Pfam (16),
GPCR-Pred (24) and GPCR-Tm (20, 21) and run them
locally for this assessment and also evaluated PCA-GPCR
(25) and SVMProt (26) via their public web servers. The
following statistical measures were calculated:

Sensitivity=
True positives

True positives+False negatives

Specificity=
True negatives

True negatives+False positives

Positive Predictive Value(PPV)

=
True positives

True positives+False positives

Negative Predictive Value(NPV)

=
True negatives

True negatives+False negatives

Accuracy=
True positives+True negatives

Total test sequences

In addition, we used all the transmembrane non-GPCR
proteins to assess the transmembrane false positive rate
(TmFPR) as given by

TmFPR=

Transmembrane non-GPCRs falsely predicted as GPCRs
Total transmembrane non-GPCRs

A low TmFPR would indicate a good capability of the
prediction tool to distinguish non-GPCR transmembrane
proteins from GPCRs.

Results and discussion

In this section, we describe the resulting database, give
examples of different queries and demonstrate how the
collected data can be used to assess the performance of dif-
ferent GPCR prediction tools. Figure 2 gives an overview
of GPCR-PEnDB.

Collected datasets of GPCRs and non-GPCRs

The collected data resulted in two FASTA files contain-
ing 3129 confirmed GPCRs and 3575 non-GPCRs. Table 1
shows the numbers of GPCR sequences grouped by the
GRAFS and IUPHAR families. As expected, the vast major-
ity of GPCRs belong to the rhodopsin-like family or Class
A. Figure 3 shows the number of proteins available in
the GPCR datasets grouped by major taxonomic classes.
In total, there are 1290 distinct organism IDs, of which
289 are associated with GPCRs. It can be seen from
Figure 3 that the GPCR collection is highly dominated by
mammalian sequences.

The number of positive examples in our dataset is
small compared to the GPCR collection in the established
databases like GPCRdb that contains over 15 000 GPCR
sequences. The difference is mainly due to our requirement
for all positive examples to be confirmed GPCRs, which
would best serve the purpose of evaluating different GPCR
prediction and classification algorithms. On the other
hand, our GPCR collection contains 1100 proteins that
are not in the current GPCRdb. These are mainly receptors
from Class A including olfactory, vomeronasal, tyramine,
octopamine and opsins. For Class B we have incorporated
methuselah and latrophilin types of proteins, and for Class
C our database has some additional groups of metabotropic
glutamate receptors not available in GPCRdb. Further-
more, GPCR-PEnDB also contains Classes D and E recep-
tors, which are totally absent from GPCRdb, as well as
some additional receptors from Class F. A comparison list
of proteins in GPCRdb and GPCR-PEnDB is provided in
Supplemental file S2.

The availability of negative examples is a unique feature
of GPCR-PEnDB. Over 60% of these negative examples are
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Figure 2.Gprotein-coupled receptor Prediction Ensemble Database (GPCR-PEnDB) overview showing the tables in the database, number of sequence
entries, available web-server search options, and different types of algorithms for GPCR prediction and classification.

Figure 3. Number of sequences in different groups of organisms in the GPCR datasets. Groups with more than 40 sequences are shown as separate
bars. The remaining ones are grouped as “Others”.

non-GPCR transmembrane proteins. As GPCRs have seven
transmembrane helices, they may share certain similarities
with other transmembrane non-GPCRs with different or
even the same number of helices. To distinguish GPCRs
from other transmembrane proteins, it is important to have
a good number of such sequences in the negative examples.
The negative dataset is intentionally included to facilitate
the construction of test datasets to evaluate the capability

of any GPCR prediction program to separate GPCRs from
other transmembrane proteins.

The current version of GPCR-PEnDB has also included
unconfirmed GPCRs for three arthropods, Anopheles gam-
biae (mosquito), Drosophila melanogaster (fruit fly) and
Rhipicephalus microplus (cattle tick), which are labeled
as ‘predicted GPCRs.’ The unreviewed sequences for
mosquito and fruit fly were retrieved from UniProt and the
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Figure 4.MySQL query asking for GPCRs in Class A with more than 10%
serine and C-terminal longer than 300 amino acid residues.

predicted cattle tick sequences are obtained from the sup-
plemental materials of the study by Guerrero et al. (20).
Although these organisms are of importance in biomedical
and agricultural research, there are relatively few confirmed
GPCR sequences for arthropods in general, as can be seen
in Figure 3. We have planned to extend our database to fur-
ther incorporate predicted GPCR data for more organisms.
Such a predicted GPCR collection can be especially useful
for researchers studying non-mammalian organisms where
confirmed GPCRs are scanty.

The searchable GPCR-PEnDB database

We have gathered the general information (e.g. protein
name, gene name and sequence) for each protein along
with the common features like amino acid and dipep-
tide percentages. For the GPCRs, the family and lower-
level classifications as well as the lengths of characteris-
tic regions estimated by TMHMM 2.0 are also provided
whenever possible. We can search GPCR-PEnDB by gener-
ating MySQL queries consisting of various clauses that not
only involve joining multiple tables but grouping the results
based on a numeric range. Figure 4 contains a query that
search for all the GPCRs with ‘Class A’ IUPHAR classifica-
tion, >10% serine in amino acid composition and >300 in
C-terminal length. The search result, as shown in Table 2,

Table 2. Output table of the query asking for GPCRs in Class

A with more than 10% serine and C-terminal longer than 300

amino acid residues

Protein_ID Serine(S) % Length C_term Common name

Q9W534 10.91 670 305 Fruit fly
Q6NV75 10.18 609 311 Human
Q86SP6 12.31 731 367 Human
Q8K0Z9 10.30 631 333 Mouse
Q9DDD1 12.31 723 357 Chicken
Q924Y8 11.92 730 368 Rat

also displays the UniProt protein ID, sequence length and
the source organism.

It should be noted here that we have encountered a
couple of problems in obtaining complete information for
some of the GPCR sequences. First, lower-level classifica-
tions are not available for our 1100 GPCRs that are not
in GPCRdb. Although we have tried using some existing
GPCR classification tools, their classification systems were
not totally consistent with that used in GPCRdb. Second,
when TMHMM 2.0 was used to estimate the lengths of
characteristic regions, the program predicted the number
of helices erroneously as six or eight rather than seven for
550 of the full-length GPCRs in our database. We also
attempted to look into UniProt for the regional length infor-
mation but there were still issues such as the exact length
of a helix or N-terminal being missing or the reported
lengths being inconsistent with the common structure of
GPCRs. Due to these reasons current GPCR-PEnDB can
only provide estimated regional lengths for those GPCRs
that were predicted with seven transmembrane helices by
TMHMM 2.0.

Web interface for GPCR-PEnDB

The web interface (Figure 5) is designed to provide the flex-
ibility for users to obtain information from GPCR-PEnDB
without constructing MySQL queries. One can assemble
different queries and narrow down the search to accumu-
late details about the entities of interest by entering or
selecting parameters on the webpage. Each resulting pro-
tein ID is linked to the UniprotKB database for the user
to find more detailed information about the protein. The
user can also specify whether or not the display should
include detailed information of amino acid percentages or
the structural region lengths estimated by TMHMM. From
the results page, users can compile and download the tabu-
lar results in TSV format and sequences in a FASTA format.
The FASTA download can be done with or without using
the clustering tool CD-HIT that provides nonredundant
representative sequences as output. This allows user to keep
the FASTA sequences separated from the sequence derived
features so that other features can be generated and used if
needed.

As an example to illustrate using the advanced search
option, we can look for all GPCR sequences with lengths
greater than 3000 (see Figure 5). The search result in
Figure 6 shows that there are 10 such confirmed GPCR
sequences from different organisms such as human, fruit
fly, mouse, zebra fish and rat. All these sequences belong
to Class B (Secretin-like/Adhesion-like family). This tells
us that GPCRs from other families do not exceed 3000
in length. The lower-level classification information is also
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Figure 5. Web interface of GPCR-PEnDB, showing both Quick Search (top) and Advanced Search options (bottom).

shown for all but one of these GPCRssess the prediction
accuracies of sevs. Furthermore, if we choose the option to
display the available TMHMM predicted regional lengths,
we can see that the N-terminals (length 2470–5907) are
much longer than the C-terminals (length 92–315) in these
long Class B GPCRs.

Assessment of GPCR prediction tools

Using our compiled data in GPCR-PEnDB, we conducted
a study to assess the prediction accuracies of several
GPCR prediction and classification tools. Our investiga-
tion was motivated by a preliminary smaller scale exer-
cise where we applied various GPCR prediction tools
on 10 transmembrane non-GPCR proteins and observed
that a large portion of them were erroneously predicted
as GPCRs. The programs assessed include the hidden
Markov model–based Pfam (16) and GPCR-Tm (20, 21),
the support vector machine–based GPCRpred (24) and
SVM-Prot (26), and PCA-GPCR (25) that combines prin-
cipal component analysis with an intimate sorting algo-
rithm. All these programs are either accessible through
a public website or have source code available that can
be downloaded and implemented on a local machine.
Among them, GPCRPred, GPCR-Tm and PCA-GPCRwere
developed specifically for GPCR prediction but Pfam and
SVM-Prot are general tools for functional classification of
proteins.

The performances of these tools (see Table 3), with
overall accuracies ranging from around 73–97%, are con-
sidered satisfactory to excellent. However, we have also
observed that the false positive rates among transmembrane
non-GPCRs are very high for all the three GPCR-specific
prediction tools. In contrast, the general-purpose Pfam and
SVM-Prot performed much better. This may be attributed
to the availability of a much larger variety of non-GPCR
proteins in the training data for Pfam and SVM-Prot. How-
ever, because these programs were not designed for GPCR
prediction, their outputs have to go through several addi-
tional post-processing steps before one can decide whether
an input protein sequence is a GPCR or not. So, reducing
the high TmFPR in the current GPCR prediction tools can
be a desirable improvement.

It should be noted that some of the GPCR prediction
programs can, in varying degrees, classify GPCRs into finer
levels. For example, using the reviewed GPCR sequences
from Uniprot and a clustering approach, SeQuery (13) can
generate, for a given GPCR, its centrality relationships with
other closely related protein sequences at three different
levels (individual protein, subfamily and family). Neverthe-
less, the classification systems used in the various programs
are not all the same and each has its individual restric-
tions. We have not yet come across one that can perform
a full classification of general GPCR proteins reliably all
the way down from the family to the subtype level. One
possible reason could be due to the limited number of
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Figure 6. Results table from the search of GPCR sequences longer than 3000 amino acids using the web server. The table entries can be downloaded
in CSV format by clicking on the “Result table” link, and the corresponding protein sequences can be downloaded in FASTA format by clicking on
the “FASTA file” link.

Table 3. Assessment on available web-servers (all numbers reported are percentages)

Pfam GPCRPred GPCR-Tm PCA-GPCR SVM-Prot

Accuracy 90.95 86.32 88.76 72.90 96.57
Sensitivity 80.02 97.98 95.82 99.62 96.57
Specificity 99.72 76.95 83.09 51.60 96.56
aPPV 99.57 77.35 81.99 62.14 95.77
aNPV 86.13 97.93 96.11 99.42 97.22
aTmFPR 0.45 36.83 26.98 70.64 5.76

aPPV: positive predictive value, NPV: negative predictive value, TmFPR: false positive rate among transmembrane non-GPCRs.

confirmed examples of in the Class D, E and F families.
We expect that appropriate use of over- and under-sampling
techniques (27, 28) should help circumvent this problem
of data imbalance. The sequence entries in GPCR-PEn
will conveniently provide data to facilitate such algorithm
development work.

Comparison of GPCR-PEnDB with other
databases

In Table 4, we provide a comparison of the features and
capabilities of GPCR-PEnDB with UniProt, GPCR-PEnDB

and SeQuery databases, showing some unique features
incorporated in our database that help provide analysis-
ready datasets for users to test the performances of existing
or newly developed algorithms The provision of diverse
confirmed GPCR and non-GPCR examples and the capa-
bility of searching by both GRAFS and IUPHAR classifi-
cations are most notable characteristics of our database.
Furthermore, as our purpose is to facilitate GPCR pre-
diction and classification, GPCR-PEnDB also provides
some additional search criteria to help user ensure the
obtained datasets only contains the appropriate sequences.
For example, a search criterion can be set to screen out
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Table 4. Comparison of GPCR-PEnDB with UniProt, GPCRdb, and SeQuery

UniProt GPCRdb SeQuery GPCR-PEnDB

Overview Database of pro-
tein sequences and
their biological
information

Collection of
data, diagrams
and webtools
for analyzing
GPCR structures
and phylogenetic
relationships

Graphical visual-
ization database
to analyze
genome/proteome
networks

Database of con-
firmed GPCRs and
non-GPCR exam-
ples to facilitate
prediction and
classification of
GPCRs

GPCR sequence
collection

Mixed
reviewed/unreviewed
GPCRs

Mixed reviewed
and unreviewed
GPCRs from
UniProt, excluding
olfactory receptors

Reviewed GPCRs
collected from
UniProt, GPCRdb
and PDB.

Reviewed GPCRs
from UniProt, unre-
viewed GPCRs
from a few species

Non-GPCR
sequence collection

Mixed
reviewed/unreviewed
non-GPCRs

Not available Not available Reviewed non-
GPCRs, including
Tm and non-Tm
proteins

GRAFS &
IUPHAR
classification

Not available Searchable, single
sequence can be
downloaded using
numeric code

Not available Searchable,
sequences can be
downloaded by
classification

Searchable labels
for GPCR and non-
GPCR

Not available Not available Not available Confirmed/predicted
GPCRs; Tm/nonTm
non-GPCRs; full
GPCRs/fragments;

Sequence selection
by CDHIT

Available Not available Not available Available

Sequence features GPCR regional
lengths

Not available Not available Amino acid and
dipeptide percent-
ages; TMHMM2.0
estimates of GPCR
regional lengths

Sequences with
nonstandard amino
acids

Not indicated Not indicated Not indicated Indicated and sep-
arable from other
sequences

Sequence download
options

FASTA, TSV,
RDF/XML, Excel,
Text, GFF

JSON, API Not available FASTA, TSV

Structural
information

Links to PDB Available Not available Links to PDB

Ligand information Available Available Not available Not available

Information display Text, tables and
figures

Text, tables, and
figures

Text and figures Tables

sequences containing undetermined amino acid residues,
which are not allowed by some algorithms (e.g. SVMProt).
Other details are listed in Table 4.

Conclusion and future work

We have set up the GPCR-PEnDB database along with
a user-friendly web interface that would allow users to
easily search for the sequence and related information

of confirmed GPCR and non-GPCR proteins. It allows
users, according to their own research interests, to com-
pare and contrast sequence features among different groups
of GPCRs, and to compile datasets for training, test-
ing and evaluation of GPCR prediction and classification
algorithms.

With this initial version, GPCR-PEnDB provides the
necessary framework for growth and refinement as more
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information can be included and their display can be
improved in future developments. Ongoing work to expand
the sequences within the database includes extending the
collection of predicted but not yet confirmed GPCRs, as
well as incorporating 3D structural information, ligand-
binding sites and available gene ontology information (GO-
terms) that identifies the biological processes and molecular
functions involved in order to help elucidate the functional
roles of individual GPCRs.
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