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A B S T R A C T   

This research article examines the reaction-diffusion process in an immobilized enzyme batch 
reactor. The model incorporates strongly non-linear factors that are associated with standard 
Michaelis-Menten kinetics. The non-linear reaction-diffusion equations for substrate and product 
concentrations have been approximated analytically. Employing two different semi-analytical 
methods, Akbari-Ganji’s method (AGM) and the modified Adomian decomposition method 
(MADM), to compute the dimensionless steady-state solutions to the system of non-linear dif
ferential equations for all values of reaction parameters. In addition, the dynamics of the mean 
integrated effectiveness factor of penicillin acylase in porous spherical particles have been pre
sented for the determination of the local effectiveness factor. In order to gauge the potency of our 
proposed solution, we compare two semi-analytical results with a numerical result that are in 
good agreement across the whole concentration range. The proposed formulation aims to simu
late the dynamic performance of the system utilizing the parameters and would enhance the 
determination of the optimum particle size for enzyme catalysts.   

1. Introduction 

Several factors, including pH, temperature, enzyme concentration, and substrate concentration, can influence enzyme activity. An 
enzyme’s activity is measured by the amount of enzyme required to convert a fixed amount of substrate into a product. It can be 
measured by the initial phase of its progress curve [1]. Fermentation is a potential method for mass-producing enzymes for use in 
industry. Enzymes are synthesized via fermentation, which employs microorganisms like yeast and bacteria. Enzymes can be produced 
using either of two distinct fermentation processes. Submerged fermentation and fermentation on solid surfaces are two examples. 
Enzymes produced by microorganisms are widely used in many different industries. Enzymes from microorganisms can be genetically 
modified, making them a potential low-cost alternative to enzymes from plants and animals. Growing bacteria, mould, and yeast is an 
integral part of the fermentation process used to create microbial enzymes [2]. 

The significance of biological catalysis in the framework of sustainable chemical manufacturing is raised, as is the demand for 
enzyme immobilization as a crucial facilitating technology and for large-scale processing. Immobilization is necessary for boosting the 
stability and recyclability of the biocatalyst in comparison to free enzyme. The immobilization used is further impacted by the reactor 
configuration, such as stirred tank, fixed bed, and fluidized bed [3]. Immobilization is usually the key to boosting an enzyme’s 
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operational performance in industrial processes, particularly for use in non-aqueous media [4]. Enzyme immobilization techniques are 
often categorized into two distinct forms based on the technique by which the chemical process is bound through support binding or 
entrapment. To achieve stable attachment, covalent bonds must be formed, typically through reactions involving functional groups on 
the protein surface. Like non-covalent adsorption, these methods can be applied to unmodified proteins [5]. The process of immo
bilizing Penaeus merguiensis alkaline phosphatase (PM ALP) onto gold nanorods (GNRs) was achieved through the use of ionic ex
change and hydrophobic contacts. The optimal pH and temperature for achieving maximal enzyme activity in the immobilized PM ALP 
have been determined to be 11.0 and 60 ◦C, respectively, for the hydrolysis of para-Nitrophenylphosphate (p-NPP), were discussed by 
Homaei. A et al. [6–8]. The use of immobilized enzyme-based catalytic constructs has the potential to substantially improve a wide 
range of industrial processes, according to their distinct catalytic activity and reaction specificity. The enhancement of key functions in 
the preparation of nano-enzymes and their catalytic features will result in advantageous micro-environments for biocatalysts that are 
significant in industrial applications [9]. 

Both the bulk liquid phase, which contains the substrate (and products), and the solid enzyme catalyst phase, which is where the 
reaction and transformation of substrate into products take place, are modeled separately during heterogeneous enzymatic catalysis in 
a batch reactor. Substrate mass is moved from the bulk liquid phase into the interior of the carrier, where the enzyme is immobilized 
during the reaction. Fick’s law and the general rate equation that characterizes enzyme catalysis are used to model the mass transfer 
process taking place within the catalyst particles [10]. 

A rate-determining step is only one of several that occur in succession in immobilized (bio) catalyst systems, particularly in porous 
particles. There are several steps involved in film diffusion, such as pore diffusion to the active site of the substrate molecule, bio 
catalytic steps (s), pore diffusion to the surface of the product molecule, and film diffusion to the bulk of the product molecule. Based 
on the circumstances of the reaction, each transport phase could replace the bio catalytic step as the rate-determining step. Under the 
current conditions, determining which step is rate-limiting is crucial [11]. In a porous catalyst, the reaction rate is regulated not only 
by intrinsic kinetics but also by intraparticle mass and heat transport. A reaction’s efficiency is measured as the ratio of the observed 
rate to the rate if intraparticle mass and heat transfer resistances do not exist [12]. Penicillin acylase is a rare case of an enzyme being 
used effectively in the industrial manufacture of a high-value drug [13,14]. Recently, penicillin acylase has gained a lot of attention 
because it has expanded its role from that of a simple hydrolase in the synthesis of 6-amino penicillanic acid (6APA) from penicillin G 
or V to that of a valuable biocatalyst in a number of different organic synthesis reactions [15]. 

Immobilized enzymes undertake operations in consecutive batches, with the enzyme being retrieved after a certain point of 
conversion has been obtained and reused until the catalyst replacement requirement has been fulfilled [16]. Besides substrate con
centration, the rate-determining variables in the rate equation are the enzyme’s catalytic potential, which is in turn proportional to the 
enzyme’s concentration and the reaction rate constant. The amount of immobilized enzyme and the amount of catalyst in the reactor 
both influence the enzyme concentration in the reactor. The aim of the equations is to correlate the diffusion and reaction processes 
within the catalyst particles. For spherical enzyme catalyst particles, a flexible system of equations is derived that permits the 
determination of the concentration profile of substrate within the catalyst in terms of particle geometry (radius) and concentrations of 
substrate in the bulk liquid phase [17]. Recently, there has been a significant focus on finding the analytical solution for the case of 
strongly nonlinear differential equations using various analytical approaches. Exponential approaches were used by J.I. Ramos to solve 
the reaction diffusion equations [18]. J. He’s energy balance approach [19] was used to generate approximate solutions by D. D. Ganji 
et al. Work on finding exact solutions to nonlinear diffusion-reaction equations, including quadratic and cubic nonlinearities, has been 
done by R.S. Kaushal et al. Furthermore, it is stated that analytical solutions are used to describe many physical phenomena and are 
very helpful in enhancing the system [20]. Analytical solutions for Cauchy reaction-diffusion problems have been obtained by M.S.H. 
Chowdhury and I. Hashim by HPM; they compared HPM’s efficiency to that of ADM and HAM in a study published in Ref. [21]. We 
present in this article a semi-analytic method for solving nonlinear differential equations, both individually and in sets, which enables 
the quick and simple determination of the final solution of each differential equation in the form of an algebraic function. By choosing 
an answer function for a differential equation with constant coefficients that can be calculated by using particular initial or boundary 
conditions, Akbari-Ganji’s method (AGM) aims to solve all nonlinear differential equations algebraically [22]. In the steady-state 
regime, no rigorous analytical solution to the reaction-diffusion equations has yet been presented for the concentration of sub
stances. Using a modified Adomian decomposition method (MADM) and Akbari-Ganji’s method (AGM), we obtained an analytical 
expression for dimensionless substrate and product concentration. Several diffusional constraints are shown, and their corresponding 
dynamics are described. In addition, a range of parameter values has been analyzed to determine the evolution of the mean integrated 
effectiveness factor response. Error analysis of expressions for substrate concentrations and effectiveness factor response by T. Praveen 
et al. Performance calculations have also been done for batch reactors [23]. 

The key objective of this work is to validate a reaction-diffusion model by comparing the numerical solution to two solutions (the 
AGM and the MADM). We employed both the AGM and the MADM to compute the mean integrated effectiveness factor, with the AGM 
approach favouring ease of calculation. When comparing the AGM result to the numerical result, the present model’s graphical 
depiction is more consistent with the AGM results than the MADM’s approach. 

2. Formulation of the problem 

The modeling of reaction-diffusion phenomena within immobilized enzyme catalysts considers a uniform catalyst particle size and 
a uniform enzyme distribution. The equations involve substrate and product concentrations, the catalytic potential of the enzyme, 
which depends on the enzyme concentration, and the reaction rate constant. The equations are modeled to understand the process of 
diffusion and reaction inside the catalyst particles, the diffusion and reaction phenomena inside the catalyst particles are modeled to 
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understand the dynamics of reaction-diffusion. The heterogeneous nature of catalysis causes substrate and product concentration 
profiles inside the catalyst particle. Reaction time (t) and radial distance within the enzyme catalyst particle (r) are the variables to be 
considered for modeling. Now, considering a steady-state regime, time is no longer a variable, and the concentration profiles are 
plotted against the radial distance in Fig. 1. 

The model equations have been developed with the diffusion and reaction components. The diffusion component was modeled with 
Fick’s law, and the kinetic component was modeled considering uncompetitive inhibition by penicillin G (Pen-G), competitive inhi
bition by phenyl acetic acid (PAA), and non-competitive inhibition by 6-aminopenicillanic acid (6-APA) [17], [23–24]. This hypothesis 
is formulated on the premise that greater the volume of immobilization, the more will be overall efficacy of the result obtained using 
Pen-G. The chemical structure of the reactant Pen-G hydrolysis gives the product 1 as PAA and product 2 as 6-APA, as depicted in the 
following mechanism. 

The governing reaction diffusion equations are as follows [17,24]: 

∂S
∂t

=De

(
∂2S
∂r2 +

2
r

∂S
∂r

)

− v (1)  

∂P1

∂t
=De1

(
∂2P1

∂r2 +
2
r

∂P1

∂r

)

+ v (2)  

∂P2

∂t
=De2

(
∂2P2

∂r2 +
2
r

∂P2

∂r

)

+ v (3)  

v=
kES

K
[
1 + (S/K) +

(
S2
/

KKS
)
+ (P1/K1) + (P2/K2) + (SP2/KK2) + (P1/K1)(P2/K2)

] (4) 

Fig. 1. Graphical representation of immobilized enzyme on a spherical catalyst particles.  
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Where S is the Pen-G concentration inside biocatalyst, P1 is the PAA concentration, P2 is the 6-APA concentration, k the reaction rate 
constant, E the enzyme concentration inside the catalyst, K substrate Michaelis constant, KS is the Pen-G inhibition constant, K1 and K2 
are PAA, and 6-APA inhibition constants respectively, r is the radius inside the biocatalyst particle, De,De1,De2 are the effective 
diffusion coefficients for Pen-G, PAA, and 6-APA respectively. Substrate diffusion occurs inside the catalyst particles in the liquid-filled 
cavities of the pores. This complex interaction is modeled by considering an overall diffusion process, which is controlled by a co
efficient De, known as the effective diffusion coefficient, which considers the porous shape of the support were discussed by Valencia P 
et al. [17,25]. A property of both the solute and the solvent, De can be experimentally determined [26]. The values for the parameters 
involved in the equations (1)–(4) are listed in Table 9 [17,24]. 

In order to study a reaction-diffusion model, the following assumptions are made:  

i) There is no concentration dependent interaction between the support and reactants (constant diffusivity); ii) isothermal conditions 
are present during reaction; iii) reactants are transported through the porous support by diffusion according to Fick’s law; iv) 
enzyme is uniformly distributed inside catalyst particle; and v) there is no external diffusional restrictions. 

The initial and boundary conditions for the equations (1)–(3) are as follows: 
The initial concentrations of substrate and both products inside the catalyst particle are: 

S(r, 0)= Sb0 (5)  

Pi(r, 0)= 0, i= 1, 2 (6) 

The boundary condition for substrate and both products concentration on a spherical particle at r= 0 are: 

∂S
∂r

(0, t)= 0 (7)  

∂Pi

∂r
(0, t)= 0, i= 1, 2 (8) 

This condition reflects that there is no substrate nor products flux through the center of the sphere. For all t > 0, concentration at the 
catalyst surface (r = R) is: 

S(R, t)= Sb (9)  

Pi(R, t)=Pbi, i= 1, 2 (10) 

The above system of equations can be converted into the dimensionless form by defining the following variables: 

Φ1 = R

̅̅̅̅̅̅̅̅̅̅̅̅
k ·E

K ·De

√

, Φ2 = R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k ·E

K1 ·De1

√

, Φ3 = R

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k ·E

K2 ·De2

√

, α =
K
KS

, βb =
Sb

K
,

γ1b =
Pb1

K1
, γ2b =

Pb2

K2
, β =

S
K
, γ1 =

P1

K1
, γ2 =

P2

K2
, x =

r
R

(11)  

Here the typical dimensionless concentration are denoted as β, γ1 and γ2 for S,P1 and P2 respectively. x is the dimensionless radial 
distance, Φ1,Φ2 and Φ3 are the Thiele modulie. The dimensionless form of the equations (1)–(3) for the steady-state condition is as 
follows: 

d2β
dx2 +

2
x

dβ
dx

= Φ2
1N (12)  

d2γ1

dx2 +
2
x

dγ1

dx
= − Φ2

2N (13)  

d2γ2

dx2 +
2
x

dγ2

dx
= − Φ2

3N (14)  

where 

N =
β

1 + β + αβ2 + γ1 + γ2 + βγ2 + γ1γ2
. (15) 

The boundary conditions for the system of non-dimensional equations (12)–(14) are as follows: 

dβ
dx

=
dγ1

dx
=

dγ2

dx
= 0; ​ when ​ x = 0 (16)  
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β = βb, γ1 = γ1b, γ2 = γ2b; when ​ x = 1 (17) 

The relation between β, γ1 and β, γ2 are as follows 

β =
Φ2

1

Φ2
j
(γib − γi) + βb, where ​ i = 1, 2 and ​ j = i + 1 (18) 

Using Eq. (18), the relation among β, γ1 and γ2 is obtained in Eq. (19) 

2β
Φ2

1
+

γ1

Φ2
2
+

γ2

Φ2
3
=

2βb

Φ2
1
+

γ1b

Φ2
2
+

γ2b

Φ2
3

(19)  

3. Materials and methods 

In recent years, it has become a major research focus to develop approximate analytical methods for the reaction diffusion 
equations to solve nonlinear partial differential equations that are both simple and accurate. These methods include He’s variation 
iteration method [27], Akbari-Ganji’s method [22], homotopy perturbation method [28], Adomian decomposition method [29–32], 
modified Adomian decomposition method [33], homotopy analysis method [34], new improved generalized decomposition method 
[35], Duan-Rach modified Adomian decomposition method [36–38], as well as numerical techniques like the boundary element 
method [39], finite difference method [40], and finite element method [41]. The most significant advantage of choosing Akbar
i-Ganji’s method and the modified Adomain decomposition method compared to other analytical methods is that they diminish the 
level of difficulty in solving nonlinear differential equations. 

3.1. Akbari Ganji’s method and its advantages 

Catalysts are commonly employed in mass transfer chemical reactions to control the reaction rate. The catalyst’s form and physical 
characteristics are crucial parameters in determining the differential equation that governs the chemical system. A powerful algebraic 
approach, Akbari-Ganji’s method [22] provides semi-analytic approximation solutions to nonlinear differential equations, as 
mentioned in the introduction. Solutions are given in the form of convergent series, and linearization is not necessary in this method. 

3.1.1. Analytical expression of dimensionless concentration of substrate and products under steady state condition using Akbari Ganji’s 
method 

In this paper, the Akbari-Ganji’s method (see Appendix A) is used to solve the system of non-linear differential equations. The 
closed form of analytical expression of dimensionless concentrations (see Appendix B) of substrate β(x) and products γ1(x) and γ2(x)
are 

β(x)=

βb sinh

⎛

⎜
⎝

Φ1 x̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√

⎞

⎟
⎠

x sinh

⎛

⎜
⎝

Φ1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+βb+γ1b+γ2b+α β2

b+βb γ2b+γ1b γ2b

√

⎞

⎟
⎠

(20)  

Using the relation Eq. (18), the product concentrations γ1(x) and γ2(x) are obtained as follows 

γi(x)= γib −

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
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⎛
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⎜
⎜
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⎛

⎜
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1+βb+γ1b+γ2b+α β2
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√

⎞

⎟
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⎜
⎝

Φ1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+βb+γ1b+γ2b+α β2
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√

⎞

⎟
⎠

− 1
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⎟
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⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

·

[
Φ2

j

Φ2
1

]

,

where ​ i = 1, 2 and ​ j = i + 1 (21) 

The Eqs. (20) and (21) satisfy the boundary conditions (16)–(17). These equations represent the new analytical expression of the 
concentration of substrate and products for all possible values of the parameters Φ1,Φ2,Φ3, α, βb, γ1b and γ2b. The solution of γ1 and γ2 
are same except the bulk concentration and Thiele modulus. Thus, product concentrations behave identically depending on diffusional 
limitations. 

3.2. Modified Adomian decomposition method and its advantages 

In this work, the modified Adomian decomposition method is adopted to obtain the analytical solution for the above Eqs. (12)–(14) 
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for the conditions (16)–(17). In recent years, many authors handled MADM to solve strongly non-linear problems. MADM provides 
more realistic series solutions that generally converge very rapidly in real physical problems. The rapid convergence shows that this 
method is reliable [33,37]. The constructive procedure and choice of handling the operator are provided by M. M. Hosseini and M. 
Jafari [42,43]. The decomposition method is straightforward, without restrictive assumptions, and the components of the series so
lution can be easily computed using any mathematical symbolic package [44]. 

3.2.1. Solution of dimensionless concentration of substrate and products under steady state condition using modified Adomian decomposition 
method 

We have also employed the modified Adomian decomposition method (see Appendix C) to solve the system of non-linear differ
ential equations. The simple and closed form of analytical expression of dimensionless concentrations (see Appendix D) of substrate 
β(x) and products γ1(x) and γ2(x) are 

β(x)= βb +A ·
[
Φ2

1

(
x2− 1

)]
(22)  

A=
1
6

[
βb

1 + βb + αβ2
b + γ1b + γ2b + γ2bβb + γ1bγ2b

]

(23)  

Using the relation Eq. (18), the product concentrations γ1(x) and γ2(x) are obtained as follows 

γi(x) = γib − [β(x) − βb ] ·

[
Φ2

j

Φ2
1

]

,

where ​ i = 1, 2 and ​ j = i + 1
(24) 

The Eqs. (22)–(24) satisfy the boundary conditions (16)–(17). These equations represent the new analytical expression of the 
concentration of substrate and products for all possible values of the parameters Φ1,Φ2,Φ3, α, βb, γ1b and γ2b. The solution of γ1 and γ2 
are same except the bulk concentration and Thiele modulus. Therefore behaviors of the both product concentrations are almost same, 
varies with the diffusional restrictions. 

3.2.2. Solution with degree of conversion 
Consider a degree of conversion for the concentration of substrate and products respectively as, 

X =
βb0 − βb

βb0
;X =

P1b

Sb0
=

P2b

Sb0
=

γ1bK1

βb0K
=

γ2bK2

βb0K
(25) 

Bulk concentrations in function of degree of conversion: 

βb = βb0(1 − X); γ1b =
βb0K
K1

X; and ​ γ2b =
βb0K
K2

X (26) 

Replacing in Eqs. (20) and (22), we get the concentrations inside catalyst as 

β(x)= βb0(1 − X) + AΦ2
1

(
x2− 1

)
(27)  

γ1(x)=
βb0K
K1

X + AΦ2
2

(
1 − x2) (28)  

γ2(x)=
βb0K
K2

X + AΦ2
3

(
1 − x2) (29)  

A=
1
6

⎡

⎢
⎢
⎣

βb0(1 − X)
1 + βb0(1 − X) + α[βb0(1 − X)]2 + βb0K

K1
X +

βb0K
K2

X +
βb0K
K2

Xβb0(1 − X) + βb0K
K1

X βb0K
K2

X

⎤

⎥
⎥
⎦ (30) 

The limitation of the proposed solution for substrate concentration β(x) is given as follows by the following constrain: 

6

(
K1K2 + βb0(1 − X)K1K2 + αβ2

b0(1 − X)2K1K2+

βb0XKK2 + βb0XKK1 + βb0X(1 − X)KK1 + β2
b0X2K2

)

− Φ2
1K1K2> 0 (31) 

Based on the combination of βb0 and Φ1 as determined by Eq. (31), Fig. 9(a and b) illustrates the acceptable and unacceptable areas 
of the proposed solution. The white zone denotes the valid solution region, while the red zone denotes the invalid solution region. 

4. The global integral effectiveness factor is as follows 

From the present study, we can investigate the effectiveness of a catalyst or reactor in promoting a chemical reaction, considering 
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the influence of reaction kinetics and mass transport (diffusion) within the system. Additionally, it assesses the efficiency of substrate 
transportation to the catalyst and the removal of products from it. The usage of this technique facilitates the optimization of reaction 
speeds while simultaneously minimizing the occurrence of inefficient side reactions. Its value can be used to determine the potential of 
a particular reactor or catalyst for performing the intended chemical conversion. For a spherical catalyst particle, the global integral 
effectiveness factor is [45]. 

η′= 3
∫1

0

η · x2 · dx (32)  

The local effectiveness factor depends on the reaction rate equation. The general definition is: 

η= reaction rate inside catalyst
reaction rate at catalyst surface

conditions(
bulk

conditions
)

=
v(S(r),P(r))

v(Sb,Pb)
(33) 

For the penicillin acylase reaction-diffusion equation, the local effectiveness factor is obtained by replacing N in the above 
definition. 

η=
β
(
1 + βb + αβb

2 + γ1b + γ2b + γ2bβb + γ1bγ2b
)

βb
(
1 + β + αβ2 + γ1 + γ2 + γ2β + γ1γ2

) (34)  

4.1. Mean integrated effectiveness factor for the concentration of substrate using AGM solution 

The mean integrated effectiveness factor obtained using Eqs. (32) and (34) is as follows: 

η′=

(
3

Λ2

)

[Λ coth(Λ)− 1],where Λ=
Φ1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + βb + γ1b + γ2b + α β2
b + γ2b βb + γ1b γ1b

√ (35)  

The dynamics of the mean integrated effectiveness factor is provided in the Table 7(a - d). 

4.2. Mean integrated effectiveness factor for the concentration of substrate using MADM solution 

The mean integrated effectiveness factor obtained using Eqs. (32), (34) is as follows: 
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where Q1 = E
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X

(37)  

when comparing the MADM with the AGM for calculating the mean integrated effectiveness factor, the AGM provides a simpler 
computation, whereas the MADM gives a more comprehensive mathematical expression. The dynamics of the mean integrated 
effectiveness factor is provided in the Table 8(a - c). 
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5. Results and discussion 

The concentration of substrate (Pen-G) and products (PAA, 6-APA, respectively) depends upon the Thiele modulus Φi; i= 1,2, 3. In 
addition, we analyze the behavior of graphs depicting the relationship between dimensionless substrate concentration β and product 
concentrations γi; i= 1, 2 over dimensionless radial distance x, as a function of the Thiele modulus Φ for various values of βb0. The 
graphs based on Fig. 2(a–d), 3 (a - d), and 4 (a - d) represent the mechanisms of uncompetitive substrate inhibition by Pen-G, 
competitive product inhibition by PAA, and non-competitive product inhibition by 6-APA (see Tables 1 and 2). 

Fig. 2. Comparison of dimensionless substrate concentration β versus dimensionless radial distance x with numerical simulation results 
(FDM) for various diffusional restrictions Φ1 and different initial bulk substrate concentration βb0 (a) 0.1 (b) 1 (c) 10 and (d) 100 using 
Eqs. (12), (20) and (22). 

Table 1 
(a) Comparison of dimensionless uncompetitive inhibition by Pen-G concentration of substrate β (Eq. (20), (22)) and numerical simulation against the 
dimensionless radial distance x for different values of Thiele modulus Φ1 and (βb0 = γ1b = γ2b = 100, α= 0.000158).  

Φ1 = 0.1 Φ1 = 1 

X AGM 
(20) 

MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

AGM 
(20) 

MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

0.0 100 100 100 0 0 99.9992 99.9991 99.9991 0.0001 0 
0.2 100 100 100 0 0 99.9992 99.9992 99.9992 0 0 
0.4 100 100 100 0 0 99.9993 99.9993 99.9993 0 0 
0.6 100 100 100 0 0 99.9995 99.9994 99.9994 0.0001 0 
0.8 100 100 100 0 0 99.9997 99.9997 99.9997 0 0 
1.0 100 100 100 0 0 100 100 100 0 0 
Average % of Error 0 0 Average % of Error 0.00003 0 

(b) 
Φ1 = 5 Φ1 = 10 
X AGM 

(20) 
MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

AGM 
(20) 

MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

0.0 99.979 99.979 99.975 0.004 0.004 99.92 99.92 99.92 0 0 
0.2 99.982 99.981 99.981 0.0001 0 99.92 99.92 99.92 0 0 
0.4 99.983 99.983 99.983 0 0 99.93 99.93 99.93 0 0 
0.6 99.987 99.987 99.987 0 0 99.95 99.95 99.95 0 0 
0.8 99.994 99.994 99.994 0 0 99.97 99.97 99.97 0 0 
1.0 100 100 100 0 0 100 100 100 0 0 
Average % of Error 0.0007 0.0006 Average % of Error 0 0  
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Table 2 
(a) Comparison of dimensionless uncompetitive inhibition by Pen-G concentration of substrate γ1 (Eq. (21), (24)) and numerical simulation against 
the dimensionless radial distance x for different values of Thiele modulus Φ2 and (βb0 = γ1b = γ2b = 100,Φ1 = 0.1, α= 0.000158).  

Φ2 = 0.1 Φ2 = 1 

X AGM 
(20) 

MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

AGM 
(20) 

MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

0.0 100 100 100 0 0 100 100.0008 100.0008 0.0008 0 
0.2 100 100 100 0 0 100 100.0008 100.0008 0.0008 0 
0.4 100 100 100 0 0 100 100.0007 100.0007 0.0007 0 
0.6 100 100 100 0 0 100 100.0005 100.0005 0.0005 0 
0.8 100 100 100 0 0 100 100.0003 100.0003 0.0003 0 
1.0 100 100 100 0 0 100 100 100 0 0 
Average % of Error 0 0 Average % of Error 0.00052 0 

(b) 
Φ2 = 5 Φ2 = 10 
X AGM 

(20) 
MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

AGM 
(20) 

MADM 
(22) 

Numerical 
(FDM) 

% of Error 
(20) 

% of Error 
(22) 

0.0 100 100.020 100.020 0.0199 0 100 100.08 100.08 0.0799 0 
0.2 100 100.019 100.019 0.0189 0 100 100.08 100.08 0.0799 0 
0.4 100 100.017 100.017 0.0169 0 100 100.07 100.07 0.0699 0 
0.6 100 100.014 100.013 0.0129 0.0009 100 100.05 100.05 0.0499 0 
0.8 100 100.007 100.007 0.0007 0 100 100.03 100.03 0.0299 0 
1.0 100 100 100 0 0 100 100 100 0 0 
Average % of Error 0.0116 0.0002 Average % of Error 0.0516 0  

Table 3 
Concentration of uncompetitive substrate inhibition by Pen-G β (AGM, Eq. (20)) against the dimensionless radial distance x for various values of 
Thiele modulus Φ1 and (atx= 0,α= 0.000158).  

βbo = γ1b = γ2b = 0.1 βbo = γ1b = γ2b = 1 βbo = γ1b = γ2b = 10 βbo = γ1b = γ2b = 100 

Φ1 β Φ1 β Φ1 β Φ1 β 

0.1 0.09987 0.1 0.9997 0.1 10.000 1 100.00 
0.3 0.09887 1 0.9728 1 9.993 10 99.92 
0.5 0.09691 1.5 0.9401 3 9.935 20 99.67 
0.8 0.09235 2 0.8970 6 9.745 40 98.70 
1 0.08841 2.4 0.8563 8.5 9.497 55 97.56  

Table 4 
Concentration of competitive product inhibition by PAA and non-competitive product inhibition by 6-APA (γ1, γ2) (AGM, Eq. (21)) against the 
dimensionless radial distance x for various values of Thiele moduli Φ2, Φ3 and (atx= 0, α= 0.000158,Φ1 = 0.1).  

βbo = γ1b = γ2b = 0.1 βbo = γ1b = γ2b = 1 βbo = γ1b = γ2b = 10 βbo = γ1b = γ2b = 100 

Φ2,Φ3 γ1, γ2 Φ2,Φ3 γ1, γ2 Φ2 ,Φ3 γ1, γ2 Φ2 ,Φ3 γ1, γ2 

0.1 0.1001 0.1 1 1 10.01 1 100 
1 0.1126 1 1.028 3 10.06 25 100.5 
2 0.1505 2 1.111 7 10.35 45 101.7 
2.5 0.1788 3.4 1.321 10 10.72 60 103  

Table 5 
Concentration of uncompetitive substrate inhibition by Pen-G β (MADM, Eq. (22)) against the dimensionless radial distance x for various values of 
Thiele modulus Φ1 and (atx= 0,α= 0.000158).  

βbo = γ1b = γ2b = 0.1 βbo = γ1b = γ2b = 1 βbo = γ1b = γ2b = 10 βbo = γ1b = γ2b = 100 

Φ1 β Φ1 β Φ1 β Φ1 β 

0.1 0.09987 0.1 0.9997 0.1 10.000 1 100.00 
0.3 0.09886 1 0.9722 1 9.993 10 99.92 
0.5 0.09684 1.5 0.9375 3 9.935 20 99.67 
0.8 0.09192 2 0.8889 6 9.740 40 98.69 
1 0.08737 2.4 0.8400 8.5 9.479 55 97.52  
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5.1. Effect of thiele modulus Φ1 = R
̅̅̅̅̅̅̅̅
k E

K De

√
for the concentration of uncompetitive substrate inhibition 

The concentration of substrate within the catalyst decreases in all cases (a) – (d) as the Thiele modulus increases, as depicted in 
Fig. 2(a–d), and shown in Tables 3 and 5. Moreover, the effectiveness factor η′ will decrease in all cases, referring to Fig. 5(a–d). The 
observation signifies that an increase in substrate concentration in the bulk βb0 leads to a decrease in diffusional restriction 
(

i.e.Φ1≪ 0.1 ⇒ β
βb0

→1
)

. For all βb0 values with a lower Thiele modulus have the highest effectiveness factor, which is tabulated in 

Table 7(a - d) and 8 (a - c), i.e., (∀βb0 (Φ1≪ 0.1 ⇒η′→1)) which indicates that the catalyst is highly efficient. As diffusional restriction 
increases, the effectiveness factor begins to reduce. Diffusional control governs the response when the Thiele modulus is high 
(Φ1≫ 0.1). This phenomenon is observed under conditions of intense catalytic activity with minimal reaction rate constants. 

Table 6 
Concentration of competitive product inhibition by PAA and non-competitive product inhibition by 6-APA (γ1, γ2) (MADM, Eq. (24)) against the 
dimensionless radial distance x for various values of Thiele moduli Φ2, Φ3 and (atx= 0,α= 0.000158,Φ1 = 0.1).  

βbo = γ1b = γ2b = 0.1 βbo = γ1b = γ2b = 1 βbo = γ1b = γ2b = 10 βbo = γ1b = γ2b = 100 

Φ2,Φ3 γ1, γ2 Φ2,Φ3 γ1, γ2 Φ2 ,Φ3 γ1, γ2 Φ2 ,Φ3 γ1, γ2 

0.1 0.1001 0.1 1 1 10.01 1 100 
1 0.1126 1 1.028 3 10.06 25 100.5 
2 0.1505 2 1.111 7 10.35 45 101.7 
2.5 0.1789 3.4 1.321 10 10.72 60 103  

Table 7 
Mean integrated effectiveness factor for uncompetitive substrate inhibition by Pen-G η′ against the initial bulk concentration βb0 (a) 0.1 (b) 1 (c) 10 
and (d) 100 using (AGM, Eq. (35)) for various values of Thiele modulus Φ1 and (Φ2 = Φ3 = 0.1,α= 0.000158).  

βb0 = 0.1 βb0 = 1 βb0 = 10 βb0 = 100 

Φ1 η′ Φ1 η′ Φ1 η′ Φ1 η′ 

0.1 0.9995 0.1 0.9999 1 0.9997 1 1 
0.5 0.9876 1 0.9891 3 0.9974 20 0.9987 
0.8 0.9691 2 0.9582 6 0.9898 40 0.9948 
1 0.9529 2.4 0.9413 8.5 0.9798 55 0.9902  

Table 8 
Mean integrated effectiveness factor for uncompetitive substrate inhibition by Pen-G for η′ against the initial bulk concentration βb0 (a) 0.1 (b) 1 and 
(c) 10 using (MADM, Eq. (36)), for various values of Thiele modulus Φ1 and (Φ2 = Φ3 = 0.1,α= 0.000158,X= 0,K= 0.13,K1 = 1.82,K2 = 48).  

βb0 = 0.1 βb0 = 1 βb0 = 10 

Φ1 η′ Φ1 η′ Φ1 η′ 

0.2 0.9977 0.2 0.9988 0.2 0.9993 
1 0.9475 1 0.9824 3 0.9941 
2 0.8071 3.5 0.7043 6 0.9714 
3.4 0.3208 4.6 0.1119 8.5 0.7545  

Table 9 
Kinetic and diffusional constants for penicillin G hydrolysis model [17,24].  

Substance Parameter Value Units 

Enzyme k 43 1/s 
Penicillin G K 0.13 mM 
Penicillin G Ks 821 mM 
PAA K1 1.82 mM 
APA K2 48 mM 
Penicillin G De 5.30 × 10− 10 m2/s 
PAA De1 7.33 × 10− 10 m2/s 
APA De2 5.89 × 10− 10 m2/s  
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5.2. Effect of thiele modulus Φ2 = R
̅̅̅̅̅̅̅̅̅̅̅

k E
K1 De1

√
for the concentration of competitive product inhibition 

As the concentration of competitive product inhibition drops, the Thiele modulus Φ2 is also minimally driven in all cases (a)–(d), as 
depicted in Fig. 3(a–d), and in the Tables 4 and 6. The majorities of the reactant concentration and the Thiele modulus are pre
dominantly influenced by the reaction kinetics and the diffusivity characteristics within the catalyst particle. As the concentration of 
the competitive product rises, it begins to retard the reaction by occupying the active sites on the surface of the catalyst. As a result, 
there is a reduction in the value of the reaction rate constant ‘k’, leading to an appropriate decrease in the Thiele modulus Φ2. The 
inhibitory effect can be intensified by a higher Thiele modulus in the presence of competitive product inhibition. The reaction rate may 
be limited due to the reduced availability of the reactant at the catalyst surface, which is caused by the concentration gradient of the 
reactant resulting from internal diffusion resistance. 

5.3. Effect of thiele modulus Φ3 = R
̅̅̅̅̅̅̅̅̅̅̅

k E
K2 De2

√
for the concentration of non-competitive product inhibition 

A decrease in the Thiele modulus Φ3 entails a maximum reaction rate relative to the diffusion rate. Given the Thiele modulus 
Φ3≈ 0.1(or)1, it can be inferred that the rates of reaction and diffusion are of similar magnitude. The Thiele modulus Φ3 may have an 
impact on the concentration of the non-competitive product inhibitor. The concentration of the inhibitor may become monotone 
depending on the interplay between reaction and diffusion rate in a specific system as the Thiele modulus increases (Φ3≫ 0.1(or)1). As 
represented in Fig. 4(a–d), and in the Tables 4 and 6, it is apparent that an increase in Thiele modulus triggers a corresponding increase 
in product concentration across all cases, which leads to the diffusion rate exceeding the reaction rate. 

The flexibility of the reaction-diffusion model’s solution is determined by alterations in reaction and mass transfer rates. The two 
phenomena are impacted by two common factors, which are the bulk substrate concentration βb0 and the Thiele modulus Φi; i= 1,2, 3. 
The reaction rate of each analyzed mechanism is influenced by the substrate concentration. The impact is prominent until the con
centration of βb0 = 10, at which point the enzyme becomes saturated with substrate and the reaction rate no longer exhibits significant 
revisions. However, substrate concentration has a consistent and substantial effect on mass transfer. Increasing substrate concentration 
diminishes mass transfer limitations driven by diffusional restrictions depicted in Fig. 6(a–d), for different degree of conversions 
X= 0, 0.9 respectively. The Thiele modulus describes the effects, with higher values indicating greater mass transfer limitations. In
hibition decreases product accumulation within the catalyst, thereby reducing the reaction rate and substrate consumption in Fig. 7 
(a–d) and Fig. 8(a–d), for various degree of conversions X= 0, 0.9 respectively. 

The proposed MADM solution, which involves truncating the Taylor expansion, exhibits divergence at certain βb0 and Φ1 com
binations, leading to negative substrate concentrations within the catalyst. The error affects the effectiveness factor calculations. 
Negative values of the effectiveness factor are obtained under conditions of significant diffusional limitations. This is due to the 
negative substrate concentration values obtained in the invalid solution approximation zones. The validity range of the solution is 

Fig. 3. Comparison of dimensionless product concentration γ1 versus dimensionless radial distance x with numerical simulation results 
(FDM) for various diffusional restrictions Φ2 and different initial bulk product concentration γ1b (a) 0.1 (b) 1 (c) 10 and (d) 100 using Eq. 
(13), (21) and (24). 
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reliant upon the kinetic mechanism, and is denoted by Eq. (31). Fig. 9(a and b), depicts the restricted area (white), wherein the so
lutions for the mechanisms yield positive values for all possible combinations of βb0 and Φ1. Invalid solutions are typically observed 
when diffusional restrictions are significant. Fig. 9(a and b), displays the acceptable and unacceptable regions with βb0 and Φ1 
combinations at different degree of conversion X= 0,0.9 respectively. In cases of competitive inhibition, an increase in conversion and 
product concentration results in a decrease in the validity zone of the solution. The observed effect is a result of elevated diffusional 
limitations caused by increased product inhibition. 

To analyze the precision of the analytical approach utilizing a finite amount of terms, the system of differential equations ((12)– 
(14)) was also solved numerically by the PDE-solving function, pdepe (finite difference method), FDM [40]. Matlab/Scilab coding [46] 
is also mentioned in Appendix E. To show the efficiency of our proposed solution, we compared our two analytical results, the AGM 
equations (20) and (21) and the MADM equations (22)–(24) with the numerical simulation of equations (12)–(14). In addition, we 
have provided the tables for error percentage on plots in Table 1(a - b) and 2 (a - b), which demonstrate a satisfactory level of 
agreement. In all the cases, the concentration of substrate and products reflects average relative errors of (0.0007 % in AGM, 0.00067 

Fig. 5. Dynamics of effectiveness factor during batch reactor operation η′ versus dimensionless substrate concentration βb0 with different 
diffusional restrictions Φ1 for different initial bulk substrate concentration βb0 (a) 0.1 (b) 1 (c) 10 and (d) 100 using (AGM, Eq. (35)). 

Fig. 4. Comparison of dimensionless product concentration γ2 versus dimensionless radial distance x with numerical simulation results 
(FDM) for various diffusional restrictions and different initial bulk product concentration γ2b (a) 0.1 (b) 1 (c) 10 and (d) 100 using Eq. (14), 
(21) and (24). 
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Fig. 6. Dynamics of dimensionless substrate concentration β versus dimensionless radial distance x with different diffusional restrictions Φ1 

for initial bulk substrate concentration (a) βb0= 10, when degree of conversions X= 0, (b) βb0= 100, when X= 0, (c) βb0= 10, when X= 0.9, 
and (d) βb0= 100, when X= 0.9, using the Eq. (27) and α = 0.000158, ​ K = 0.13, ​ K1 = 1.82, ​ K2 = 48. 

Fig. 7. Dynamics of dimensionless product concentrations γ1 versus dimensionless radial distance x with different diffusional restrictions Φ2 

for initial bulk substrate concentration (a) βb0= 10, when degree of conversions X= 0, (b) βb0= 100, when X= 0, (c) βb0= 10, when X= 0.9, 
and (d) βb0= 100, when X= 0.9, using the Eq. (28) and α = 0.000158, ​ K = 0.13, ​ K1 = 1.82, ​ K2 = 48. 
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% in MADM) and (0.0516 % in AGM, 0.0002 % in MADM) respectively, as determined by comparing our analytical results with 
numerical results. It can be inferred from our analysis that there is no significant difference between numerical and analytical solutions 
across a range of Thiele modulus values Φi; i= 1,2, 3. The AGM solution provides a closed-form analytical solution, despite the MADM 
method is more comprehensive. The AGM method exhibits greater efficiency than the MADM method, as evidenced by the analysis of 
the graphs and tables. The MADM method is quite diverse compared to the AGM method for establishing the mean integrated 
effectiveness factor. 

Fig. 8. Dynamics of dimensionless product concentration γ2 versus dimensionless radial distance x with different diffusional restrictions Φ3 

for initial bulk substrate concentration (a) βb0= 10, when degree of conversions X= 0, (b) βb0= 100, when X= 0, (c) βb0= 10, when X= 0.9, 
and (d) βb0= 100, when X= 0.9, using the Eq. (29) and α = 0.000158, ​ K = 0.13, ​ K1 = 1.82, ​ K2 = 48. 

Fig. 9. Limitation of the proposed solution using (MADM, Eq. (31)) at different degree of conversions X (a) 0 and (b) 0.9 where valid region 
(depicts the white zone) and invalid region (depicts the red zone). 
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6. Conclusion 

The steady state condition of immobilized enzymes (penicillin G acylase) under internal diffusional restrictions is analyzed over a 
wide range of parameters using a mathematical model. This paper outlines the derivation for substrate and product concentrations 
using two approximate semi-analytical approaches, using AGM and the MADM. The effect of the parameters on the concentration 
profiles and Thiele moduli’s impact pertaining to the substrate and product concentrations were discussed. Our analytical solutions 
were compared to numerical simulations, and a satisfactory level of agreement was observed. This study analyzed the limitations of a 
proposed strategy at varying degrees of conversion, considering both valid and invalid regions, and identified suitable combinations of 
initial bulk concentration and Thiele modulus that result in dependable concentration profiles within the catalyst and effectiveness 
factor. The analytical expressions derived in this study enable quick computation of the impact of diffusional limits on concentration 
profiles within the catalyst particle and effectiveness factor values. Based on the aforementioned, it can be concluded that the solution 
obtained by the AGM method is better for computation. Thus, this tool plays an important role in the design and effectiveness of 
immobilized enzyme reactors, particularly in determining the optimal radius of catalyst particles. 
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List of Symbols. Nomenclature 

De: effective diffusion coefficient of substrate (cm2 s− 1) 
De1: effective diffusion coefficient of PAA (cm2 s− 1) 
De2: effective diffusion coefficient of 6-APA (cm2 s− 1) 
E: enzyme concentration inside catalyst (mol cm− 3) 
k: reaction rate constant (mol cm− 3 s− 1) 
K1: product inhibition constant for PAA (mol cm− 3) 
K2: product inhibition constant for 6-APA (mol cm− 3) 
KS: Pen G substrate inhibition constant (mol cm− 3) 
K: substrate Michaelis constant (Pen G model is present) (mol cm− 3) 
S: substrate concentration inside biocatalyst (mol cm− 3) 
P1: concentration of product PAA (mol cm− 3) 
P2: concentration of product 6-APA (mol cm− 3) 
Sb: bulk concentration of a substrate (mol cm− 3 s− 1) 
Sb0: initial bulk concentration of a substrate 
Pi: concentration of products i (mol cm− 3) 
Pbi: bulk concentration of a products i (mol cm− 3 s− 1) 
Pb0: initial bulk concentration of a product 
r: variable radius inside the biocatalyst particle (cm) 
R: biocatalyst particle radius (cm) 
t: reaction time (s) 
X: degree of conversion 

Dimensionless parameters (Greek symbols) 
β = S

K: dimensionless concentration of a substrate 
βb = Sb

K : dimensionless concentration of a substrate outside the support 
βb0: dimensionless initial bulk concentration of a substrate 
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γi = Pi
Ki
, i= 1, 2: dimensionless concentration of the products i 

γib = Pi
Ki
, i= 1, 2: dimensionless concentration of the products outside the support i 

x = r
R: dimensionless radial distance 

α = K
KS

: dimensionless inhibition degree 

Φ1 = R
̅̅̅̅̅̅̅̅
k ·E

K ·De

√
: Thiele modulus for substrate 

Φi+1 = R
̅̅̅̅̅̅̅̅̅̅
k ·E

Ki ·Dei

√
, i= 1, 2: Thiele modulus for products i 

η: local effectiveness factor 
η′: mean integrated effectiveness factor 

Abbreviations 
AGM: Akbari-Ganji’s method 
MADM: Modified Adomian decomposition method 
FDM: Finite difference method 
Pen G: Penicillin G 
PAA: Phenyl acetic acid 
6-APA: 6-aminopenicillanic acid 
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