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The risk of fragility fractures exponentially increases with aging. Reduced mass and strength of both bone in
osteoporosis and skeletal muscle in sarcopenia play a key role in the age-related incidence of fragility fractures.
Undernutrition is often observed in the elderly, particularly in those subjects experiencing osteoporotic fractures,
more likely as a cause than a consequence. Calcium (Ca), inorganic phosphate (Pi), vitamin D, and protein are
nutrients that impact bone and skeletal muscle integrity. Deficiency in the supply of these nutrients increases with
aging. Dairy foods are rich in Ca, Pi, and proteins and in many countries are fortified with vitamin D. Dairy foods
are important souces of these nutrients and go a long way to meeting the recommendations, which increase with
aging. This review emphaszes the interactions between these 4 nutrients, which, along with physical activity, act
through cellular and physiological pathways favoring the maintenance of both bone and skeletal muscle structure
and function.

Key teaching points:

• Preventing bone loss and risk of falling are key to reducing
age-related increases in fragility fracture.

• Ca and vitamin D are needed to reduce the risk of hip fracture.
• Increasing Pi intake stimulates the renal reabsorption and the

overall retention of Ca.
• Protein intake through the production of insulin-like

growth factor-I (IGF-I) positively interacts with vitamin D
metabolism and the Ca-Pi economy.

• Interactions of Ca, Pi, protein, and vitamin D reduce bone re-
sorption and increase bone formation, attenuating age-related
bone loss.

• Mechanical loading of skeletal muscle acts in concert with
amino acids and IGF-I on skeletal mass and strength.

INTRODUCTION

The delimitation of the specific roles of nutrients in foods
influencing the structure and function of human body organs
or systems in health and diseases is a challenge, in part due
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to the rapidity of new information to shape our understanding.
The musculoskeletal system faces a similar challenge. Bone
and skeletal muscle acquisition during development and mainte-
nance, in terms of mass and strength, during adulthood are under
the influence of environmental factors, among which mechani-
cal and nutritional factors play pivotal roles. The nutrients that
have the greatest physiological impact, via well-defined specific
mechanisms on bone and skeletal muscle throughout life, are
calcium (Ca), vitamin D, inorganic phosphate (Pi), and protein.

This article focuses on how the interactions among Ca, Pi,
vitamin D, and protein can positively or even synergistically
impact on mechanical loading to favor skeletal health during
adulthood. We also report the dramatic consequences of their
insufficient supply on bone and skeletal muscle integrity with
the associated risk of fragility fracture that markedly increases
with aging. Then, based on both physiological and clinical infor-
mation, practical recommendations for securing adequate intake
are presented.

Dietary Patterns

Foods rather than nutrients are chosen and consumed.
Hence, the appropriate and logical approach to examining the
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relationship between diet and diseases such as osteoporosis is
through food surveys that can provide dietary patterns related
to bone mineral density and fragility fracture risk [1,2]. From
dietary patterns emerge the concept of food groups that usually
include bread, other cereals, and potatoes; fruit and vegetables;
meat, fish, and alternatives; milk and dairy products; and fatty
and sugary foods [2]. Furthermore, the dietary pattern concept
has provided the base for setting recommendations regarding the
proportion of each food group that should be eaten to optimize
the general health of a population [1,2].

Food consumption is affected by a whole range of factors
or drivers, including the availability, accessibility, and choice of
foods [3]. These factors may in turn be influenced by geogra-
phy, demography, disposable income, socioeconomic status, ur-
banization, marketing, religion, culture, and consumer attitudes
[3,4].

Nutrient Profiling of Foods: The Contribution
of Dairy Products

A diet can be energy rich but nutrient poor [5], and this
type of consumption can result in nutrient deficits, as observed
even in developed countries such as the United States, among
children, the elderly, and low-income populations [6]. Dietary
guidance needs to identify foods that are nutrient rich, affordable,
and appealing [7]. In this respect, the contribution to energy
and nutrient intakes of major food groups can be established.
This assessment allows for identifying the relative nutrient-per-
calorie cost so that foods that are affordable, appealing, as well
as nutrient rich are in dietary guidelines [8]. A nutrient profiling
analysis of the U.S. diet shows that milk and milk products are
foods of low energy with substantial micronutrient density and
appreciable affordability [7].

The food group approach provides very useful information
for setting up overall dietary recommendations with the aim
of improving various health components. However, there is the
necessity to first identify which nutrients are essential for mus-
culoskeletal health—that is, Ca, phosphorus in the form of in-
organic phosphate (Pi), vitamin D, and protein—and then deter-
mine how these essential nutrients interact in the development
and maintenance of bone and muscle.

BONE AND SKELETAL MUSCLE
HEALTH

Bone

Bone Composition and Cellular Remodeling Activity

Bone is a composite material, which is essentially made of
mineral (60%), an organic matrix (30%), and water (10%). The
mineral phase of bone is an analog of the naturally occurring hy-
droxyapatite {Ca10(PO4)6(OH)2} crystal [9]. The basic building
block of the bone matrix fiber network is type I collagen, a triple-

helical molecule, whereas noncollagenous proteins comprise
10%–15% of the total bone protein content [9]. The function
of the mineral phase is to strengthen the collagen fiber network,
thus providing adequate resistance to mechanical loading. Tak-
ing into account these chemical and mechanical characteristics,
the structural integrity/composition of the bone tissue is clearly
dependent upon the dietary supply of Ca, Pi, and protein. The
essentiality of these nutrients for bone integrity can be fully ap-
preciated by the severe consequences observed following their
selective/individual dietary deficiency. Thus, a limitation in Ca,
Pi, or protein while the intakes of the other two nutrients are
maintained at normal levels leads to severe bone structural de-
ficiency associated with loss of bone strength, as observed in
diseases such as osteoporosis or osteomalacia [10,11]. In or-
der to play their structural role in bone, these three nutrients
require a normal vitamin D status (see Interactions section for
the interplay between Ca, Pi, protein, and vitamin D in bone
metabolism). Besides being integrated as part of bone material,
through the mediating activity of certain amino acids, dietary
Ca, Pi, and protein exert an important impact on bone forming
and resorbing cells (for review, see Bonjour [12,13]). Overall,
their combination tends to reduce bone resorption and stimulate
bone formation.

Resorption and formation of bone occur through the process
of remodeling during adulthood, under control of three types of
bone cells. Osteoblasts are responsible for the formation of the
organic matrix, essentially made of collagen proteins, and the
deposition onto the collagen fibers of Ca and Pi, the two main
bone mineral crystal components. Osteoclasts resorb both the
mineral and matrix of the bone tissue, and this must occur prior
to formation. Osteocytes, which are derived from the mature
osteoblasts, are the most abundant cells in bone. They influ-
ence both the osteoblast and osteoclast functions by forming an
interconnected network in bone [14].

Undernutrition in Elderly and Osteoporosis

Undernutrition is often observed in the elderly population
[15–17]. They have insufficient vitamin D supply from both skin
and dietary sources, as well as low Ca and protein intakes; these
are associated with reduced bone mineral mass and increased
risk of fragility fracture [16,18–22] (Fig. 1). Inadequately low
vitamin D and Ca supply leads to a decrease in the intestinal
Ca and Pi absorption. A major effect of vitamin D through its
active metabolite 1,25-dihydroxycholecalciferol (1,25[OH]D) is
to stimulate the active components involved in the translocation
of Ca and Pi across the intestinal epithelial cells [23]. Insufficient
vitamin D supply resulting in inadequately low intestinal Ca
absorption leads to the overproduction of parathyroid hormone
(PTH), which, in turn, increases bone resorption [24].

The decrease in protein intake leads to a decline in the
circulating level of the bone anabolic factor insulin-like growth
factor-I (IGF-I) [25]. In protein malnutrition not only is the
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Fig. 1. Undernutrition and pathogenesis of hip fracture risk. Insufficiency in the 4 nutrients—Ca, Pi, vitamin D, and protein—can contribute to a
reduction in both mass and strength of bone and skeletal muscle. The risk of falling is worsened by impairment in neuromuscular function and
abnormalities in gait and balance. This dysfunction reduced the protective response that may prevent falling when stumbling. Undernutrition also
decreases the soft tissue pad around the hip, thus increasing the impact of a fall on the proximal femur.

production of IGF-I reduced but so is its bone anabolic action
[26], explaining, at least in part, the decline in bone formation
[13].

Deficiencies in the supply of vitamin D, Ca, and Pi are asso-
ciated with defective bone structural integrity, as expressed by
either a prominent defect in mineral deposition that character-
izes the pathological condition of osteomalacia or by a loss of
the entire mineralized organic matrix, an important feature of os-
teoporosis. Many observational and interventional studies have
reported on the beneficial effects of at least one of these nutrients
on bone mineral density with evidence, in some reports, of a re-
duction in osteoporotic fracture risk [22, 27–30]. The reduction
in fragility fractures observed with vitamin D supplementation
in the elderly can be ascribed not only to its preventive effect
on bone loss [28,31] but also to a reduction in the risk of falling
[32]. Likewise, with increased protein intake, the reduction in
osteoporotic fracture, as observed in a large prospective study
carried out in a population at risk of experiencing hip fracture
[33], may also be ascribed, at least in part, to a beneficial effect
on neuromuscular functions reducing the risk and consequence
of falling [13,25,34].

Preventing Bone Loss and Risk of Falling Are Key
to Reducing Fracture Incidence with Aging

With aging, there is an exponential increase in the prevalence
and incidence of fractures due to two determinants. First there
is an intrinsic weakness of the bones to mechanical loading.
This is due both to a loss in the mass of the material con-
tained within the periosteal envelop and to a deterioration of the
cortical and trabecular microstructure, as specified in the con-

ceptual definition of osteoporosis [35]. The second determinant
is the increased risk and consequence of falling. In the elderly,
postural instability, reduced muscle mass and strength (i.e., sar-
copenia), and hip subcutaneous fat pad thinness increase both
the propensity to fall and the subsequent risk of fracture. This
is because of the greater mechanical force impacting an already
fragile bony structure. These skeletal and extraskeletal factors
can be positively influenced by adequate measures improving
both nutritional status and physical mobility.

Influence of Dairy Products on Bone Health

With respect to potential impact of foods on bone
metabolism, dairy products are of particular interest. Dairy foods
contain nutrients including Ca, Pi, and protein in appreciable
amounts compared to their recommended allowances. The ben-
eficial effect of these 3 nutrients on bone organic matrix forma-
tion and mineralization while exerting an inhibitory effect on
bone resorption has been well documented (for recent reviews,
see Bonjour [12,13]).

Vitamin D levels in dairy foods are variable and insuffi-
cient to meet body needs, recently estimated at least at 20 μg
(800 IU) per day in healthy adults [36–38]. The 2011 report
from the Institute of Medicine recommended 15 μg (600 IU)
and 20 μg (800 IU) per day in subjects aged 51–70 years and
≥71 years, respectively [39]. The widespread strategy in coun-
tries such as Canada and the United States has been to require
vitamin D fortification of dairy products such as fluid milk as
well as allow fortification of dairy products and other foods
(e.g., cereal flours, fruit juice) [40,41]. A systematic review and
meta-analysis indicated that vitamin D–fortified foods improved
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circulating 25-hydroxyvitamin D (25OHD) concentrations in
community-dwelling adults [42].

It has been the practice to ascribe the positive effect of dairy
consumption on bone health to Ca alone (e.g., Matkovic et al.
[43]). Indeed, early observations of protein and Pi suggested ei-
ther negative or neutral effects of these nutrients on Ca balance
or bone mass and strength [44]. However, there is now robust
evidence that dietary protein and Pi can enhance Ca balance by
stimulating its intestinal absorption and renal tubular reabsorp-
tion, respectively, and thereby can substantially contribute to the
positive effect of dairy foods on bone health (see Interactions
section).

Numerous clinical studies have reported on the relation be-
tween dairy product consumption and bone variables includ-
ing bone turnover markers, bone mineral density, measured as
areal or volumetric, or fracture in adult subjects (for review, see
Heaney [45]). Several recent interventional studies have been
published on the beneficial effects of vitamin D fortified dairy
products on bone remodeling and/or bone mineral density in
postmenopausal women [46–50] and in the elderly [51,52].

Both pathophysiological and clinical data explain how, when
taken separately, Ca, Pi, vitamin D, and protein improve bone
maintenance in adults. An inadequate dietary intake of Ca or an
inadequate supply of vitamin D influences the secretion of PTH,
which, when constantly stimulated, leads to increased bone re-
modeling with greater resorption than formation. (The prevailing
increased bone resorption resulting from constant overproduc-
tion or infusion of PTH contrasts with its anabolic action when
the hormone is intermittently administered. Hence, the use of
daily injections of active PTH sequences such as its amino-
terminal 1–34 [Teriparatide], in the treatment of osteoporosis.)
Deficiency of vitamin D reduces the capacity of the intestinal
mucosa to adequately absorb Ca and Pi. This impairment in the
intestinal absorption of the two main bone crystal components
can best be explained by a decline in the renal production of the
active form of vitamin D, namely, 1,25(OH)D. The resulting re-
duced circulating Ca × Pi product impairs bone mineralization,
and inadequate levels of Ca and Pi can also impair the activity
of bone-forming cells [12].

Selective deficiency in protein intake has severe conse-
quences on bone integrity, with reduced bone formation and
increased bone resorption leading to increased skeletal fragility.
Furthermore, inadequate protein intake affects the neuromus-
cular system, impairing coordination movement and reducing
muscle mass and strength. Besides being an essential com-
ponent of bone matrix and muscle fibers, in bone cell and in
skeletal myocytes, protein-derived essential amino acids stimu-
late the production of the growth factor IGF-I. Low protein in-
take is associated with low IGF-I, osteoporosis, and sarcopenia.
The serum level of IGF-I decreases with aging [22]. Prospec-
tive studies have documented that a low circulating IGF-I level
is associated with an increased risk of osteoporotic fractures
[53,54].

INTERACTIONS

Interactions between Ca and Vitamin D

Combined daily vitamin D (800 IU or 20 μg) and Ca supple-
mentation (1200 mg of Ca as triphosphate) has been shown to
reduce the incidence of hip and other nonvertebral fractures in
elderly French nursing home residents who were at high risk for
fracture (mean age 84 years, Ca intake ≤ 600 mg/d, and initial
mean serum level of 25OHD < 10 ng/ml [<25 nmol/L]) within
18–36 months [55]. Another study has replicated these results in
the United States [56]. Though neither study measured the rate
of falling, the reduction in nonvertebral fracture rate observed in
the French study [55] as early as 6 months following the onset
of the intervention suggests that the beneficial effect of the com-
bined treatment was not merely due to the prevention of bone
loss but rather to an early effect of the vitamin D supplemen-
tation on the propensity to falling [57]. In fact, vitamin D was
shown to reduce the risk of falling as early as 3 months after
the onset of its administration in the elderly [58,59]. Evidenced
from a comparative meta-analysis of randomized controlled tri-
als [28], oral vitamin D appears to reduce the risk of hip fracture
only when Ca supplementation is added (Fig. 2).

Interactions between Protein Intake, Ca-Phosphate
Economy, and Vitamin D Metabolism

Dietary protein is required to promote bone formation. As
for any other organ, amino acids are required for the synthesis
of intracellular and extracellular proteins and other nitrogen-
containing compounds. Through their amino acid content, pro-
teins can also influence Ca-Pi economy and bone metabolism
[13]. Dietary protein stimulates the formation of IGF-I (Fig. 3);
this effect can be observed independent of dietary energy supply
[13].

At the bone level, some amino acids such as arginine are ca-
pable of stimulating the local production of IGF-I by osteoblas-
tic cells [60]. This effect was associated with an increase in
osteoblastic cell proliferation and collagen synthesis. Note that
IGF-I is probably the main mediator in the anabolic effect of
PTH [61], as documented in a randomized controlled trial car-
ried out in women with osteoporosis [62].

A dietary protein-mediated increase in the circulating level
of IGF-I enhances the renal production of 1,25(OH)D (Fig. 3),
which in turn stimulates the intestinal absorption of both Ca and
Pi. IGF-I also increases the tubular reabsorption of Pi. Through
this dual renal activity of IGF-I, the concentration of Ca and Pi
in the systemic extracellular compartment increases and thereby
positively influences the process of bone mineralization. This
indirect positive effect of protein, via the IGF-I–1,25(OH)D
connected endocrine system on intestinal Ca absorption, is as-
sociated with a direct stimulatory effect of amino acids such as
arginine and lysine on Ca translocation from the luminal to the
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Fig. 2. Need for additional Ca to reduce the risk of hip fracture with vitamin D supplementation. Evidence from a comparative meta-analysis of
randomized controlled trials that oral vitamin D appears to reduce the risk of hip fracture only when Ca supplementation is added. The figure shows
two forest plots of the risk of hip fracture between vitamin D and either placebo/no-treatment groups (left panel) or between vitamin D and Ca and
placebo/no-treatment groups (right panel). The pooled estimate of the relative risk was statistically significant only with the combination of vitamin D
and Ca. Adapted from Boonen et al. [28].

Fig. 3. Schematic interaction of vitamin D and dietary protein on renal 1,25(OH)D production and thereby on intestinal Ca absorption. The transfer
of dietary Ca from the intestinal lumen to the blood is stimulated by 1,25(OH)D, the renal production of which depends on its substrate, 25OHD, and
IGF-I. The mechanism of intestinal Ca translocation depends of the presence of the vitamin D receptor (VDR), which in turn influences the transcription
of several factors that are implicated in the transport of Ca across either the luminal or basolateral membranes or through the intracellular compartment
of the enterocyte. CYP27B1: 25 hydroxyvitamin D-1α hydroxylase, TRPV6 = transient receptor potential cation channel, subfamily V, member 6,
Calbindins = Ca binding proteins, PMCA1b = plasma membrane Ca ATPase 1b (Color figure available online.)
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contraluminal side of the intestinal mucosa. The overall effect
of protein intake on enhancing intestinal absorption accounts for
the associated increased calciuria. Recent studies showed that
the increased urinary Ca excretion associated with a high-protein
diet does not result in negative skeletal Ca balance reflecting
bone loss [34]. Despite experimental and clinical evidence to
the contrary [63], it has been alleged that dietary protein is dele-
terious for bone health by inducing chronic metabolic acidosis
and osteoporosis. Reviews and meta-analyses based on scien-
tific arguments demonstrated that nutrition-induced acid–base
changes do not influence Ca balance and thereby are not impli-
cated in osteoporosis development or progression [22,34,64–68].
Further, there is no consistent evidence for superiority of plant-
based protein over animal protein on Ca metabolism, bone loss
prevention, and risk reduction of fragility fracture [22].

The favorable effect of increasing dietary protein on bone
mineral density or content is better sustained when the supply of
both Ca and vitamin D is adequate [19,69,70]. However, in post-
menopausal women with low Ca intake (600 vs 1500 mg/day),
a relatively high protein consumption (20% vs 10% of energy
intake) enhanced Ca retention [71]. Similarly, in healthy older
women and men, a protein supplement increasing the intake from
∼0.8 to 1.6 g/kg, when exchanged isocalorically for carbohy-
drates, was associated with higher circulating levels of IGF-I

and lowered levels of urinary N-telopeptide, a marker of bone
resorption [69]. This result is compatible with high dietary pro-
tein preventing bone loss in elderly.

Interactions between Ca and Inorganic Phosphate

Bone contains about 99% and 80% of the whole-body Ca
and P (phosphorus), respectively [72]. The Ca/P mass ratio in
bone is 2.2, close to that measured in human milk.

The initial step of Ca-Pi crystal nucleation takes place within
matrix vesicles that bud from the plasma membrane of os-
teogenic cells and migrate into the extracellular skeletal com-
partment [73]. They are endowed with a transport system that
accumulates Pi inside matrix vesicles, followed by the influx
of Ca ions [73]. This process leads to the formation of an im-
pure form of hydroxyapatite and its subsequent association with
the organic matrix collagen fibrils (Fig. 4). In addition to this
structural role, both Ca and Pi positively influence the activity
of bone forming and resorbing cells [12,74]. Pi plays a role in
the maturation of osteocytes, which are implicated in bone min-
eralization and systemic Pi homeostasis because they produce
fibroblast growth factor 23, a hormonal regulator of renal Pi
reabsorption and 1,25(OH)D production [75–77]. In contrast to

Fig. 4. Bone mineralization process involving the interaction of Pi and Ca. (A) Bone forming cells, either osteoblasts or epiphyseal chondrocytes form
vesicles, which bud from the plasma membrane and migrate in the nonmineralized organic matrix. (B) Matrix vesicles have the capacity to accumulate
Pi through an Na-dependent Pi transporter, the driving force, and Ca through annexin channels. This accumulation leads to the formation of an impure
form of hydroxyapatite crystal and its subsequent association with the collagen fibrils of the organic matrix. The bone forming cells are endowed with
IGF-I receptor. The binding of IGF-I to this receptor stimulates the protein expression (mRNA) of the Na-dependent Pi transporter, which migrates to
the plasma membrane of the bone forming cells. Adapted from Bonjour [12] (Color figure available online.)
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Fig. 5. Influence of phosphate on the urinary (A) and balance (B) of Ca in healthy adults. Results from a meta-analysis of intervention studies indicate
that higher phosphate intakes were associated with decreased urine Ca (A) and increased Ca retention (B). The change in slope was not different
whether the Ca intake was low (dotted regression line) or high (continuous regression line), indicating the absence of interaction in relation with the
amount of dietary Ca. Adapted from Fenton et al. [66].

their tight association in bone formation and resorption, renal Ca
and Pi reabsorptions are independent, driven by distinct molec-
ular mechanisms. Each has different extraskeletal functions in
cellular metabolism [12]. At both the renal and intestinal levels,
interactions of Ca and Pi are implicated in the acquisition and
maintenance of bone, as well as in osteoporosis management. In
the kidney, increased Pi intake reduces urinary Ca and increase
Ca balance (Fig. 5). During growth and adulthood, administra-
tion of Ca-Pi in a ratio close to that of dairy products leads to
positive effects on bone health. In contrast, when pharmaceu-
tical mineral supplements are used to induce large differences
between luminal Ca and Pi concentrations, this may have adverse
effects on bone health. In patients with osteoporosis treated with
anabolic agents, a Ca-Pi supplement appears to be preferable to
carbonate or citrate Ca salt [12].

SKELETAL MUSCLE

Muscle strength plays an important role in reducing the risk
of falling and thus the risk of fractures. Skeletal muscle mass
corresponds to about 40% of body mass. The total mass of
protein contained in skeletal muscle for a man with a body weight
(b.w.) of 70 kg is about 5.0 kg [72]. Comparatively, in bone the
total amount of protein, essentially present as collagen, is about
2.0 kg. In the whole body, about 50% of proteins are present in
both skeletal muscle and bone. The whole-body protein pool is
constantly renewed at a mean daily rate of about 2% [78–80].

In addition to bone loss, the decline of skeletal muscle
mass and strength—that is, sarcopenia, beginning around 45–
55 years—is considered as one of the most important factors

implicated the progression of disability with aging [81–83]. Sar-
copenia is estimated to affect 30% of individual aged 60 years
and older and more than 50% of those age 80 years and older
[84]; it results from an imbalance between protein synthesis and
degradation. Muscle quality refers to strength per cross-sectional
area or strength per unit muscle mass and is considered a more
meaningful indicator of muscle function than strength alone. In-
creased fatty infiltration of skeletal muscle (myosteatosis) with
age reduces muscle strength, increases the propensity to fall, and
was recently reported to predict the occurrence of hip fracture
[85]. Reduction in both quality of muscle unit performance and
motorneuron number [84] contributes to the significant progres-
sive decline in physical ability with aging [86]. Several mecha-
nisms contribute to the age-related decrease in muscle mass and
strength, including altered hormonal status, inflammatory pro-
cesses, reduced physical activity, and undernutrition, most often
resulting from low dietary intake of energy and protein [84].

Beneficial Interactions between Nutrients
and Physical Activity on Skeletal Muscle Health

Role of Protein Supply on Muscle Performance

Sarcopenia can be counteracted by adequate interventions,
particularly by the combination of adequate nutritional intake
and exercise training [87]. Improving intakes of protein can
prevent or at least reduce the progression of muscle loss [87].

A prospective observational study over 3 years showed that
protein intake was positively associated with preservation of lean
mass in women and men aged 70–79 years [88]. Individuals with
the highest quintile of daily protein intake (1.1 g/kg b.w.) lost
40% less total body and appendicular lean mass than those in the
lowest quintile (0.7 g/kg b.w.) [88]. Thus, a daily protein intake
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well above the recommended daily allowances currently set at
0.8 g/kg b.w. for adults would reduce the risk of sarcopenia
in older adults [88]. It has been proposed that dietary protein
requirements should be increased from 0.8 to 1.0–1.2 g/kg b.w.
per day for optimal skeletal muscle and bone health in elderly
people [34].

Several relatively short-term interventional studies have in-
vestigated the skeletal muscle anabolic response to various pro-
tein supplementations in the elderly [89]. Compared to the
bone response, the impact of protein supplementation and/or in-
creased resistance exercise on skeletal muscle mass and strength
can be expected to occur much more rapidly, taking into account
the difference in protein metabolism between the two tissues.
Fasting muscle protein synthesis rates do not seem to substan-
tially differ between young adults and healthy elderly [90]. When
age differences have been reported, they might, at least partly, be
ascribed to substantial deterioration in health condition or nutri-
tional status in elderly subjects. In addition, the elderly may have
markedly limited physical activity [90]. Most research has been
focused on disturbances in protein skeletal muscle synthesis in
response to the main anabolic stimuli; that is, food intake and
physical activity [90].

The regular performance of resistance exercises and the ha-
bitual ingestion of adequate amounts of dietary protein are two
important ways for older people to slow down the progression
of the age-related loss of skeletal muscle mass and function as
well as improve balance and physical functioning capabilities
[91–93] (Fig. 6).

Fig. 6. Interaction between dietary protein and mechanical loading on
skeletal muscle cell. Dietary protein increases serum amino acids and
IGF-I, which, through transporter and receptor localized in the skeletal
muscle sarcolemma exert, through a complex intracellular pathway, an
anabolic effect. Contractile forces resulting from mechanical loading
also stimulate a complex molecular cascade. These pathways impact on
the mammalian target of rapamycin complex (mTOR), which enhances
several translation factors (70-kDa ribosomal protein S6, eukaryotic
elongation factor 2, ribosomal protein S6). This simplified illustration
schematizes the combined effects of dietary proteins, through amino
acids and IGF-I, and mechanotransduction-mediated anabolic cell sig-
naling on skeletal muscle mass and strength. Adapted from Pasiakos
[93] (Color figure available online.)

Over the last decade, studies have reported the effects of
protein supplementation on skeletal muscle health in middle-
aged and/or elderly subjects [94–102]. Interventions varied from
10 to 72 weeks, in both women and men aged between 48 and
84 years. The supplementation was given as whole proteins
such as casein or whey or as a mixture of amino acids, with
or without creatine or carbohydrates, and given either before
or after a resistance training program. The magnitude of the
responses to protein or amino acid cocktail supplementation
in terms of increased skeletal muscle mass and strength was
variable [94–102]. The baseline level of protein consumption
may have contributed to variable responses, because subjects
who were already consuming adequate protein demonstrated no
further augmentation in skeletal muscle mass and/or strength in
response to additional protein [103].

Among other determinants are the initial degree of sarcope-
nia; the health condition of the study participants, whether
bedridden patients, frail, or physically fit elderly were studied;
the association or not of regular resistance exercise to the dietary
intervention; and when strength training exercise was applied,
whether the supplementation was taken before or after the phys-
ical activity sessions. The skeletal muscle response to protein
and/or resistance training could be influenced by antioxidant in-
takes as opposed to the level of the oxidative stress [104,105].
The daily timing distribution of protein supplementation can also
influence skeletal muscle response [83,96]. Ingestion of ≈25–
30 g of high-quality protein (≈10 g of essential or indispensable
amino acids) at each meal (breakfast, lunch, and dinner) maxi-
mally stimulates skeletal muscle protein synthesis in both young
and older individuals [83].

The “quality” of the supplementation is another factor that
may influence the magnitude of the skeletal muscle mass and
strength response [106]. Ingestion of protein hydrolysate, as
opposed to its intact protein, tends to enhance amino acid incor-
poration into skeletal muscle proteins [90]. Postprandial amino
acid availability due to variations in intestinal digestion and ab-
sorption may explain difference between these two forms of
protein supplementation [90]. Branched-chain amino acids, par-
ticularly leucine, increase the rate of protein synthesis through
changes in signaling pathways including mammalian target of
rapamycin complex and other protein phosphorylation involved
in skeletal muscle anabolism [107–110]. In addition, by stimu-
lating insulin secretion, leucine indirectly favors skeletal muscle
protein anabolism [111]. Leucine content can considerably dif-
fer according to protein sources and is highest in whey isolate,
milk, and muscle and lowest in wheat [106]. Dietary supplement
of indispensable amino acids is a potent stimulus for muscle pro-
tein synthesis and there is a dose–response relationship between
circulating indispensable amino acids concentration and skeletal
muscle protein synthesis [106].

A short-term study showed that diets enriched with branched-
chain amino acids (leucine, isoleucine) compared to aromatic
amino acids (phenylalanine, histidine) differently affected Ca
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metabolism and circulating IGF-I levels [112]. These distinct
effects might be related to unequal signaling activity of these two
chemically different types of amino acids on the extracellular Ca-
sensing receptor (CaR) [113]. To our knowledge, it is not known
whether this amino acid–activated Ca-sensing receptor would
be involved in skeletal muscle function, like the physiologically
well-identified Ca channels or pumps localized in structures such
as the sarcolemma or sarcoplasmic reticulum [114]. Finally, in a
6-month randomized double-blind placebo-controlled trial with
6-month follow-up in patients with recent hip fracture, a protein
supplement of 20 g of casein per day increased serum IGF-I
and isometric muscle strength of the biceps [115]. This response
was associated with attenuation of proximal femur bone loss,
improved clinical outcome, and shortened stay in rehabilitation
hospitals [115].

Interaction of Vitamin D and Protein on Muscle
Performance

Muscle weakness is classically a clinical feature of severe
vitamin D deficiency. Muscle weakness is preferentially local-
ized to the proximal muscles around shoulder and pelvic girdle.
It is manifest with difficulty in walking, standing up from a
chair, and/or climbing stairs [11]. Several studies reported an
association between low vitamin D status and reduced muscle
performance and postural instability [116–122]. Nevertheless,
it is still uncertain how vitamin D would mechanistically act at
the cellular and molecular levels to improve muscle mass and
strength, thus explaining the functional observed gain in postu-
ral stability and reduction in falling in response to normalization
of the serum level of 25OHD. Identification of how vitamin D
and/or its metabolites might directly act on skeletal myocytes at
the cellular and molecular levels remains less convincing com-
pared to the well-documented intestinal effects of 1,25(OH)D
[23].

Whatever the mechanism of action of vitamin D on muscle
mass and performance, it is not conceivable that correction of
its deficiency in malnutritioned elderly could be fully beneficial
with regard to the risk of falling without an adequate supply of
protein. Further clinical investigation is needed to document this
positive interaction between the supply of vitamin D and protein
on muscle mass and function in frail elderly.

Bone Nutrient Requirements for Adults

The recommended intakes for Ca, phosphorus, vitamin D,
and protein are presented in Table 1. They are specified for
France [123], the United Kingdom [124,125], the United States,
and Canada [39,126,127] because there are some substantial
differences from country to country, particularly for Ca and
vitamin D.

Table 1. Bone Nutrient Recommendations for Healthy Adultsa

Government Recommendations
for Healthy Adults

Bone Nutrients over 50 Years

Calcium (mg/d)
France ANC 1200
UK RNI 700
United States and Canada RDA 1200 (F; M > 70 years)

1000 (M 50–70 years)
Phosphorus (mg/d)

France ANC 750
UK RNI 550
United States and Canada RDA 700

Vitamin D (IU/d)
France ANC 200 (51–75 years)

400–600 (75 + years)
UK DRV ND (51–65 years)

400 (65 + years)
United States and Canada RDA 600 (51–70 years)

800 (71 + years)
Protein

France ANC (g/kg b.w./d) 1.0
UK RNI (g/d) 53.3 (M 50 + years)

46.5 (W 50 + years)
United States and Canada RDA 0.8

(g/kg b.w./d)

ANC = Apports nutritionnels conseillés, RNI = reference nutrient intake, RDA =
recommended dietary allowance, DRV = dietary reference value, b.w. = body

weight.
aSee text for references to the listed country-specified nutrient requirements.

CONCLUSIONS

Dairy foods provide nutrients—Ca, Pi, and protein—which,
in adequate vitamin supply, positively interact on several physi-
ological mechanisms involved in the maintenance of bone health
and the prevention of osteoporosis. There is also an important
interaction between dietary protein and mechanical loading on
skeletal muscle mass and function, thus contributing to the pre-
vention of sarcopenia. Thus, in the elderly the risk of fragility
fracture can be attenuated by appropriate nutritional measures
and adapted regular physical activity.
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