Original Article

OPEN ACCESS

No association between Val158Met of the *COMT* gene and susceptibility to schizophrenia in the Syrian population

Bassam Lajin^{1*}, Amal Alachkar^{2*}, Abdul Rezzak Hamzeh³, Roula Michati⁴, Hamid Alhaj⁵

Departments of Analytical Chemistry¹, Pharmacology² and Biochemistry³, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria. ⁴Ibn Khaldoon Psychiatric Hospital, Aleppo, Syria. ⁵Academic Psychiatry, Newcastle General Hospital, Newcastle NE4 6BE, United Kingdom. *These authors contributed equally to this work as first authors.

Citation: Lajin B, Alachkar A, Hamzeh AR, Michati R, Alhaj H. No association between Val158Met of the *COMT* gene and susceptibility to schizophrenia in the Syrian population. North Am J Med Sci 2011; 3: 176-178. Doi: 10.4297/najms.2011.3176 Availability: www.najms.org ISSN: 1947 – 2714

Abstract

Background: The Val158Met single nucleotide polymorphism of the *COMT* gene has been implicated in the aetiology of schizophrenia, although results from different populations have been conflicting. **Aims:** The aim of the present study was to investigate possible association between schizophrenia and Val158Met in a novel Arab population from Syria. **Methods and Materials:** 71 unrelated schizophrenic subjects (45 men) and 102 unrelated healthy controls (62 men) were recruited to take part in this case- control study. The Val158Met of the *COMT* gene was genotyped for patients and controls, using a new optimized PCR-RFLP method. **Results:** the results demonstrated that there is no statistically significant difference between the two groups. **Conclusion:** This study does not support that Val158Met has an influence on susceptibility for schizophrenia in this population.

Keywords: Schizophrenia, Polymorphism, COMT, Catechol-O-Methyltransferase, Val158Met.

Correspondence to: Bassam Lajin, Department of Analytical Chemistry, Faculty of Pharmacy, University of Aleppo, Aleppo, Syria. Email: BassamL7@yahoo.co.uk

Introduction

The heritability of schizophrenia is estimated to be around 80%, with around 10-fold risk increase in first degree relatives [1]. It is believed that the genetic predisposition to schizophrenia is related to a number of low-penetrance variants, with these interacting with environmental factors. The current view regarding the pathophysiology of schizophrenia strongly implicates the dysfunction in the neurotransmitter dopaminergic system. The catechol-O-methyl-transferase (COMT) gene is one of the most significant candidate genes for schizophrenia, since COMT catalyzes the transfer of the methyl group of S-adenosyl-1 methionine (AdoMet) to the catecholamine neurotransmitters, and thus inactivating them. The human gene that encodes COMT is located on the chromosome 22q11 [2]. This region is affected with a microdeletion in the velocardiofacial syndrome, a condition that is frequently associated with schizophrenia. Two co-dominant alleles (G and A) in exon 4 of the *COMT* gene influence the amino acid structure (Val or Met) at codon 158. The COMT enzyme activity is genetically polymorphic with a trimodal distribution (high activity in Val/Val genotype, intermediate activity in Val/Met genotype, and low activity in Met/Met genotype). The difference in COMT activity is three- to four-fold (Val/Val vs. Met/Met).

The results of the studies on the Val158Met polymorphism of the *COMT* gene are conflicting, with a number of studies suggesting a possible effect of the Val158Met polymorphism in vulnerability to schizophrenia [3-10],

and others showing no association [11-18].

The aim of this study was to utilise a homogeneous Syrian case-control sample of categorically-defined Schizophrenia to investigate its association with the Val158Met polymorphism of the *COMT* gene.

Subjects and Methods

Study Cohort

The study cohort consisted of 71 unrelated schizophrenic subjects (45 men, 26 women; 37 ± 10 years) and 102 unrelated healthy controls (62 men, 40 women; 40 ± 10 years). Patients were recruited from the Ibn Khaldoon hospital in Aleppo, Syria. All patients met the DSM-IV diagnosis for schizophrenia. Appropriate ethical and governance permission was obtained from the local authorities prior to blood sample collection. Patients and controls were gender-matched and were all from the same ethnical background.

Genotype Analysis

The Val158Met of the COMT gene was genotyped by a new optimized PCR-RFLP method using the restriction enzyme NlaIII. A 108 bp fragment containing the single nucleotide polymorphism studied was amplified using the PCR method. The PCR reaction was carried out in a total volume of 20µl containing 100-150ng genomic DNA as the template, 0.5 µM of each primer (synthesized by VBC-Biotech, Austria), 2.3mM MgCl2, 200µM of each dNTP, 1X Taq buffer (10 mM Tric-HCl pH 8.4, 50 mM KCl) and 0.75 units of Taq DNA polymerase (Fermentas, Lithuania). PCR amplification was carried out in a MasterCycler® thermal cycler (Eppendorf, Germany) with an initial denaturation step at 94 °C for 5 minutes followed by 31 cycles of 94 °C for 30 seconds, 62 °C for 30 seconds and 72 °C for 10 seconds, and a final extension step at 72 °C for 5 minutes. The primer sequence for the primers forward reverse and were 5'-CGAGGCTCATCACCATCGAGATC-3' and 5'-CTGACAACGGGTCAGGAATGCA-3', respectively. The PCR product was digested with NlaIII (FastDigest® NlaIII enzyme, Fermentas®, Lithuania) according to the manufacturer instructions. The resulting fragments were separated on agarose gels (2.5%). Digestion of the amplified fragment with NlaIII showed 3 bands in heterozygotes (108, 72 and 36 bp). The amplified fragment remained intact in Val homozygotes after digestion with the restriction enzyme, with agarose gel electrophoresis showing a single 108 bp band. In Met homozygotes 2 bands were produced (72 and 36 bp).

Results

Genotypes in the patient and control populations were in Hardy-Weinberg equilibrium (for patients: $\chi 2=1.18$; df=2; p=0.55; and for controls: $\chi 2=0.03$; df=2; p=0.98). As summarized in Table 1, no statistically significant difference was observed in genotypic distribution or allele frequencies between the total patients and controls ($\chi 2=0.905$, df=2, p=0.64 and $\chi 2=0.001$, df=1, p=0.97,

respectively). Analysis by sex was avoided due to the unavailability of sufficient number of samples. However, Table 1 shows that heterozygosity is higher in the male patients group (62.2%) than that in the control group (49%) (OR (95%) =1.7, CI (0.83-3.5), χ 2=2.19, df=1, p=0.13).

 Table 1 Genotypic distributions and allele frequencies of the Val158Met polymorphism of the COMT gene.

	n Genotype (%)			Allele (%)		
		Val/Val	Val/Met	Met/Met	Val	Met
Schizophrenia	71	14	40	17	68	74
		(19.7)	(56.3)	(23.9)	(47.9)	(52.1)
Male	45	7	28	10	42	48
		(15.6)	(62.2)	(22.2)	(46.7)	(53.4)
Female	26	7	12	7	26	26
		(26.9)	(46.1)	(26.9)	(50)	(50)
Control	102	23	50	29	96	108
		(22.6)	(49)	(28.4)	(47.1)	(52.9)
Male	62	14	30	18	58	66
		(22.5)	(48.3)	(29)	(46.7)	(53.3)
Female	40	9	20	11	38	42
		(22.5)	(50)	(27.5)	(47.5)	(52.5)

No significant difference was observed in genotypic distribution or allele frequencies between the patients and controls ($\chi 2=0.905$, df=2, p=0.64 and $\chi 2=0.023$, df=1, p=0.88, respectively).

Discussion

Few studies have reported a positive association between the COMT-L allele and schizophrenia [5, 13]. Ohmari et al. [5] showed that The COMT-L allele had a 1.47-fold increased risk for schizophrenia (95% CI=1.04-2.09; P=0.028). They also observed a significant difference in genotype distribution (P=0.026). The frequency of COMT-L allele was 27% in the healthy Japanese population, and 36% in the schizophrenics. The other study by Park et al. [13] also showed a positive association. The COMT-L allele had a 1.7-fold increased risk for schizophrenia (95% CI=0.9-3.1), when they stratified schizophrenics by family history, they found a 4-fold increased risk for schizophrenia compared with controls. The frequency of the COMT-L allele was 19.90% in the healthy Korean population and 27.18% in the schizophrenics. On the contrary, other studies reported that the COMT-H allele may be associated with schizophrenia [14, 15]. Wondoi et al. [14] found that the frequency of the COMT-H allele was significantly higher in schizophrenia cases compared to controls (62.0% vs. 50.6%; P=0.043). A meta-analysis by Glatt et al. [15] showed significant association between the COMT-H allele and schizophrenia in European populations (odds ratio=2.2, 95% CI=1.4-3.4, *P*=0.001).

To our knowledge, this is the first study to investigate the association between the Val158Met polymorphism of the *COMT* gene and schizophrenia in a Syrian population. This study failed to demonstrate any statistically significant genetic association between neither the COMT-L allele nor the COMT-H allele and schizophrenia. These negative results of our study are in agreement with several other studies and meta-analyses [16-22].

Although the results do not support the hypothesis that a link exists in this population, the higher heterozygosity in the male patients group than that in the control group suggests that heterozygosity is a susceptibility factor in males. This is in sharp contrast with a recent paper suggesting that heterozugosity has a protective effect against Schizophrenia based on the overdominance modal [9]. One possible cause of our results is type 2 error, due to a relatively small sample size. Hence, replication in a larger sample, especially for males, may be warranted.

Conclusion

We investigated the role of Val158Met polymorphism of the *COMT* gene in Schizophrenia susceptibility in an Arab population from Syria. The overall results indicate little effect of the studied polymorphism on the susceptibility for developing schizophrenia in the population studied.

References

- Owen MJ, O'Donovan, Harrison PJ. Schizophrenia: a genetic disorder of the synapse? BMJ 2005; 330 (7484): 158-159.
- 2. Grossman MH, Emanuel BS, Budarf ML. Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1-q11.2. Genomics 1992; 12, 822-825.
- Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001; 98 (12), 6917–6922.
- Kunugi H, Vallada HP, Sham PC, et al. Catechol-O-methyltransferase polymorphisms and schizophrenia: a transmission is equilibrium study in multiply affected families. Psychiatr Genet 1997; 7: 97-101.
- Ohmori O, Shinkai T, Kojima H, et al. Association study of a functional catechol-O-methyltransferase gene polymorphism in Japanese schizophrenics. Neurosci Lett 1998; 243: 1–3.
- Sazci A, Ergul E, Kucukali I, Kilic G, Kaya G, Kara I. Catechol-O-methyltransferase gene Val108/158Met polymorphism, and susceptibility to schizophrenia: association is more significant in women. Brain Res Mol Brain Res 2004; 132 (1): 51–56.
- Shifman S, Bronstein M, Sternfeld M, et al. A highly significant association between a COMT haplotype and schizophrenia. Am J Hum Genet 2002; 71 (6): 1296–1302.
- Wonodi I, Stine OC, Mitchell BD, Buchanan RW, Thaker GK. Association between Val108/158 Met polymorphism of the *COMT* gene and schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 120 (1): 47–50.
- Costas J, Sanjuán J, Ramos-Rios R, et al. Heterozygosity at catechol-O-methyltransferase Val158Met and schizophrenia: New data and meta-analysis. J Psychiatr Res 2011; 45(1): 7-14.
- 10. Hoenicka J, Garrido E, Martínez I. et al. Gender-specific COMT Val158Met polymorphism

association in Spanish schizophrenic patients. Am J Med Genet B Neuropsychiatr Genet 2010; 153B(1): 79-85.

- 11. Chen CH, Lee YR, Chung MY, et al. Systematic mutation analysis of the catechol O-methyltransferase gene as a candidate gene for schizophrenia. Am J Psychiatry 1999; 156(8): 1273-1275.
- Daniels J, Williams N, Williams J, et al. No evidence for allelic association between schizophrenia and a polymorphism determining high or low catechol O-methyltransferase activity. Am J Psychiatry 1996; 153(2): 268-270.
- Park TW, Yoon KS, Kim JH, Park WY, Hirvonen A, Kang D. Functional catechol-O-methyltransferase gene polymorphism and susceptibility to schizophrenia, Eur. Neuropsychopharmacol 2002; 12 (4): 299–303.
- Wonodi O, Stine C, Mitchell BD, Buchanan RW, Thaker GK. Association between Val108/158 met polymorphism of the COMT gene and schizophrenia, Am J Med Genet 2003; 120B: 47–50.
- Glatt SJ, Faraone SV, Tsuang MT. Association between a functional catechol-O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry 2003; 160: 469–476.
- Fan JB, Zhang CS, Gu NF, et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol. Psychiatry 2005; 57 (2): 139–144.
- 17. Inada T, Nakamura A, Iijima Y. Relationship between catechol-Omethyltransferase polymorphism and treatment-resistant schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2003; 120 (1): 35–39.
- Karayiorgou M, Gogos JA, Galke BL. Identification of sequence variants and analysis of the role of the catechol-O-methyltransferase gene in schizophrenia susceptibility. Biol. Psychiatry 1998; 43 (6): 425–431.
- Rosa A, Peralta V, Papiol S, et al. Interleukin-1beta (IL-1beta) gene and increased risk for the depressive symptom-dimension in schizophrenia spectrum disorders. Am J Med Genet 2004;124: 10–14.
- Strous RD, Bark N, Parsia SS, Volavka J, Lachman, HM. Analysis of a functional catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association with aggressive and antisocial behavior. Psychiatry Res 1997; 69 (2–3): 71–77.
- 21. Nieratschker V, Frank J, Mühleisen TW, et al. The catechol-O-methyl transferase (*COMT*) gene and its potential association with schizophrenia: Findings from a large German case-control and family-based sample. Schizophr Res 2010; 122(1-3): 24-30.
- 22. Okochi T, Ikeda M, Kishi T, et al. Meta-analysis of association between genetic variants in COMT and schizophrenia: An update. Schizophr Res 2009; 110(1-3): 140-148.