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Abstract

Hyperglycemia during sepsis is associated with increased organ dysfunction and higher

mortality. The role of the host immune response in development of hyperglycemia during

sepsis remains unclear. We performed a retrospective analysis of critically ill adult septic

patients requiring mechanical ventilation (n = 153) to study the relationship between hyper-

glycemia and ten markers of the host injury and immune response measured on the first day

of ICU admission (baseline). We determined associations between each biomarker and:

(1) glucose, insulin, and c-peptide levels at the time of biomarker collection by Pearson cor-

relation; (2) average glucose and glycemic variability in the first two days of ICU admission

by linear regression; and (3) occurrence of hyperglycemia (blood glucose>180mg/dL) by

logistic regression. Results were adjusted for age, pre-existing diabetes mellitus, severity of

illness, and total insulin and glucocorticoid dose. Baseline plasma levels of ST2 and procal-

citonin were positively correlated with average blood glucose and glycemic variability in the

first two days of ICU admission in unadjusted and adjusted analyses. Additionally, higher

baseline ST2, IL-1ra, procalcitonin, and pentraxin-3 levels were associated with increased

risk of hyperglycemia. Our results suggest associations between the host immune response

and hyperglycemia in critically ill septic patients particularly implicating the interleukin-1 axis

(IL-1ra), the interleukin-33 axis (ST2), and the host response to bacterial infections (procal-

citonin, pentraxin-3).
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Introduction

Hyperglycemia during sepsis is associated with increased organ dysfunction and higher mor-

tality [1–7]. Several factors contribute to hyperglycemia during sepsis including exogenous

nutritional support, stress hormone release, and catecholamines and glucocorticoids adminis-

tered during clinical care [8, 9], but a role for the systemic host immune response is not well

defined. Preclinical studies suggest that a proinflammatory host response could increase

hyperglycemia in septic patients [10–13]. Proinflammatory cytokines including interleukin-

(IL-)1β, tumor necrosis factor-(TNF-) α, and IL-6 can induce insulin resistance in peripheral

tissues and potentially suppress pancreatic beta cell function [14–16]. Once hyperglycemia

develops, high glucose concentrations may further suppress immune cell function [17–19].

Clinical studies of the relationship between the host immune response and the occurrence of

hyperglycemia in septic patients are limited and have yielded conflicting results [7, 20, 21].

Whereas some studies demonstrate a positive association between proinflammatory cytokine

levels and incidence of hyperglycemia [20], others have described decreased cytokine levels in

patients who develop hyperglycemia [7, 21]. Discrepancies in clinical studies may be secondary

to heterogeneous patient populations, varying proportions of patients with preexisting diabe-

tes, and differences in study duration.

We performed this study to better understand the relationship between markers of the

host immune response and early glycemic control in a cohort of mechanically ventilated sep-

tic patients, a population that we postulated would undergo similar pathophysiologic changes

early during critical illness. We hypothesized higher immune activation on presentation to

the ICU would be associated with higher blood glucose levels in the first 2 days of ICU admis-

sion. We examined biomarkers previously associated with dysglycemia in sepsis [e.g.- inter-

leukin (IL)-6, tumor necrosis factor receptor 1 (TNFr1), IL-1 receptor antagonist (IL-1ra)]

[13, 22–25], as well as biomarkers that have been previously unexplored in this setting includ-

ing markers of innate immunity [IL-8, soluble suppressor of tumorigenicity (ST)2, fractalk-

ine], lung epithelial injury [receptor for advanced glycation end products (RAGE)], lung

endothelial injury [angiopoietin-2 (Ang-2)], and the host response to bacterial infections

[procalcitonin (PCT), pentraxin-3 (PTX-3)]. We determined associations between each

marker and (1) measurements of glucose, insulin, c-peptide, and insulin resistance at the

time of biomarker collection; (2) average glucose and glycemic variability over the first two

days of intensive care unit (ICU) admission; and (3) occurrence of hyperglycemia in the first

two days of ICU admission.

Methods

Study population

We performed a cross-sectional analysis of critically ill septic adult patients enrolled in the

Acute Lung Injury Registry and Biospecimen Repository (ALIR) at the University of Pitts-

burgh, the details of which have been previously published [26]. Briefly, ALIR enrolls adult

patients aged 18 to 90 years with acute respiratory failure requiring mechanical ventilation

admitted to the medical intensive care units (ICU) at an academic tertiary care center (UPMC

Presbyterian University Hospital). Exclusion criteria include inability to obtain informed con-

sent, the presence of tracheostomy, or mechanical ventilation for more than 72 hours before

the enrollment. The ALIR is approved by the University of Pittsburgh Institutional Review

Board (protocol PRO10110387), and written informed consent is provided by all participants

or their surrogates. All research is carried out according to The Code of Ethics of the World

Medical Association (Declaration of Helsinki).
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Baseline blood samples (defined as the first research sample collected during ICU admission)

were collected from subjects within 48 hours of intubation. Baseline data for demographics,

comorbidities, mechanical ventilation, physiologic and laboratory variables, prevalence of acute

kidney injury at study enrollment [27], and Sequential Organ Failure Assessment (SOFA)

scores (modified to exclude the neurologic component as Glasgow Coma Scales are not accu-

rately reflective of neurological status in sedated patients and are not routinely recorded at

UPMC) [28] were collected prospectively. A total of 450 medical non-trauma patients were

enrolled in the ALIR between October 2011 and January 2018 (n = 450). We included patients

for whom research blood samples were drawn on the first day of ICU admission (n = 257)

given the dynamic nature of biomarkers and our interest in markers of early hyperglycemia.

Research blood samples for participants in our study were drawn approximately 6 to 12 hours

after ICU admission. We further restricted our analysis to participants who had sepsis defined

by a suspected or confirmed infection with a Sequential Organ Failure Assessment (SOFA)

score of at least 2, consistent with current Sepsis-3 definitions [29] (n = 153) (Fig 1).

Markers of the systemic host injury and immune response

Baseline plasma biomarkers had been previously measured in the ALIR as part of a separate

study using a customized Luminex assay (R&D Systems, Minneapolis, MN) (14). We extracted

data for following biomarkers: IL-6, IL-8, TNFr1, ST2, fractalkine, RAGE, Ang-2, PCT, and

PTX-3. Additional assessment of plasma IL-1ra was performed for this study using a custom-

ized Meso Scale Discovery Human U-Plex Metabolic Assay.

Measures of glycemic control

We measured glucose, insulin, and c-peptide levels at the time of biomarker collection using

banked plasma. Insulin and c-peptide were quantified using a customized Meso Scale

Fig 1. Diagram of participants included in analysis.

https://doi.org/10.1371/journal.pone.0248853.g001
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Discovery Human U-Plex Metabolic Assay, and plasma glucose was measured using a Solo V2

glucometer (Biosense, City, ST). While glucose, insulin, and c-peptide levels measured at the

time of biomarker assessment might have been influenced by exogenously administered insu-

lin and glucose prior to study entry, few studies have characterized glycemic measures simulta-

neously with markers of the host immune response in septic populations. The homeostatic

model of insulin resistance (HOMA-IR) was calculated by the formula: [insulin concentration

(mU/L) × glucose concentration (mg/dl)]/405 [30]. Higher HOMA-IR is assumed to correlate

with lower insulin sensitivity but importantly our HOMA-IR results incorporated random

and not fasted values.

To assess glycemic control over the first two days of ICU admission (a time period we

hypothesize would be reasonably influenced by the initial host immune response), we collected

data characterizing serial blood glucose levels and the amount of insulin and glucocorticoids

administered from the electronic medical record. We did not study a longer time point as we

hypothesized that glycemic control after this period would be more likely to be influenced by

exogenous factors. Blood glucose is monitored regularly in critically ill patients at UPMC, but

choice of corrective insulin sliding scale protocols or insulin drips (if used at all) was at the dis-

cretion of treating clinicians. Glucocorticoid doses were standardized for our analyses [31].

Three measures of glycemic control were determined for each patient using all available

blood glucose measurements over the first two days of ICU admission- (1) average glucose,

(2) glycemic variability [estimated by the standard deviation of all available glucose values for

participants with at least 3 glucose measurements (n = 127)] [32], and (3) category of glycemic

control: (a) “euglycemia” [defined for this study as maintaining all blood glucose values

between 70 and 179 mg/dL]; (b) “hyperglycemia” [incidence of any blood glucose greater than

180 mg/dL without an episode of hypoglycemia]; (c) “hypoglycemia” [incidence of any blood

glucose less than 70 mg/dL without an episode of hyperglycemia]; and (d) “both hyperglyce-

mia and hypoglycemia” [incidence of both hypoglycemia and hyperglycemia during the first

two days]. All participants in the “both hyperglycemia and hypoglycemia” group developed

hypoglycemia following insulin administration and were considered separately in our

analyses.

Statistical analysis

Statistical analyses focused on the association between baseline levels of each of the ten mark-

ers of the host response and (1) glycemic parameters at time of biomarker collection, (2) aver-

age glucose over the first two days of ICU admission, (3) glycemic variability over the first two

days of ICU admission, and (4) occurrence of hyperglycemia in the first two days of ICU

admission.

Data are presented as median (interquartile range) or number (%) as appropriate. Differ-

ences in baseline characteristics between the “euglycemia” and the “hyperglycemia” groups

were compared by the Wilcoxon rank-sum test or Fisher’s exact test as appropriate. Average

glucose, total dose of insulin administered, total dose of glucocorticoids administered, and bio-

marker levels were log-transformed for analysis. Association between each host response bio-

marker and each glycemic parameter (plasma glucose, insulin, c-peptide, and HOMA-IR) at

the time of biomarker collection was compared by bivariate Pearson correlation analysis. Lin-

ear regression was utilized to assess the relationship between each biomarker and (1) average

blood glucose and (2) glycemic variability over the initial 2 days of ICU admission in univari-

ate analyses and in multivariate analyses adjusted for age, history of diabetes, SOFA score,

insulin dose, and glucocorticoid dose. Logistic regression was utilized to assess the relationship

between each biomarker and occurrence of hyperglycemia in univariate analyses and in
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multivariate analyses adjusted for age, history of diabetes, SOFA score, and glucocorticoid

dose. Primary logistic regression analysis compared patients in the “hyperglycemia” to the

“euglycemia” group, but sensitivity analyses were performed including patients experiencing

“both hyperglycemia and hypoglycemia” in the hyperglycemia group. Finally, in exploratory

analyses, relationships between biomarkers and glycemic measures (average glucose, glycemic

variability, occurrence of hyperglycemia) were analyzed separately in non-diabetic and dia-

betic patients. The Simes method was applied to control for multiple hypothesis testing unless

otherwise specified [33]. Multiplicity adjusted p values less than 0.05 were considered statisti-

cally significant. All analyses were performed in Stata 16.0 (StataCorp, College Station, TX).

Results

Patient characteristics

Participants in our study (n = 153) had a median age of 58.8 (IQR: 46.0–68.4) years, 67

(43.8%) were female, and most were Caucasian (92.8%), consistent with the population of

patients admitted to UPMC Presbyterian. Median BMI was 29.8 (24.5–35.9) and 58 (37.1%)

were known to be diabetic prior to admission (3 had type 1 diabetes mellitus). Median modi-

fied SOFA score was 7 (5–9) and 84 (54.9%) had sepsis secondary to pneumonia. Median ICU

length of stay was 8 (5–12) days and 30-day mortality was 24.8%. Further characteristics are

detailed in Table 1.

Glycemic control during study period

Average glucose over the first 2 days of ICU admission in the entire cohort was 141 (IQR: 114–

190) mg/dL. Most patients either maintained euglycemia (66, 43%) or had hyperglycemia

without hypoglycemia (69, 45%). Fewer patients had incidence of hypoglycemia alone (8,

3.2%) or experienced both hyperglycemia and hypoglycemia (10, 6.5%) (Table 1). Compared

to euglycemic patients, hyperglycemic patients were older (62.2 vs 55.9 years, p = 0.007), had a

higher BMI (32.6 vs 28.1 kg/m2, p = 0.006) and had a higher prevalence of pre-existing diabetes

(56.5% vs 16.7%, p< 0.001). There was no difference in SOFA score between the two groups

(p = 0.184). Hyperglycemic patients had higher mean blood glucose, a higher number of blood

glucose checks, and required more insulin in the first 2 days of ICU admission compared to

euglycemic patients (p<0.001 for all). Acute kidney injury (AKI) was more common in hyper-

glycemic patients (63.8%) as compared to euglycemic patients (34.9%, p = 0.001). There was

no difference in the proportion of participants receiving glucocorticoids between the euglyce-

mic and hyperglycemic groups (p = 0.732). Thirty-day mortality did not differ between the

two groups (24.6% in hyperglycemic vs 19.7% in euglycemic group, p = 0.492).

Host response biomarkers do not correlate with glycemic measures at the

time of biomarker collection

Median plasma glucose at the time of biomarker assessment was 118 mg/dL (IQR 88–153) for

the entire cohort. Plasma glucose was higher at the time of biomarker assessment in patients

who experienced hyperglycemia at any point over the first 2 days of ICU admission (146 [117–

218] mg/dL) compared to patients who maintained euglycemia (96 [81–124] mg/dL,

p = 0.002, Table 2). Plasma insulin and HOMA-IR levels were also higher in the hyperglycemic

group (p = 0.005 and p = 0.002, respectively) at the time of biomarker assessment. However,

after adjusting for multiple testing, none of the host immune response biomarkers were signifi-

cantly associated with glycemic measures (S1 Table).
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Increased host response biomarker levels are positively associated with

average blood glucose, glycemic variability, and hyperglycemia in the first

two days of ICU admission

Baseline levels of ST2 and procalcitonin (PCT) were positively associated with average blood

glucose over the first 2 days of ICU admission in both unadjusted (p = 0.035 for each) and

adjusted analyses (p = 0.047 and p = 0.028 respectively). None of the other ten biomarkers

tested had a significant association with average blood glucose (Table 3). Positive associations

Table 1. Participant characteristics.

Variable Entire Cohort Euglycemic Hyperglycemic p-value Hypoglycemic Both Hypoglycemic and

Hyperglycemic

Number of participants 153 66 69 8 10

Demographics

Age, years 58.8 (46.0–68.4) 55.9 (35.3–65.6) 62.2 (51.9–69.9) 0.007 58.7 (50.4–66.7) 52.6 (39.9–69.1)

Female, % 67 (43.8) 32 (48.5) 28 (40.6) 0.358 2 (25.0) 5 (50.0)

Caucasian, % 142 (92.8) 63 (95.5) 67 (97.1) 0.614 5 (62.5) 7 (70.0)

Body mass index 29.8 (24.5–35.9) 28.1 (23.7–34.2) 32.6 (26.7–38.6) 0.006 26.5 (22.3–33.6) 25.2 (22.2–32.0)

Comorbid conditions

Diabetes mellitus, (%) 58 (37.1) 11 (16.7) 39 (56.5) <0.001 2 (25.0) 6 (60)

Congestive heart failure, (%) 15 (9.8) 7 (10.6) 8 (11.5) 0.856 0 (0) 0 (0)

Chronic obstructive pulmonary

disease, (%)

33 (21.6) 14 (21.2) 16 (23.2) 0.783 2 (25.0) 1 (10.0)

Chronic kidney disease, (%) 25 (16.3) 8 (12.1) 13 (18.8) 0.283 2 (25.0) 2 (20.0)

Chronic liver disease, (%) 11 (7.2) 4 (6.0) 3 (4.3) 0.655 3 (37.5) 1 (10.0)

Source of sepsis

Pneumonia, (%) 84 (54.9) 40 (60.6) 33 (47.8) 0.300 6 (75.0) 5 (50.0)

Aspiration, (%) 23 (15.0) 8 (12.1) 13 (18.8) 0 (0) 2 (20.0)

Non-pulmonary, (%) 46 (30.1) 18 (27.3) 23 (33.3) 2 (25.0) 3 (30.0)

Severity of illness

SOFA 7 (5–9) 6.5 (4–8) 7 (5. 9) 0.184 9 (7.5–12.5) 6.5 (5–9)

Acute kidney injury, (%) 78 (51.0) 23 (34.9) 44 (63.8) 0.001 5 (62.5) 6 (60.0)

Vasopressor dependent shock, (%) 74 (48.4) 27 (40.9) 38 (55.1) 0.101 5 (62.5) 4 (40.0)

Glycemic control during study period

Average glucose, mg/dL 141.5 (114.0–

189.9)

119.1 (95.0–

133.5)

192.5 (163.7–

236.4)

<0.001 98.4 (89.3–

108.1)

151.3 (103.6–217.4)

Number of glucose measurements 6 (3–11) 3 (2–6) 12 (7–16) <0.001 9 (6–13) 17 (14–19)

Maximum glucose, mg/dL 183 (137–267) 136.5 (114–154) 265 (209–364) <0.001 140.5 (127–166) 290 (199–399)

Medications administered during study period

Amount of insulin administered, IU 0 (0–10) 0 (0–0) 10 (0–49) <0.001 0 (0–0) 6.5 (0–40)

Number that received glucocorticoids,

(%)

55 (35.9) 23 (34.8) 27 (39.1) 0.732 2 (25.0) 3 (30.0)

Clinical outcomes

ICU length of stay(days) 8 (5–12) 7.5 (4–12) 8 (5–12) 0.472 6.5 (5–23) 4.5 (3–11)

Ventilator-free days 20 (0–24) 21 (3–25) 19 (0–24) 0.131 0 (0–23.5) 8.5 (0–24.5)

30-day mortality (%) 38 (24.8) 15 (19.7) 17 (24.6) 0.492 3 (37.5) 5 (50.0)

Data are presented as median (interquartile range) unless otherwise specified. p-values are for differences between euglycemia and hyperglycemia groups by Fisher’s

exact test or by rank sum test as appropriate and are not adjusted for multiple comparisons. Glucocorticoid doses were standardized and are presented as doses

equivalent to milligrams of prednisone. Ventilator free days were assigned as 0 for patients who died in the first 30 days of ICU admission. Abbreviations: SOFA-

sequential organ failure assessment IU- international units; ICU- intensive care unit

https://doi.org/10.1371/journal.pone.0248853.t001
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between ST2 and procalcitonin and glycemic variability were also noted in unadjusted

(p = 0.010 and p = 0.020 respectively) and adjusted analyses (p = 0.014 and p = 0.031,

S2 Table).

In logistic regression analyses, higher baseline levels of ST2, IL-1ra, PCT, PTX-3, and Ang-

2 were associated with higher risk of hyperglycemia in the first two days of ICU admission in

both unadjusted and adjusted analyses (Fig 2). In sensitivity analyses that included all patients

with hyperglycemia (and did not exclude patients that experienced “both hypoglycemia and

hyperglycemia”) higher ST2, IL-1ra, PCT and PTX-3 levels remained significantly associated

with higher risk of hyperglycemia in both unadjusted and adjusted analyses (S1 Fig). Ang-2

was only associated with hyperglycemia in unadjusted sensitivity analyses.

Analyses of relationships between host response biomarkers and glycemic measures (aver-

age glucose, glycemic variability, and occurrence of hyperglycemia) by diabetic status suggest

possible differences between non-diabetic and diabetic patients (S3–S5 Tables), but results

were not robust to adjustment for multiple testing at smaller sample sizes and are exploratory

at this time.

Discussion

In this exploratory retrospective observational study of mechanically ventilated septic patients,

higher host response biomarker levels early in the course of ICU admission for sepsis were

associated with higher average glucose, increased glycemic variability (an independent risk

Table 2. Glycemic measures at the time of biomarker collection.

Variable Entire Cohort Euglycemia Hyperglycemia p value Hypoglycemia Both Hyperglycemia and Hypoglycemia

Plasma Glucose (mg/dL) 118 (88–153) 96 (81–124) 146 (117–218) 0.002 77 (56–82) 124 (73–133)

Plasma Insulin (μIU/mL) 9.8 (5.4–19.7) 8.1 (5.3–13.6) 12.9 (6.8–29.6) 0.005 7.8 (5.6–17.6) 5.4 (2.2–10.7)

Plasma C-Peptide (pg/mL) 2375 (1270–4442) 2151 (1349–3767) 2880 (1586–6916) 0.070 1969 (1723–3912) 428 (241–928)

HOMA-IR 2.7 (1.4–6.5) 1.8 (1.1–3.6) 5.7 (2.2–12.4) 0.002 1.5 (1.1–2.4) 1.9 (0.4–3.4)

Data are presented as median (interquartile range). p-values are for differences between euglycemia and hyperglycemia groups by rank sum test and are adjusted for

multiple comparisons. Abbreviations: IU- international units; HOMA- homeostatic model-assessment of insulin resistance.

https://doi.org/10.1371/journal.pone.0248853.t002

Table 3. Unadjusted and adjusted associations of host response biomarkers with average glucose over the first two days of ICU admission.

Unadjusted Adjusted

Variable B-Coefficient Standard Error p-value B-Coefficient Standard Error p-value

IL-8 -0.011 0.020 0.756

IL-6 -0.015 0.014 0.437

TNFr1 0.013 0.038 0.809

IL-1ra 0.039 0.031 0.372

ST2 0.055 0.020 0.035 0.031 0.015 0.047

Fractalkine 0.001 0.017 0.975

RAGE 0.044 0.036 0.372

Ang2 0.048 0.027 0.235

Procalcitonin 0.051 0.019 0.035 0.035 0.014 0.028

Pentraxin-3 0.031 0.018 0.235

Biomarker levels and average glucose were log transformed prior to analysis. Reported p-values have been adjusted for multiple comparisons. Multivariate analyses were

adjusted for age, history of diabetes, total insulin dose, total glucocorticoid dose, and SOFA score. Abbreviations: ICU- intensive care unit; Ang2- angiopoietin 2; IL-6-

interleukin-6; IL-8- interleukin-8; RAGE- receptor for advanced glycation end-products; ST2- suppressor of tumorigenicity 2; TNFr1- tumor-necrosis factor receptor 1.

https://doi.org/10.1371/journal.pone.0248853.t003
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factor for mortality in critically ill patients) [32], and increased risk of hyperglycemia in the

first 2 days of ICU admission. Some biomarkers previously demonstrated to be associated with

hyperglycemia during critical illness (IL-6, sTNFr1) were not strongly associated with average

glucose or risk of hyperglycemia in our study. While statistically significant, the effect sizes

observed in our study suggest that, if causally linked, the host response is attributable to only a

small portion of hyperglycemia in sepsis consistent with the current multifactorial conceptual

model of dysglycemia in critical illness [8].

The presence of a chronic subclinical proinflammatory state has been well-described in the

setting of diabetes mellitus as activation of IL-1β, TNF-α, and IL-6 signaling pathways often

precedes the onset of diabetes mellitus [34, 35]. Sepsis is marked by activation of the host

immune response at a level much more acute and severe compared to diabetes mellitus [36,

37], and studies of the relationship between the host immune response and glycemic control

in critically ill septic patients are both challenging and have yielded conflicting results. Studies

by Leonidou et al (n = 62) and Nakamura et al (n = 153) demonstrated higher baseline IL-6

levels were associated with increased hyperglycemia in the first one and seven days of hospital-

ization respectively [4, 20]. In contrast, a large prospective study by van Vught et al in a cohort

Fig 2. Unadjusted and adjusted associations of host response biomarkers with hyperglycemia. Participants in the

“Both Hyperglycemia and Hypoglycemia” group were excluded in this analysis. Biomarker levels were log transformed

prior to analysis. Reported p-values have been adjusted for multiple comparisons. Multivariate analyses were adjusted

for age, history of diabetes, total glucocorticoid dose, and SOFA score. Abbreviations: Ang2: Angiopoetin 2; IL-6:

Interleukin-6; IL-8: Interleukin-8; RAGE: Receptor for advanced glycation end-products; ST2: Suppressor of

tumorigenicity 2; TNFr1: Tumor-necrosis factor receptor 1.

https://doi.org/10.1371/journal.pone.0248853.g002
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of almost 1000 critically ill septic patients reported that higher initial blood glucose levels were

associated with lower IL-6, IL-8 and IL-10 levels in non-diabetic patients and did not correlate

with cytokine levels in diabetic patients [7].

Our results do not demonstrate significant associations between baseline IL-6 and glycemic

control within the first 2 days of ICU admission. Potential reasons for differences in our study

include: (1) inclusion of a more restricted patient population (mechanically ventilated septic

patients) compared to prior studies (all critically ill septic patients) with a higher proportion of

patients with pneumonia as the inciting infection for sepsis, (2) differences in our definition of

euglycemia (all observed blood glucoses between 70 and 180 mg/dL) and our study period

(first 2 days of ICU admission) compared to prior studies (which ranged from an initial time

point on ICU admission to the first 7 days of hospitalization), and (3) the fixed sample size

which contributed to a low power for detecting significant associations when effect sizes are

smaller. Notably, while our results were robust to adjustment for age, diabetic status, severity

of illness, and exogenous insulin and glucocorticoid use, we acknowledge that potential imbal-

ances in comorbid conditions or other unmeasured mechanistic pathways may confound our

results.

Our results support a potential link between the IL-1 axis (IL-1ra) and glycemic control in

septic patients. Interestingly, IL-1 pathway inhibitors (e.g.- anakinra) have been tested as anti-

diabetic agents in clinical trials [38, 39], but not in the setting of sepsis-induced hyperglycemia.

Additionally, we describe novel associations between ST2 and glycemic control in critically ill

septic patients. Soluble ST2, a decoy receptor for the cytokine IL-33 (a member of the IL-1

family), has previously reported roles in activating immune cells and regulating the host

response although preclinical studies report conflicting results on the roles of ST2 and IL33

depending on model design and choice of septic insult [40–43]. ST2 is undetectable in normal

individuals but is both elevated in septic patients and is prognostic of increased mortality [44–

46]. Interestingly, elevated levels of ST2 are associated with increased risk of diabetes mellites

in both non-diabetic and prediabetic patient populations [47–49], whereas IL-33 may have

protective roles in glycemic control [50, 51]. To our knowledge, our study is the first to dem-

onstrate an association between ST2 and glycemic control in sepsis.

Our study also demonstrates associations between markers of the host response to bacterial

infection (PCT and PTX-3) and glycemic control in sepsis. Although typically secreted by C-

cells of thyroid glands [52], PCT is also secreted by monocytes, macrophages, neuroendocrine

cells, kidneys and lungs in settings of bacterial infection [53]. PTX-3 is similarly released in

response to bacterial pathogens and is involved in activation of complement and other inflam-

matory pathways [54]. PCT and PTX-3 levels in diabetic patients have been shown to be higher

when compared to non-diabetic controls [55–57], and plasma PCT is positively associated

with body mass index, insulin resistance, and components of the metabolic syndrome in popu-

lation-based studies [58]. In septic patients, both PCT and PTX3 have been associated with

severity of sepsis, organ dysfunction, and higher mortality, but have not been studied in regard

to dysglycemia [59–62]. Further studies are needed to explore potential relationships between

dysglycemia and the host response to bacterial infection.

Conclusion

In summary, our study adds additional knowledge about the pathways that may contribute not

only to the pathogenesis of sepsis but also to dysglycemia, which may help inform future strate-

gies to promote euglycemia and improve clinical outcomes in septic patients. As a single-cen-

ter study specifically in a subset of septic patients requiring mechanical ventilation without

external validation, our results should be interpreted as exploratory at this time.
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12. Jager J, Grémeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF. Interleukin-1beta-induced insulin

resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocri-

nology. 2007; 148(1):241–51. Epub 2006/10/14. https://doi.org/10.1210/en.2006-0692 PMID:

17038556.

13. Singamsetty S, Shah FA, Guo L, Watanabe Y, McDonald S, Sharma R, et al. Early initiation of low-level

parenteral dextrose induces an accelerated diabetic phenotype in septic C57BL/6J mice. Appl Physiol

Nutr Metab. 2016; 41(1):12–9. Epub 2015/12/02. https://doi.org/10.1139/apnm-2015-0213 PMID:

26624964.
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