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Background: Considering the heterogeneity and complexity of epigenetic regulation in
bladder cancer, the underlying mechanisms of global DNA methylation modification in the
immune microenvironment must be investigated to predict the prognosis outcomes and
clinical response to immunotherapy.

Methods: We systematically assessed the DNA methylation modes of 985 integrated
bladder cancer samples with the unsupervised clustering algorithm. Subsequently, these
DNA methylation modes were analyzed for their correlations with features of the immune
microenvironment. The principal analysis algorithm was performed to calculate the
DMRscores of each samples for qualification analysis.

Findings: Three DNA methylation modes were revealed among 985 bladder cancer
samples, and these modes are related to diverse clinical outcomes and several immune
microenvironment phenotypes, e.g., immune-desert, immune-inflamed, and immune-
excluded ones. Then patients were classified into high- and low-DMRscore subgroups
according to the DMRscore, which was calculated based on the expression of DNA
methylation related genes (DMRGs). Patients with the low-DMRscore subgroup presented
a prominent survival advantage that was significantly correlated to the immune-inflamed
phenotype. Further analysis revealed that patients with low DMRscores exhibited less
TP53 wild mutation, lower cancer stage and molecular subtypes were mainly papillary
subtypes. In addition, an independent immunotherapy cohort confirmed that DMRscore
could serve as a signature to predict prognosis outcomes and immune responses.

Conclusion: Global DNA methylation modes can be used to predict the
immunophenotypes, aggressiveness, and immune responses of bladder cancer. DNA
methylation status assessments will strengthen our insights into the features of the immune
microenvironment and promote the development of more effective treatment strategies.
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INTRODUCTION

DNA methylation modification is one of the most representative
epigenetic modifications, which is indispensable in vertebrate
development and illnesses (Ortega-Recalde and Hore, 2019; da
Rocha and Gendrel, 2019). Besides, it has been demonstrated to
associate with multiple biological functions in cancer, e.g., the
formation and evolution of tumor microenvironment, as well as
impairment restoration in the immune cycle (Chen et al., 2020;
Zhang et al., 2020a). On the other hand, abnormal DNA
methylation is also significantly related to the occurrence of
multiple cancer types, such as sarcoma (Koelsche et al., 2021),
bladder cancer (Liu et al., 2021a), and vulvar intraepithelial
neoplasia (Thuijs et al., 2021).

Bladder cancer is an extremely malignant urogenital
neoplasm (Siegel et al., 2021). Heterogeneous distributions
of genome clusters lead to molecular and cellular heterogeneity
in tumors, which affect clinical outcomes and treatment
responses (Qiu et al., 2019; Craig et al., 2020). Despite
pronounced progress in the treatment of bladder cancer,
more effective therapeutic strategies are still in demand.
Studies have demonstrated that several genes involved in
the occurrence and progression of bladder cancer are
regulated by promoter methylation. For example, Chen X
et al. built a diagnostic model based on 2 DNA methylation
markers for early detection and recurrent monitoring of
bladder cancer. Wilhelm CS et al. discovered that LINE1
hypomethylation may contribute to bladder cancer
tumorigenesis, especially in women (Wilhelm et al., 2010).
Kandimalla R et al. summarized the biomarkers of DNA
methylation and identified that methylated genes, including
SFRP1, SOX9, FHIT, CDH1, PMF1, RUNX3, LAMC2, and
RASSF1A, are related to the poor clinical outcomes in bladder
cancer patients (Kandimalla et al., 2013). In short, DNA
methylation is involved in carcinogenesis or tumor
inhibition across varying scenarios.

In recent years, immune checkpoint blockade therapy has
emerged as a promising therapeutic strategy. It aims to enhance
the immune activity of T lymphocytes to kill tumor cells by
inhibiting immune checkpoints, such as PD-1 and its ligand PD-
L1 (Yi et al., 2018). Studies have shown that immunotherapy
could improve clinical outcomes of numerous tumors, such as
ovarian cancer (Wan et al., 2021), bladder cancer (Han et al.,
2021), and colorectal cancer (Liu et al., 2021b). However, patients
respond to immunotherapy differently, and the effective rate of
immune checkpoint blockade therapy has been less than 20%.
The expression level of PD-L1, tumor microenvironment (TME),
and tumor mutation burden (TMB) have been reported as
signatures to evaluate the clinical responses to immunotherapy
(Samstein et al., 2019). Previous studies demonstrated that DNA
methylation may contribute to the alteration of TME. For
instance, Sasidharan Nair V et al. discovered that DNA
hypomethylation shall alter the expression of CTLA-4, TIGIT,
and PD-1 genes (Sasidharan Nair et al., 2018). Elashi AA et al.
also revealed that an abnormal promoter methylation profile is
correlated to the peripheral upregulation of TIGIT and PD-1 in
many cancers. They speculated that a combined administration of

anti-PD-1 agents and demethylation inhibitors could be a more
effective immunotherapeutic strategy than the current ones
(Elashi et al., 2019). However, the regulatory mechanisms of
global DNA methylation on tumor microenvironment and
immune response in bladder cancer remain unclear.

In this study, genomic data and clinical information of 985
samples from six independent bladder cancer cohorts were
included. DNA methylation modes were clarified by analyzing
the expression of fifteen DNA methylation regulators in these
samples We investigate the DNA methylation regulators
rather than DNA methylation itself, because the biology
function of DNA methylation would be altered according
to the genomic environment. Specifically, three DNA
methylation modes were identified to meet the criteria of
immune-desert, immune-inflamed, and immune-excluded
immunophenotypes, respectively. Moreover, an evaluation
system was built to qualify the DNA methylation modes in
individual patients, and the patients’ clinical responses to
immunotherapy were assessed based on their DMRscore.
Our study provides a new perspective to observe the global
DNA methylation status and the immunophenotype of
individual tumors in bladder cancer so that more specified
precision medicine could be achieved.

RESULTS

The Landscape of DNA Methylation
Regulators in Bladder Cancer
We executed systematic research that included 15 DNA
methylation regulators and summarizes the mutation rates of
all these regulators in bladder cancer. Among 412 samples, 52
samples experienced alteration of DNA methylation regulators,
with frequency 12.62%. According to the waterfall diagram,
alterations of the MBD1 gene were the most frequent, and
these alterations have been reported to participate in
tumorigenesis. Besides, DNMT1, DNMT3A, and DNMT3B
genes also exhibited an alteration frequency of 2%
(Figure 1A). Furthermore, co-occurrence mutation was
observed in several DNA methylation regulators despite their
functional differences, including NTHL1, MBD3, MECP2,
UHRF2, and ZBTB33 (Supplementary Figure S1C).

In addition, a prevalent CNV alteration was observed in the
fifteen regulators (Figure 1D). Specifically, DNMT3B, UHRF2,
and MECP2 demonstrated a widespread frequency of
amplification in samples while MBD3, UHRF1, and NTHL1
were frequently detected. The locations and circle sequences of
the DNA methylation regulators along the chromosomes are
depicted in Figure 1B. Moreover, the principal component
analysis revealed that the bladder cancer can be
distinguished from normal samples by observing the
expression levels of the 15 regulators (Figure 1C). In
addition, the mRNA expressions of the 15 DNA
methylation regulators are also significantly different
between BLCA tumors and normal tissues (Figure 1E). In a
word, the genomic imbalance of DNA methylation regulators
is vital for bladder cancer tumorigenesis and development.
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DNA Methylation Regulator Clusters
The complete clinical information and transcriptome data of six
GEO datasets (GSE13507, GSE31684, GSE32548, GSE48075,
GSE48476, GSE80691) and TCGA-BLCA were enrolled into
one cohort for further exploration. A univariate Cox
regression analysis was performed to find the prognostic
value of the 15 DNA methylation regulators in bladder
cancer patients (Supplementary Figure S1B). Following
that, the comprehensive landscape of the regulators’
intercorrelation and their prognostic attributes for bladder
cancer were calculated by network planning (Figure 2B). From
these results, we speculated that DNA methylation regulators
may be related to the heterogeneity of bladder cancer.
Therefore, unsupervised clustering was performed to
explore ultramodern DNA methylation regulator clusters
(DMRclusters) based on the expression levels of the
regulators in the meta-cohort. Three DMRclusters were
classified, including 306, 348, and 331 sample patients in
DMRcluster A, B, and C, respectively, and these distinct
DMRclusters could be distinguished via the principal
component analysis (Figure 2D). Specifically, DMRcluster
A presented a particularly prominent survival advantage,

but DMRCluster B exhibited the worst clinical outcome in
the integrated cohort (Figure 2A).

The Immune Features of Distinct
DMRclusters
The GSVA enrichment analysis was performed to identify the
biological processes in the DMRclusters. Judging from the results,
DMRcluster A was enriched in immune activation pathways,
such as the T/B cell receptor signaling pathway, toll-like receptor
signature, as well as complement and coagulation cascades. On
the other hand, DMRcluster B was prominently associated with
immune suppression, and DMRcluster C was even more
prominent in carcinogenic pathways, including the P53
signature pathway and the ERBB signature pathway (Figures
2E,F). As expected, subsequent analyses revealed that
DMRcluster A was significantly enriched in cells related to
acquired immunity, including activated B cells, central
memory CD4/CD8 T cells, and activated dendritic cells
(Figure 3B). Such a finding could well explain the results of
the survival analysis. Meanwhile, stromal activity (e.g., epithelial-
mesenchymal transition &, EMT) was remarkably enriched in

FIGURE 1 | Landscape of genetic alteration and transcriptome variation of DNA methylation regulators in bladder cancer. (A) The alteration frequency of 15 DNA
methylation regulators in 412 bladder cancer samples (TCGA-BLCA). the annotation of each variant types was displayed by the bagplots right barplots. Each cohort
represented an individual sample. The stacked barplot below displayed conversion ratio for each sample. (B) The location of CNV alteration of DNA methylation
regulators on 23 chromosomes was displayed by circular plot. (C) Principal component analysis (PCA) for the transcriptome characteristics of 15 DNAmethylation
regulators to distinguish tumors from normal samples in GSE13507 cohort. Tumor samples were labeled with blue color and normal samples were labeled with yellow.
(D) The frequency of copy number variation in TCGA-BLCA cohort. Deletion frequency: the green dot and amplification frequency: red dot. The number represented the
variation frequency. (E) The transcriptome characteristics of 15 DNA methylation regulators between normal and bladder cancer tissues. Tumor: red box; Normal: blue
box. The median value: black lines in boxes, the outliers: black dots out boxes. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 7603693

Ye et al. DNA Methylation Modification Map

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


DMRcluster C (Figure 3A). Based on all the previous results, we
speculated that these DMRclusters had remarkably diverse
features in terms of immune cell infiltration into the tumor
microenvironment. Specifically, DMRclusters A, B, C were
featured by immune-inflamed, immune-desert, and immune-
excluded phenotypes, respectively.

The Transcriptome Data and Clinical
Features of DMRclusters
To further investigate these DMRclusters in diverse biological
processes and clinical features, we focused on the TCGA-BLCA
cohort containing 407 bladder cancer patients and their
exhaustive clinical information. Similarly, the patients were
classified into three clusters with unsupervised clustering
(Supplementary Figures S2A–D). Judging from the results
DNA methylation regulators’ transcriptional profiles among
the three DMRclusters demonstrated significant difference,
which was validated by one-way ANOVA analysis

(Supplementary Figure S2E). Specifically, DMRcluster A
revealed high expression of DNMT3B and DNMT3A,
DMRcluster B was characterized by higher DNMT1 and
UHRF1 expressions, and DMRcluster C exhibited lower
contents of DNMT1, DNMT3A, DNMT3B, and UHRF1 at
various extents (Figure 3C). Patients with the luminal
infiltrated subtype were characterized by DMRcluster A, while
the basal squamous subtype was featured by DMRcluster B
(Figure 2C); besides, both DMRclusters B and C were
enriched in the neuronal subtype (Figure 4D). In bladder
cancer treatments, the neuronal subtype is particularly difficult
because of its poor clinical outcome, while the luminal papillary
subtype is prone to better survival. Thus, we performed the K-M
analysis, and the results also validated our conjecture that patients
characterized by DMRclusters B and C exhibited significantly
more rapid disease progression and poorer clinical outcomes,
while DMRcluster A presented a remarkable survival advantage
(Supplementary Figure S2F). In addition, the luminal
infiltration subtype in bladder cancer is characterized by low

FIGURE 2 | Clusters of DNA methylation modes and biological profiles of each cluster. A Kaplan-Meier curve with p value 0.032 displayed a remarkable difference
among three DNA methylation modes, the DMRcluster B presented a remarkable poor clinical outcome. DMRcluster (A): 306 samples, DMRcluster (B): 348 samples
and DMRcluster (C): 331 samples. The meta cohort including 985 samples (GSE13507, GSE31684, GSE32548, GSE48075, GSE48476, GSE80691 and TCGA-
BLCA). (B) The interplay among DNA methylation regulators in bladder cancer. Red and gary represented readers and writers respectively. The size of circles
displayed the influence of each regulator on clinical outcomes. The lines connecting regulators represented their interactions, and thickness represented the correlation
strength. Negative correlation was labeled with blue and positive correlation was labeled with red. Risk factor: purple, favorable factor: green. (C) The proportion of
molecular subtypes in the three DNAmethylation modes (TCGA-BLCA). Basal squamous subtype, green; Luminal subtype, blue; luminal infiltrated subtype, red; luminal
papillary subtype, yellow; and Neuronal subtype, olivedrab. (D) Principal component analysis (PCA) for the transcriptome characteristics of three DMRclusters.
DMRcluster A was labeled with blue color, DMRcluster (B) was labeled with red color and DMRcluster (C) was labeled with green. (E,F) Gene set variant analysis
displayed the activation status of biological pathways in diverse DMRclusters. The heatmap help us to observe the difference of biology pathway activity among three
DMRclusters. Blue represented inhibited pathways and red represented activated pathway. (E) DMRcluster (A) vs. DMRcluster (B); F DMRcluster (B) vs.
DMRcluster (C).
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tumor cell purity and high lymphocytic infiltration. Most patients
with the luminal infiltration subtype were categorized into
DMRcluster A, and only a small amount of luminal
infiltration was observed in DMRcluster B (Figure 4D),
suggesting that DMRcluster A is related to immune activation
and DMRcluster B is associated with the immune-desert
phenotype.

Functional Annotations of DMRGs
To further explore the potential biological processes in each
DMRcluster, the R package named “limma” was performed to
find DMRGs, and a total of 832 genes were selected
(Supplementary Figure S2G). GO analysis was executed on
the DMRGs using the R package “clusterProfiler.” DMRGs
were prominently enriched in immunity activation pathways,
DNA methylation, and cell proliferation, which verified that
DNA methylation is vital in the immune regulation of tumor
progression (Figure 3D).

To further investigate the mechanisms of DNA regulation, the
patients were classified into three genomic subtypes based on the
expression of the 832 DMRGs. Similarly, the genomic subtypes

were identified via the unsupervised clustering algorithm. They
were termed Gene cluster A, B, and C, respectively
(Supplementary Figures S3A–D), and they were all related to
DNA methylation in bladder cancer. A heat map also
demonstrated that the three Gene clusters can be distinguished
by their signature transcriptomes (Figure 4A). According to the
K-M survival method, Gene cluster A presented a remarkable
survival advantage, while Gene cluster B was proved to be
associated with a poorer prognosis (Figure 4D). Moreover, the
three Gene clusters revealed significant differences in the
expression of DNA methylation regulators (Figure 4G).

TME Characteristics in the Three
Gene.clusters
To identify the role of Gene clusters in the immune regulation of
TME, we investigated the expression of cytokines and
chemokines in Gene clusters. The targets of identification were
chosen from the literature, among which ZEB1, TGFB2,
PDGFRA, VIM, COL4A1, TGFBR2, TWIST1, ACTA2, and
SMAD9 are related to transcripts of the transforming growth

FIGURE 3 | Tumor microenvironment characteristics and transcriptome profile in three DNA methylation modification modes. (A) stromal activation pathways
among three different DNA methylation modification modes include EMT, angiogenesis and Pan-F-TBRS. (B) The content of each tumor microenvironment immune
infiltrating cells in three DNA methylation modification modes. The median value: black lines in boxes, the outliers: black dots out boxes. (C) The heatmap help us to
observe the expression level of DNA methylation regulators among different DMRclusters (TCGA-BLCA cohort). DMRcluster subtypes, Molecular subtypes,
Histology, Grade, Stage, Gender, Age and Survival status were used as patient annotations. Red represented high expression level of DNA methylation regulators and
blue represented low expression level. (D) Functional annotation for DNAmethylation-related genes. Red representedmore enriched genes and blue represented a small
number of enriched genes.
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factor (TGF) b/EMT pathway. Besides, HAVCR2, CD80, LAG3,
CD86, TIGIT, PDCD1, TNFRSF9, PD-L1, IDO1, CTLA4, and
PD-L2 are associated with the transcripts of immune checkpoints,
and CXCL10, PRF1, CD8A, CXCL9, GZMB, GZMA, TNF, IFNG,
and TBX2 are associated with immune-activated transcripts
(Sotiriou et al., 2006; Barbie et al., 2009; Ritchie et al., 2015;
Zeng et al., 2019).

We found that the transcripts related to immune activation
pathways were significantly up-regulated in Gene cluster B, but
the patients in this cluster did not show an expected survival
advantage. Previous studies revealed that high stromal activation
was associated with limited immune activation (MacGregor et al.,
2019). Therefore, we investigated the transcripts related to the
(TGF)b/EMT pathway in this cluster and demonstrated stromal
activation within. Based on these findings, we assumed that anti-
tumor effects of immune cells in Gene cluster B are limited by
stromal activation, indicating that Gene cluster B is the immune-
excluded subtype. Besides, the transcripts of immune checkpoints
were examined as highly expressed in Gene cluster B, suggesting
that immunotherapy may bring unexpected outcomes
(Supplementary Figures S3F–H).

To further investigate the functions of DMRGs, we examined
the identified pathways in bladder cancer patients. Gene cluster A
was found to enrich in CD8 T effector, DNA replication,

mismatch repair, and antigen processing machinery pathways
(Supplementary Figure S3E). Previous studies demonstrated
that bladder cancer can be classified into five subtypes
according to the molecular phenotype. Among them, the
luminal-papillary subtype exhibits the best prognosis with a
five-year survival rate of 60%. On the other hand, the five-year
survival rate of neuronal bladder cancer is only 17% (Robertson
et al., 2017). Our findings suggested that Gene cluster A was
almost fully composed of the luminal-papillary subtype, which
was relevant to survival advantage (Figure 4F).

Individual Modification Patterns of DNA
Methylation
By now, the experimental results have confirmed that DNA
methylation is irreplaceable in the formation of distinct TME
landscapes. However, investigations above were not helpful to
predict the DNA methylation status of an individual sample as
they were conducted on a population. Since tumors are
heterogeneous and complex, we built the DMRscore model to
qualify the DNA methylation status based on the expression of
DMRGs.

In this section, we attempted to assess whether DMRscore is
effective in predicting clinical outcomes. Patients were classified

FIGURE 4 | Construction of DNA methylation signatures for individual sample. (A) The heatmap help us to observe the transcriptome landscape among different
Gene.clusters (TCGA-BLCA cohort). Gene.cluster subtypes, Molecular subtypes, Histology, Grade, Stage, Gender, Age and Survival status were used as patient
annotations. Red represented high expression level and blue represented low expression level. B-C Differences in DMRscore among three DMRclusters (B) or
Gene.clusters (C) in TCGA-BLCA cohort (Kruskal-Wallis test, p < 0.001). D-E Kaplan-Meier curve displayed a remarkable difference among three Gene. clusters
((D), p < 0.001) or DMRscore subgroups ((E), p < 0.001) in TCGA-BLCA cohort. (F) Sankey diagram displayed the alteration of DMRclusters, molecular subtypes,
Gene.cluster and DMRscore. (G) The transcriptome characteristics of 15 DNA methylation regulators among Gene.clusters. Gene.cluster (A): blue box; Gene.cluster
(B): red box. Gene.cluster C: green box. Themedian value: black lines in boxes, the outliers: black dots out boxes. (H)Differences in the known gene signatures between
high DMRscore and low DMRscore subgroups. APC: antigen-presenting cells. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001).
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into groups of high and low DMRscores according to the best
cutoff value. The correlation results between DMRscores and
clinical outcomes showed that patients in the low DMRscore
group exhibited a remarkable clinical advantage, while those in
the other group demonstrated less satisfactory clinical outcomes
(TCGA-BLCA cohort) (Figure 4E, p � 7.158e-05). The
Figure 4H shown that patients with high DMRscore were
enriched in APC_co_inhibition, T_cell_coinhibition, which
revealed that this subgroup presented immunosuppression.
Subsequently, we examined whether the DMRscore can serve
as an independent index to evaluate the clinical outcomes of
bladder cancer. Multivariate Cox regression analysis was used to
take the independent indices, including age and DMRscore, into
the calculation, and the results confirmed DMRscore as an
independent and robust prognostic index (HR � 1.05;
Supplementary Figure S4A). Variations of individual patients
are displayed by the Sankey diagram (Figure 4F).

To reassure the predictive effects of DMRscore, we examined
its relationship with the identified clusters by Kruskal-Wallis
tests. The test results suggested that DMRscore could be used to
predict DNA methylation clusters. Specifically, both DMRcluster
B and Gene cluster B showed the highest median DMRscore
(Figures 4B,C). In addition, patients suffering from neuronal
bladder cancer also exhibited the highest median DMRscore

among five molecular subtypes (Figure 5A). In a word,
DMRscore has been proved as an effective index to assess the
DNA methylation status of individual samples and predict
clinical outcomes. In order to develop the accuracy of predictive
performance, the prognostic nomogram included a DMRscore, and
other clinical variables was constructed to evaluate the 1-, 3-, and 5-
year overall survival probabilities (Supplementary Figure S6).

Particularly, the capability of DMRscore to assess the efficacy
of adjuvant chemotherapy (ADJC) in bladder cancer patients was
evaluated. DMRscore prediction results were not disturbed by
ADJC: whether receiving ADJC or not, the low-DMRscore group
always presented significant survival advantages. However,
DMRscore cannot be utilized to judge whether ADJC can be
applied on a bladder cancer patient, and patients with low
DMRscores had shorter survival after ADJC. (Figure 5B). In
addition, patients with high grade, TP53MT, and non-papillary
subtypes of the cancer showed significantly higher DMRscores,
with a poorer survival prognosis (Figure 6A). This also validated
in E-MTAB-4321 cohort (Supplementary Figure S4C).
Furthermore, the capability of DMRscore to assess the efficacy
of TP53 mutation in bladder cancer patients was examined as
well. We found that the L. DMRscore-TP53. WT group exhibited
a remarkably advantageous survival, while the H. DMRscore-
TP53. MT group demonstrated the worst clinical outcome

FIGURE5 | Characteristics of DMRscore in TCGA molecular subtypes and tumor mutation burden. (A) Differences in DMRscore among diverse bladder cancer
molecular subtypes. Basal squamous subtype, blue; Luminal subtype, red; luminal infiltrated subtype, green; luminal papillary subtype, sapphire; and Neuronal subtype,
yellow. (B) Kaplan-Meier curve showed the clinical prognosis of patients with combination of DMRscore and adjuvant chemotherapy stratification. H, high. L, low. ADJC,
adjuvant chemotherapy (p � 0.028). (C) Kaplan-Meier curve showed the clinical prognosis of patients with combination of DMRscore and TP53 stratification. H,
high. L, low. MT, mutation type; WT, wild type (p < 0.001). (D) Difference in tumor mutation burden between high DMRscore and low DMRscore (p � 0.019). (E)
Correlation between DMRscore and tumormutation burden. (R � 0.25, p < 0.001) (F,G) The landscape of tumor somatic mutation in TCGA-BLCA established by high (F)
and low DMRscore (G). Each column represented individual patients. The upper barplot displayed tumor mutation burden.
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(Figure 5C). K-M survival analysis and multivariate Cox
regression analysis for the E-MTAB-4321 cohort also verified
that DMRscore can serve as an independent prognostic index in
bladder cancer (Figure 6C; Supplementary Figure S4B).

The Role of DNA Methylation Mode in
anti-PD-1/PD-L1 Immunotherapy
Studies have verified that patients’ response to immunotherapy is
related to the TMB frequency, and higher TMB statuses lead to a
persistent response to anti-PD-1/PD-L1 immunotherapy. We
investigated the somatic mutation frequencies between high-
and low-DMRscore groups in the TCGA-BLCA cohort.
However, TMB quantification analysis verified that DMRscore
is significantly and positively correlated to TMB (Figures 5D,E).
Besides, the waterfall diagram showed that the high-DMRscore
group was more susceptible to somatic mutations than the other
group, with somatic mutation frequencies of 146/148 (98.65%)
and 234/251 (93.23%), respectively (Figures 5F,G). Thus, our
experimental results indicated that patients with a high

DMRscore exhibit good response to anti-PD-1/PD-L1
immunotherapy, which is contradictory to previous findings.
Consequently, we speculated that TMB frequency cannot be
utilized to predict the effect of immunotherapy in this model.

In order to further examine the prediction performance of the
DMRscoremodel, we applied the establishedDMRscore signature to
other independent bladder cancer cohorts. Almost all cohorts
presented survival differences as revealed by the DMRscore
model except for two GEO datasets with few samples
(Supplementary Figures S5A–E). The prediction performance of
the DMRscore model for tumor stages was assessed by the receiver
operating characteristic (ROC) curves, and the area under the curve
(AUC) was 0.699 and 0.721at 3 and 5 years, respectively
(Supplementary Figures S5F,G). These data indicated that the
DMRscore signature could serve as a new biomarker to predict
clinical outcomes.

Immune checkpoint blockade therapy has undoubtedly
produced significant therapeutic benefits for many cancer
patients. Based on the collected immunotherapy cohorts, we
explored whether DMRscore can serve as a signature to

FIGURE 6 | Role of DNAmethylation modification in clinical prediction. (A) Differences in DMRscore among different clinical status. The median value: black lines in
boxes, the outliers: black dots out boxes. MT, mutation type; WT, wild type. (B) Kaplan-Meier curve showed the clinical prognosis of patients with combination of
DMRscore and NEO stratification. H, high. L, low. NEO, Newantigen burden (p < 0.001). (C) Survival analyses for high (135 samples) and low (341 samples) DMRscore
subgroups in the E-MTAB-4321 cohort using Kaplan-Meier curves (p < 0.001). (D) Survival analyses for high (430 samples) and low (151 samples) DMRscore
subgroups in the GEO-metacohort cohort using Kaplan-Meier curves (p < 0.001). (E) Survival analyses for high (147 samples) and low (151 samples) DMRscore
subgroups in the anti-PD-L1 cohort (IMvigor210 cohort) using Kaplan-Meier curves (p � 0.004). (F,G) The proportion of patients with response to PD-L1 blockade
immunotherapy in low or high DMRscore subgroups. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response. Responser/
Nonresponer: 32%/68% in the low m6Ascore groups and 14%/86% in the high m6Ascore groups. H Differences in PD-L1 expression between low and high m6Ascore
groups (p < 0.0001). L Differences in DMRscore among distinct tumor immune phenotypes in IMvigor210 cohort. (p � 0.029).
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predict patients ’ response to immunotherapy. Remarkable
survival advantages are seen in patients with low DMRscores
in the GEO-metacohort and anti-PD-L1 cohorts (IMvigor210,
advantaged urothelial cancer) (Figures 6D,E). In addition, these
patients also exhibited much better clinical outcomes when
receiving anti-PD-L1 immune checkpoint blockade therapy
(Figure 6F), and they were characterized by a significantly
higher expression of PD-L1, a potential clinical response to
immunotherapy (Figure 6H). Besides, we evaluated the tumor
neoantigen burden in bladder cancer patients, and those with high
neoantigen burden and low DMRscore signatures presented a
significant survival advantage. (Figure 6B). Judging from
Figure 6G, the DMRscore signature was a robust and potential
biomarker to estimate patient response and clinical outcomes in
immunotherapy. The immunophenotypes of metastatic urothelial
cancer have been distinguished in the IMvigor210 cohort, so we
studied the differences of DMRscore among them (Figure 6I).
Most patients with low DMRscores exhibited the inflamed
immunophenotype, to which individualized immunotherapy is
crucial in treatment. In a word, DNA methylation modes are
significantly related to tumor immunophenotypes and patients’
clinical responses to immunotherapy.

DISCUSSION

DNA methylation is closely related to tumorigenesis and tumor
progression. The extent of DNAmethylation varies among cancer
types and different stages of cancer progression. For example, the
progression of prostate cancer has been related to DNA
hypomethylation (Fraser et al., 2017; Wu et al., 2020), while
bladder cancer pathology was characterized by global DNA
hypermethylation (Osei-Amponsa et al., 2020). Thus, this
observation revealed that DNA methylation may occur in a
cancer-specific manner and alter the tumor microenvironment.
Liu P et al. demonstrated that DNMT1 regulated the tumor
growth in bladder cancer via modulating the status of DNA
methylation in the promoter of PTEN (Liu et al., 2020). Zhu Y
et al. demonstrated that MBD2 was a protective signature against
bladder carcinoma according to the RNA data from the
peripheral blood lymphocytes of 98 bladder cancer patients
and 135 frequency-matched control patients (Zhu et al., 2004).
Ying L et al. confirmed that epigenetic repression of RGS2 by
UHRF1 contributes to bladder cancer progression (Ying et al., 2015).
However, most researches only focused on the effect of a single DNA
methylation regulator on the alteration of TME and tumor
progression. As a result, the landscape of immune cell infiltration
characteristics, which is mediated by the synergistic effect of multiple
DNA methylation regulators, remained less understood. By
clarifying the roles of diverse DNA methylation modes in
immune cell infiltration, our knowledge about TME and anti-
tumor response could advance, and foundations of more efficient
immunotherapy strategies could be established.

In this study, we identified three DNA methylation modes
based on expression level 15 DNA methylation regulators, and
each DMRcluster was found to correlate with significantly
different TMEs. Specifically, DMRclusters A, B, and C are

characterized by immune-inflamed, immune-desert, and
immune-excluded phenotypes, respectively. The immune-
inflamed phenotype, or “hot tumor,” is characterized by the
existence of a large number of immune cells in the TME
(Zhang et al., 2020b; Gruber et al., 2020; Yu et al., 2021). The
other two phenotypes, or “cold tumor,” show non-inflammatory
infiltration. Despite the immune-excluded phenotype exhibits
considerable immune cell infiltration, the immune cells are
constrained by the stromal component that can be present
either in the tumor capsule or throughout the whole tumor
tissue to prevent the immune cells from exerting anti-tumor
effects (Lambrechts et al., 2018; Kaymak et al., 2021). Such an idea
is verified by the strong stromal activation in DMRcluster C,
where the EMT pathway inhibited the activity of immune cells.
Thus, our classifications of different DNA methylation modes
were confirmed feasible and effective.

In addition, we confirmed that the transcriptomes in distinct
DNAmethylationmodes are different, and obtained differentially
expressed genes among thses DNA methylation patterns. Their
actual compositions are related to DNA methylation and
immune-related biological pathways. Therefore, we termed
these differentially expressed genes as DMRGs. Three genomic
subtypes were divided from the samples based on the expression
of DMRGs, and these subtypes were also significantly related to
distinct immunophenotypes. Therefore, DNA methylation is
indeed irreplaceable in shaping the TME, and a systematic
assessment of DNA methylation modes will contribute to
understanding the mechanisms of tumorigenesis and to the
advancements of personal medicine.

Since tumors are heterogeneous, we built a DMRscore model
to evaluate DNA methylation features in individual tumors. The
patients with highDMRscores were characterized as the immune-
desert phenotype, while the patients with low DMRscores were
characterized as the immune-inflamed phenotype. These results
were further verified in the IMvigor210 cohort whose
immunophenotypes have been identified (Necchi et al., 2017).
Comprehensive analyses suggest that DMRscore signature is a
robust and potential biomarker to assess patients’ response to
immunotherapy, Patients with low DMRscore displayed higher
expression of PD-L1 compared to patients with higher
DMRscore, and had a better response to Atezolizumab. In
addition, patients with low DMRscores exhibited less TP53
wild mutation, lower cancer grade, low tumor mutation
burden, and molecular subtypes were mainly papillary subtypes.

In summary, DMRscore can systematically assess the DNA
methylation landscape and detect the TME characteristics,
thereby identifying the immunophenotypes of individual
patients for more efficient immunotherapeutic strategies.
Besides, DMRscore can be used to evaluate other features of
bladder cancer patients, including molecular subtypes, genetic
mutation, tumor stage, and clinical histology. Moreover,
DMRscore could serve as an independent prognostic indicator
for effective prediction of clinical outcomes, as well as a factor that
reflects the efficacy of and clinical responses to immunotherapy.
Our research uncovers that DNA methylation can alter the
immune microenvironment, resulting in the emergence of a
“cold tumor.” Herein, we propose a new hypothesis:
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targeting DNA methylation regulators or DMR-related
biological pathways could be effective to alter the DNA
methylation status so that the unfavorable factors could be
removed, and “cold tumors” could transform into “hot” ones.
If proved correct, this hypothesis may promote the
development of immunotherapeutic agents and drug
combinations. Our study provided a new perspective to
reveal the global DNA methylation status in bladder
cancer patients, to predict the immunophenotype of
individual tumors, and to promote individualized medicine.

Compared with existing investigations on prognostic
signatures of bladder cancer, this study has some noteworthy
advantages and shortcomings. Firstly, our investigation
contributed to demonstrate the effect of DNA methylation
modification in shaping of tumor microenvironment complexity
and diversity, and explored the potential role of DNA methylation
status to predict the clinical response to Atezolizumab therapy in
urothelial carcinoma. The global DNA methylation landscape was
constructed as the observation object to systematically investigate
the effect of DNA methylation modification on tumor
microenvironment, which has not been clarified before this
study. Our study is mainly based on bioinformatics analysis and
requires further clinical verification. Basic experiments are needed
to verify the relationship between prognostic characteristics and
immune infiltration; In the future we will conduct multicenter, large
sample size studies to prospectively validate the model in order to
further test the predictive potential and clinical ability of our model.

METHODS

Data Acquisition and Processing
The workflow in our study is displayed in Supplementary Figure
S1A. 7 sets of transcriptome data and their corresponding clinical
annotations were obtained from The Cancer Genome Alta (TCGA)
and Gene-expression omnibus (GEO) databases, in which patients
without complete clinical annotation were excluded. The “ComBat”
algorithm in the R package “sva” was used to correct the batch effect
of non-biological technical deviations. The comprehensive
information of all alternative bladder cancer datasets is
summarized in Table 1. The transcriptome data were
downloaded from UCSC Xena database, and the somatic
mutation information was obtained from TCGA database. We
investigated numerous DNA methylation regulators, including

the DNA methyltransferase family (DNMT1, DNMT3A,
DNMT3B), the methyl-CpG-binding domain proteins (MeCP2,
MBD1, MBD2, MBD3, MBD4), the ubiquitin-like proteins
containing PHD and RING finger domains (UHRF1,
UHRF2), zinc-finger domain proteins (ZBTB33, ZBTB4),
NTHL1, SMUG1, and UNG (Jones, 2012; Moore et al.,
2013; Koch et al., 2018). All the data were processed with
the R package “Bioconductor” in R software (version 4.0.3).

Unsupervised Clustering of the Fifteen DNA
Methylation Regulators
The unsupervised clustering algorithm was utilized to find out
the distinct DNAmethylation patterns based on the expression
of the fifteen alternative DNA methylation regulators. The R
package “ConsensuClsterPlus” was run 1,000 repetitive times to
ensure the stability of classification, and the clustering number was
assigned according to the K value. Subsequently, to verify the
differences in biological functions among the three DNA
methylation patterns, we ran the R package “GSVA.” GSVA
(gene set variation analysis) is an unsupervised method to
evaluate variations of biological pathways in a sample
population (Hänzelmann et al., 2013). The gene sets identified
from GSVA were named “c2.cp.kegg.v6.2.-symbols.”

Estimation of Tumor Microenvironment Cell
Infiltration
The ssGSEA (single-sample gene set enrichment analysis) was
utilized to calculate the relative amounts of gene components in
each TME cell infiltration. A gene set that labels each immune cell
type was adopted from the published studies (Charoentong et al.,
2017). We investigated several immune cell types, including
activated B cells, activated CD4 T cells, macrophages, eosinophils,
CD56dim natural killer cells, and neutrophils. Each type of immune
cell was counted for its enrichment score, and a box diagram was
used to compare the scores in different DNA methylation patterns.

Identification of DNA Methylation Related
Genes Among Distinct DNA Methylation
Modes
To reveal which genes are DMRGs, we classified the samples into
three DNA methylation clusters based on the expression levels of

TABLE 1 | The gene expression profiles of bladder cancer included in this study.

Accession number Source Number of patients Survival

TCGA: BLCA Illumina RNAseq 432 OS
GEO: GSE13507 Illumina human-6 v2.0 expression beadchip 256 OS
GEO: GSE31684 Affymetrix Human Genome U133 Plus 2.0 Array 93 OS
GEO: GSE32548 Illumina HumanHT-12 V3.0 expression beadchip 131 OS
GEO: GSE48075 Illumina HumanHT-12 V3.0 expression beadchip 142 OS
GEO: GSE48276 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 116 OS
GEO: GSE70691 Illumina HumanHT-12 WG-DASL V4.0 R2 expression beadchip 49 OS
ArrayExpress: E-MTAB-4321 Illumina HiSeq 2000 476 PFS
IMvigor210 Illumina RNAseq 348 OS

Frontiers in Cell and Developmental Biology | www.frontiersin.org December 2021 | Volume 9 | Article 76036910

Ye et al. DNA Methylation Modification Map

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fifteen DNA methylation regulators. The differentially expressed
genes (DEGs) among the clusters were picked out by an R
package named “limma” with the adjusted p-value <0.001.

Construction of DNA Methylation Regulator
Score Groups
To qualify the DNA methylation status of individual samples
from bladder cancer patients, we designed a DNA methylation
signature termed DMRscore for assessments. The DNA
methylation score groups were designed as follows: After
identifying the DMRGs, we extracted the overlapping genes in
them. Patients were divided into groups with distinct immune
subtypes for further analysis, which was performed by an
unsupervised clustering approach on the overlapping DMRGs.
The number of gene clusters andmodel stability were validated by
the consensus clustering algorithm. Furthermore, the univariate
Cox regression analysis was executed for each overlapping
DMRG to find out the ones related to prognosis.
Subsequently, the established DMRscore model was subject
to the principal component analysis (PCA) that combines
the linear high-dimension indicators into their linear
independent low-dimension counterparts. Moreover, in
PCA, both types of indicators retain their original information,
and the speed of data processing is accelerated. Both
principal components (i.e., the two types of indicators) were
extracted to calculate the DMRscore as DMRscore � ∑(PC1i +
PC2i), where i is the expression level of the prognostic-related
DMRGs.

To comprehensively evaluate the clinical outcome of each
patient, a prognostic nomogram that contained the T stage, M
stage, N stage, Gender, Age, clinical Stage and DMRscore was
constructed. Subsequently, the 1-, 3-, 5- year overall survival
probabilities were assessed by the calibration curve. A calibration
curve close to 45° indicated the prominent prediction ability of the
constructed model.

The Relationship Between DNAMethylation
Features and Other Relevant Biological
Functions
We obtained several gene sets that are involved in certain biological
processes, e.g., DNA damage repair, homologous recombination, cell
cycle, mismatch repair, DNA replication, nucleotide excision,
carcinogenesis, Pan-F-TBRS, EMT, angiogenesis, immune
checkpoint, actions of CD8 T effector cells, and antigen processing
(Rosenberg et al., 2016; Şenbabaoğlu et al., 2016; Mariathasan et al.,
2018). The correlations between DNAmethylation features and these
processes were further identified via correlation analysis.

The Genomic Profiles of Immune
Checkpoint Blockage Effects and
Corresponding Clinical Information
In order to explore the predictive effect of DNA methylation
statuses in immunotherapy, we included an immunotherapeutic
cohort in this study, advanced urothelial cancer treated with

atezolizumab (IMvigor210 cohort) (Rosenberg et al., 2016).
Atezolizumab is anti-PD-1 monoclonal antibody. The
transcriptome profiles of immune checkpoint blockage effects
and their corresponding clinical information were obtained from
the public dataset.

Statistical Analysis
Data processing was conducted solely on R software (version
4.0.3). The R package named “limma” was run to analyze
differential gene expressions among distinct subtypes. The
Spearman analysis and distance correlation analysis were
performed to calculate correlation coefficients between the
DNA methylation regulators and the infiltration of immune
cells. The survival curves of bladder cancer patients were
plotted via the Kaplan-Meier method, and the curves’ area
under the curve (AUC) was calculated to evaluate the
specificity and sensitivity of DMRscores obtained by the R
package “pROC”. The location and circle sequence of the
DNA methylation regulators along the chromosomes were
depicted by the R package “RCircos”. Moreover, the R package
“DEseq2” was run to normalize the raw data and convert the
normalized cell count to TPM in the “IMvigor 210” cohort.
Finally, the mutation landscape was drawn and presented via
the R package “maftools.” All statistic p numbers were bilateral,
and p < 0.05 was considered statistically significant.
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