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Bayesian modeling suggests that IL-12
(p40), IL-13 and MCP-1 drive murine
cytokine networks in vivo
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Abstract

Background: Cytokine-hormone network deregulations underpin pathologies ranging from autoimmune disorders
to cancer, but our understanding of these networks in physiological/pathophysiological states remains patchy. We
employed Bayesian networks to analyze cytokine-hormone interactions in vivo using murine lactation as a dynamic,
physiological model system.

Results: Circulatory levels of estrogen, progesterone, prolactin and twenty-three cytokines were profiled in post partum
mice with/without pups. The resultant networks were very robust and assembled about structural hubs, with evidence
that interleukin (IL)-12 (p40), IL-13 and monocyte chemoattractant protein (MCP)-1 were the primary drivers of network
behavior. Network structural conservation across physiological scenarios coupled with the successful empirical validation
of our approach suggested that in silico network perturbations can predict in vivo qualitative responses. In silico
perturbation of network components also captured biological features of cytokine interactions (antagonism,
synergy, redundancy).

Conclusion: These findings highlight the potential of network-based approaches in identifying novel cytokine
pharmacological targets and in predicting the effects of their exogenous manipulation in inflammatory/immune
disorders.
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Background
Cytokines comprise an extensive array of extracellular
protein mediators best known for their traditional im-
munoregulatory functions, although their multiple roles
in the orchestration of an array of physiological and
pathological processes such as cancer, autoimmunity and
cardiovascular disease are now well-recognized [1–10].
Many former reductionist studies have attempted to
ascribe given physiological effects to the actions of one or
small numbers of cytokines, but this strategy has met with
conceptual difficulties stemming from the fact that their
actions can be paradoxical at different concentrations and

differ according to the prevailing hormonal milieu [3, 11].
Furthermore, the mechanistic insight offered by such
studies in terms of relative cytokine interactions is also
limited given that physiological responses are seldom gov-
erned by any one cytokine but rather by the combined in-
fluences of many. In this respect, these mediators are
believed to operate as part of highly complex networks,
wherein they exhibit antagonism, synergy and functional
redundancy [12–14]. It is therefore clear that gaining a
fuller understanding of cytokine function in any biological
or clinical scenario rests with clarifying their interactions
at a network level rather than relying on the increasingly
inadequate T helper cell type 1/2 (Th1/Th2) paradigm [15].
Recent developments in high-throughput analytical

platforms have revolutionized the quality and quantity of
data available from in vivo experiments. The large number
of analytes measurable in single samples provides the
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opportunity to explore their interrelationships in both
physiological and pathophysiological processes [16, 17]. In
this regard, Bayesian networks provide an attractive
methodology for analyzing such complex biological
data [18–20]. Given that many biologists are unlikely to
be familiar with probabilistic graphical models, a word
of introduction to Bayesian networks is warranted. A
Bayesian network is a directed acyclic graph whose
nodes are the variables of interest (herein, a cytokine/
hormone), each of which can have a range of quantita-
tive values which are typically discretized into a small
number of bins, such as ‘low’, ‘medium’ and ‘high’. The di-
rected edges in the graph (represented as arrows between
nodes) reflect likely causal relationships between nodes.
The nature of these causal relationships is captured by the
graph’s underlying conditional probability table (CPT)
which details the probabilities for any given node to fall
into each of the different (in this case, concentration) bins
given the status of its parent nodes (i.e. those directly
upstream). The underlying CPT does not change upon
perturbation; rather the marginal probability of that
node displaying a certain behavior changes (Fig. 1). The
illustrative Bayesian network shown in Fig. 1 has five
variables (vertices/“nodes”). Node E is not causally in-
fluenced by any of the others, nor does it causally influ-
ence them, so this node has no edges entering or
leaving it (i.e. it is ‘orphaned’). By contrast, nodes B and
C are solely influenced by A, so each has a single con-
necting edge. However, they respond to A in quite dif-
ferent ways. Based on the conditional probability tables,
if the value of A is categorized into a low concentration
bin, then B has a marginal probability of 0.8 of falling
into a high concentration bin, while C has a probability
of 0.75 of falling into a low one. The status of D is influ-
enced by both B and C and accordingly has two incoming
edges. This approach offers the scope for an intricate
description of D’s behavior, based on the conditional prob-
abilities associated with the allocation of its data to high
or low concentration bins which, in turn, depends on the
state of A, B and C. The conditional probability tables for
each node represent relative (rather than absolute)
concentrations.
A Bayesian network can be inferred from experimental

data through the correlations between experimentally-
measured quantitative values of different nodes. Vari-
ous machine learning techniques are used to undertake
this inference process, which is often helped by the use
of a prior-knowledge graph ‘seed’ incorporating well-
recognized, literature-derived information which reduces
the computational outlay required to learn networks from
biological data. Such prior knowledge speeds up the search
and avoids local minima, improving performance and
yielding statistically more robust networks, as described in
Djebbari and Quackenbush (2008) [21]. Moreover, this bias

does not limit the process to learn new interactions
between the nodes. Accordingly, Bayesian networks are
well adapted to noisy data, small sample sizes and, most
importantly, a lack of detailed knowledge about how causal
interactions are implemented at a biological level. More-
over, they also allow the effect of network perturbations to
be explored in silico [18, 19, 22, 23]. Indeed, once the
network structure is established, the impact of in silico
perturbation of upstream nodes (i.e. by changing the values
in the conditional probability bins for one or more nodes)
can be tracked through the network structure to assess the
changes in the conditional probabilities of the downstream
nodes, thereby leading to specific, experimentally verifiable
predictions. It is nonetheless possible to conceive more
complex biological relationships which cannot be distilled
into a Bayesian acyclic graph. In this respect, Bayesian
networks are acyclic insofar as they do not allow for the
portrayal of structural causal loops such as those which
may arise from feedback relationships [24]. However,
they offer a sensible compromise between capturing
complex causal relationships and computational feasi-
bility, and have thus been used in a wide variety of sci-
entific contexts [25–28].
While most Bayesian-based studies have focused on core

biological processes using data from cell lines or tissue-
based genome-wide expression microarrays, less attention
has been paid to physiological or clinically relevant in vivo
systemically-derived data [21, 29]. As such, Bayesian meth-
odologies offer a valuable opportunity to define the nature
of both known and novel mediator interrelationships in
complex physiological processes such as immunity and
inflammation. They are, however, correlative and their
significance rests on the ability to draw causal inferences
about the underlying biology from these relationships.
In order to validate the models learned through this

methodology, both from a biological as much as from an
analytical perspective, we developed two independent cir-
culatory cytokine and hormone-based datasets: one drawn
from lactating mice and the other from mice whose pups
were removed at birth. With regard to the former net-
work, murine lactation represents a unique model system
to explore the dynamic physiological interactions between
the hormonal environment and inflammation/immune
function, with particular regard to the effects of prolactin
(PRL), both a key driver of lactation and putative critical
immunomodulator [30–33]. Since lactation PRL levels can
conveniently be abrogated in vivo by removal of the suck-
ling stimulus, this offers an excellent strategy to verify pre-
dictions made by in silico perturbation of the lactation
network by comparing it with an independently-generated
in vivo pup-free network with a physiologically-induced
PRL abolition. These networks were further used to infer
functionally significant nodes, such as ‘hubs’ and ‘drivers’,
as well as characterizing the relationships between nodes,
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such as synergy and antagonism. To the best of our know-
ledge, there have been no previous attempts to employ
Bayesian network analysis to unravel dynamic protein
interactions based on physiological in vivo data in such
a mechanistic and qualitatively validated manner (i.e.
including in vivo confirmation of in silico perturbation-
dependent predictions).

Results
We chose to characterize the physiological putative changes
in, and interactions between, systemic hormone and cyto-
kine concentrations using murine lactation as a model,
since this system offered the benefit of featuring both
intimate and highly variable physiological immunoendo-
crine interactions [34–39]. The benefits of this approach
included not having to use multiple pharmacological
agents/antibodies whose effects would require titrating to
concentration (likely in a non-linear manner), and not be-
ing subject to non-physiological interactions or inducing
global changes unrelated to the system of interest. Similarly,
our approach deliberately aimed to avoid using multiple

knockout models on both pragmatic and functional
grounds given the compensatory redundancy of cytokine
networks and/or the unknown postpartum traits of such
models. Our design was based on two independent data sets:
one covering cytokine and hormonal profiles over 7 time
points throughout lactation in order to generate a Bayesian
model of mediator interactions, and another abrogated lacta-
tion data set which provided a biological validation platform
for assessing the predictive power of the former network in
determining the physiological profile changes elicited by pup
removal. The methodological workflow is described in Fig. 2;
please see the methods section for experimental details.

Biological analysis
Most circulatory cytokines and hormones vary markedly
throughout lactation
Significant changes (P < 0.05, following correction for
multiple comparisons) in concentration during lactation
were noted for IL-1α, IL-2, IL-3, IL-5, IL-9, IL-10, IL-12
(p40), IL-12 (p70), IL-17, IFN-γ, G-CSF, GM-CSF, KC,
MCP-1, MIP-1α, MIP-1β, RANTES, P4 and PRL (Table 1

Fig. 1 Illustrative Bayesian network describing causal relationships between five variables, with their associated conditional probability tables. The
values of each variable have been discretized into low (l), medium (m) and high (h) bins. The notation P(B = l|A) refers to the probability of B
being in the low value bin, conditional upon the value of A (which itself can be l, m or h). Note that with one parent only (i.e. the case for nodes
B and C), both row and column probabilities sum to 1, whereas with multiple inputs (i.e. in the case of D), only the rows sum to 1. The nodes are
colored green (high), white (medium) and red (low) to illustrate in silico perturbation where A falls into a high concentration bin (probability 0.9)
and E falls into a low concentration bin (probability 0.8). The implications of this are demonstrated through the conditional probability tables
associated with each downstream node wherein having D in a given concentration state is dictated by the particular combination of states of its
parents B and C as dictated by their corresponding overall (marginal) probabilities (the entries as captured in the conditional probability tables do
not change on intervention), as summarized in the histogram attached to each node. Note that the overall marginal probability of D being in a
particular state (which changes under intervention) is the sum as summarized in the histogram attached to each node. Readers more familiar
with Bayesian networks will note that the sub-network structures (B→ A, A→ C, B→D, C→D) and (C→ A, A→ B, B→D, C→D) are both Markov
equivalent with the present one (A→ B, A→ C, B→D, C→D). When we condition on A, the other nodes B and C become independent no matter
whether A is a tail-to-head or tail-to-tail intermediate node (this scenario differs from that seen with head-to-head node D). In other words, these three
sub-networks specify the same independent assumptions belonging to the same equivalence class and the true causal network can possibly be any
one of the sub-network solutions. However, causal networks based on observation alone (i.e. without intervention, which is an important tool
for inferring causality) can be still partially constructed. In the present study, prior knowledge seed network edge directionalities were assigned
by a modified depth-first search algorithm which helped to choose the sub-network from an equivalence class containing more than one
Markov equivalent member as suggested here (see later)
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and Additional file 1). Trends for IL-13 were also noted
(P = 0.075). Cytokine levels showed a broad tendency to
be increased on day 1 of lactation relative to naturally
cycling (NC) concentrations, and significant increases
were observed in IL-6, IL-9, IL-12 (p70), IL-13, G-CSF,
GM-CSF, MCP-1, MIP-1α, MIP-1β and TNF-α. Further-
more, there was a marked trend for PRL, E2, IL-1α, IL-2,
IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, eotaxin, G-
CSF, IFN-γ, KC, MCP-1, MIP-1α and RANTES to de-
crease on day 2 of lactation. Most cytokine levels peaked
at day 10 of lactation, particularly IL-2 and MCP-1, al-
though the timing of this phenomenon differed for IL-1α
(days 16–24), IL-9 (days 4–16), IL-12 (p40) (day 24), KC
(day 21) and RANTES (day 16). There followed a signifi-
cant decrease (IL-2, IFN-γ, G-CSF, GM-CSF, MCP-1,
MIP-1α, MIP-1β; P < 0.05) or trend towards decreasing
profiles (IL-1β, IL-3, IL-4, IL-5, IL-6, IL-10, IL-12 (p40),
IL-12 (p70), IL-13, IL-17, eotaxin, KC, TNF-α) on day 16.
P4 concentrations rose in line with those of PRL, peaked
on day 4, fell to very low levels by day 16, and increased
towards weaning. Weaning concentrations for E2 and P4
were similar to those of NC animals.

Cytokine and hormone profiles during lactation cluster into
three distinct time-series
In order to reveal the temporal structure in the data, we
examined correlations between analytes and clustered the
time series. Significant correlations were noted across the
array of mediators investigated, except for E2, IL-1β, IL-9,
IL-12 (p40), P4 and PRL (Fig. 3, panel a). These relation-
ships were used to inform the cluster analysis (Fig. 3, panel
b) which revealed that analyte profiles fell into three clus-
ters: Cluster 1 (IL-9, E2, P4, PRL) peaked around day 5, and
tailed off steadily thereafter. Cluster 2 (IL-1α, IL-1β, IL-12

(p40), IL-12 (p70), IL-17, MIP-1β, RANTES) started
off low and increased steadily to plateau from day 10
onwards, while Cluster 3 (eotaxin, G-CSF, GM-CSF,
IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, IFN-γ, KC,
MCP-1, MIP-1α, TNF-α) behaved similarly but had a
broad peak centered on day 10 of lactation.

Development of Bayesian networks
Generation of the lactation prior network In the search
for a network graph, an initial prior network structure
seed was used as a bias, and the final network was
learned from the data. The space of possible networks
was explored using the TabuSearch algorithm and, at each
iteration, the score was evaluated by adding, removing or
reversing individual edges. The introduction of a prior
network seed initiated the learning stage from all 53 data
samples for 26 nodes as soft bias wherein the original seed
edges were judged by the score in the same way as any
other network edge. For each node, all prior probabilities
(as defined by the BDe scoring metric with Dirichlet dis-
tribution) exceeded zero, enabling the construction of
Bayesian networks reflecting all possible nodal interac-
tions. Initiating the parameters (conditional probabilities)
for each node at the beginning was achieved using a uni-
form distribution; and these changed with the data. Details
of the prior network (Additional file 2) revealed that this
featured 21 nodes, 9 of which appeared as parents.

The lactation Bayesian network structure features six
structural hubs A Bayesian network from the lactation
dataset was generated incorporating a prior knowledge
network (Additional file 2) with experimental data,
wherein node (i.e. mediator) interactions were portrayed as
directed edges implying likely causal relationships. Each
node was associated with a set of conditional probabilities
which determined its status (i.e. probable relative concen-
tration) dependent upon the status of its parents. This net-
work organized into two main branches, one with IL-3, E2
and eotaxin as the first-line parents and the other with
IL-12 (p40) as the principal parent node (Fig. 4). The
network itself was assembled around six structural hubs
(i.e. possible signal integrators; defined as nodes with >1
input and output edges totaling ≥5) comprising IFN-γ, IL-
13, MCP-1, MIP-1α, MIP-1β, and RANTES. The terminal
node was TNF-α, which was connected - both directly
and indirectly - to each of these hubs. A total of 42
directed edges (35 of which were of high confidence)
representing cytokine causal relationships connected all
but one node: only IL-4 was orphaned. E2, P4, and PRL
had a high probability of being present at elevated concen-
tration relative to all other network components, with the
exception of eotaxin and IL-9 (Fig. 4).
There were more samples (53) than nodes (26, initially)
in the present study. This compares well with previous

Fig. 2 Experimental methodology utilized in the present study; initial
biological analysis (via fluid-phase multiplex immunoassay, ELISA and
radioimmunoassay) was followed by development and exploration of
Bayesian networks. In vivo physiological perturbation was performed to
validate the in silico networks.
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Table 1 Cytokine and hormone concentrations throughout lactation

Mediator NC (n = 7) Day 1 (n = 8) Day 2 (n = 8) Day 4 (n = 8) Day 10 (n = 7) Day 16 (n = 8) Day 21 (n = 7) Day 24 (n = 7)

IL-1α 0.52 ± 0.41a 3.40 ± 1.35ab 2.20 ± 0.75ab 7.46 ± 2.78bc 12.32 ± 2.42c 15.48 ± 2.16c 15.06 ± 2.85c 13.16 ± 1.81c

IL-1β 34.83 ± 11.89 50.12 ± 14.37 55.17 ± 6.45 57.21 ± 10.81 74.76 ± 6.21 51.07 ± 6.09 83.24 ± 25.51 41.59 ± 8.66

IL-2 5.67 ± 1.41a 12.50 ± 2.43abc 10.87 ± 1.31ab 25.25 ± 3.68d 36.73 ± 6.09e 17.75 ± 2.77bcd 25.38 ± 4.81d 18.08 ± 3.49cd

IL-3 1.50 ± 0.04a 1.90 ± 0.21ab 2.17 ± 0.51ac 2.77 ± 0.96ad 6.48 ± 3.33def 3.75 ± 0.84bdef 3.95 ± 1.13af 5.77 ± 2.36bcef

IL-4 0.10 ± 0.03 0.21 ± 0.06 0.19 ± 0.03 0.24 ± 0.12 0.58 ± 0.13 0.22 ± 0.05 0.53 ± 0.25 0.36 ± 0.15

IL-5 3.98 ± 0.69a 8.48 ± 1.50ab 10.32 ± 1.01bc 16.79 ± 2.54d 21.43 ± 2.24d 16.13 ± 2.48cd 17.84 ± 2.98d 13.79 ± 2.12cd

IL-6 17.08 ± 7.19a 119.81 ± 25.30b 151.52 ± 56.55b 164.98 ± 37.82b 265.95 ± 40.50b 151.35 ± 20.92b 201.91 ± 51.93b 154.86 ± 41.57b

IL-9 159.93 ± 24.69a 278.68 ± 28.05bc 236.61 ± 18.92acd 396.55 ± 46.52be 387.07 ± 28.31ef 394.43 ± 38.41be 296.10 ± 37.38bde 180.05 ± 20.59a

IL-10 5.69 ± 2.78a 18.95 ± 6.92abc 15.56 ± 6.16ac 27.99 ± 5.74ad 109.05 ± 29.77d 31.03 ± 4.86cd 45.68 ± 12.24cd 105.96 ± 62.76bd

IL-12 (p40) 164.44 ± 16.75ab 137.59 ± 37.23abc 114.44 ± 8.51b 247.74 ± 31.16ac 213.84 ± 20.94ac 160.99 ± 27.04abc 232.08 ± 11.32cd 259.51 ± 28.02cd

IL-12 (p70) 42.34 ± 17.66a 316.15 ± 101.70bc 249.58 ± 46.91bd 682.30 ± 173.51be 1222.66 ± 326.6ef 786.09 ± 90.51ef 699.93 ± 84.99ce 912.65 ± 283.08cdf

IL-13 117.81 ± 28.60a 324.07 ± 40.21b 261.46 ± 33.82ab 416.84 ± 67.09b 650.45 ± 108.10ab 334.77 ± 54.77ab 447.35 ± 86.24b 307.99 ± 69.89b

IL-17 42.17 ± 11.33a 155.83 ± 54.39abc 243.46 ± 27.76bd 391.00 ± 62.99de 477.14 ± 51.54e 446.35 ± 26.19e 441.08 ± 66.12ce 424.34 ± 55.23e

Eotaxin 115.26 ± 54.35 462.25 ± 158.06 388.22 ± 111.37 349.13 ± 55.09 517.32 ± 104.37 470.79 ± 42.03 446.18 ± 50.47 444.59 ± 33.41

G-CSF 1.28 ± 0.68a 25.06 ± 12.59bcd 11.39 ± 4.24ac 13.80 ± 2.29bc 40.38 ± 4.51d 20.45 ± 3.50bc 24.44 ± 5.15bcd 11.30 ± 2.23bcd

GM-CSF 6.62 ± 2.31a 22.41 ± 2.29bc 20.15 ± 1.84b 30.83 ± 5.85cd 44.02 ± 4.48e 32.71 ± 2.76cd 37.76 ± 4.15de 27.38 ± 4.46cd

IFN-γ 14.19 ± 3.16a 76.07 ± 14.31ab 51.22 ± 8.18a 150.66 ± 30.78cd 219.15 ± 44.86d 136.96 ± 14.43bc 160.27 ± 26.80cd 120.45 ± 35.03bc

KC 9.95 ± 1.75a 19.05 ± 3.24ab 10.36 ± 1.51a 22.66 ± 2.22b 26.26 ± 3.91b 22.89 ± 1.65b 28.51 ± 3.82b 20.39 ± 3.47ab

MCP-1 109.21 ± 11.86a 277.14 ± 23.85bc 202.25 ± 18.47ab 311.17 ± 36.45c 440.78 ± 49.29d 295.60 ± 33.14c 327.16 ± 38.26c 259.00 ± 40.22bc

MIP-1α 307.86 ± 44.49a 583.64 ± 48.62b 500.58 ± 38.00b 641.07 ± 66.25bc 813.92 ± 90.49c 501.03 ± 68.81b 672.14 ± 75.99bc 522.25 ± 72.06b

MIP-1β 17.64 ± 8.90a 97.42 ± 19.81bc 85.99 ± 17.25c 152.07 ± 30.82cd 248.47 ± 22.27e 165.79 ± 11.07d 175.62 ± 25.75dbe 173.97 ± 28.40dbe

RANTES 0.00 ± 0.00abc 2.21 ± 1.14ac 1.16 ± 0.96a 5.20 ± 2.82abc 4.79 ± 2.47abc 15.41 ± 3.52b 10.35 ± 2.82abc 10.73 ± 4.03bc

TNF-α 79.49 ± 41.61a 558.78 ± 154.41b 560.13 ± 188.57b 642.66 ± 169.61b 985.75 ± 148.06b 630.06 ± 43.70b 630.40 ± 125.34b 717.02 ± 173.20b

E2 230.63 ± 40.27 274.75 ± 111.88 96.75 ± 15.47 159.81 ± 28.44 150.16 ± 27.68 123.11 ± 15.37 205.83 ± 23.55 129.20 ± 26.77

P4 206.17 ± 46.07ab 106.89 ± 17.78a 241.39 ± 59.96ab 364.94 ± 58.13b 158.10 ± 52.16a 33.51 ± 5.28c 130.08 ± 47.18ac 243.94 ± 98.57ab

PRL 8.71 ± 4.72ab 78.88 ± 46.34acd 50.75 ± 19.27de 298.00 ± 79.05f 85.43 ± 17.26dfg 77.38 ± 43.77acdeg 1.14 ± 0.74b 7.00 ± 2.76bce

Cytokine, E2 (pg/ml), PRL and P4 (ng/ml) concentrations throughout lactation (mean ± SEM). Groups that do not share a common superscript letter are significantly different from each other (P < 0.05); NC -
naturally cycling
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biological studies. Djebbari and Quackenbush (2008)
[21] learned a Bayesian network with 63 features from
38 samples, while Gao and Wang (2011) [40] developed
a Bayesian network learned with 36 features from 46
samples. Ideally, the use of many more samples would
have allowed us to create the most robust model, but
this need had to be offset against making an ethical and
appropriate use of animals. Nonetheless, the highly strin-
gent bootstrapping approach used herein ensured robust-
ness of the model. Its purpose was to resample the data
with replacement in order to avoid over-fitting so as to ad-
dress the issue of using a limited number of samples. The
final network contained 25 nodes wherein the maximum
theoretical number of parents for each node could be 24.
Networks were learned for each generated pseudo-dataset.
Model averaging of these was then performed to obtain
edge confidence scores. The overall bootstrap confidence

was estimated by evaluating how many times relative to
the total number of iterations a particular feature of inter-
est (i.e. directed edge, Markov relation, etc.) appeared.
The final network had an overall confidence of 0.9 (i.e. the
learned network features were present in at least 90 net-
works out of 100 iterations). Increasing the confidence
threshold from 0.7 to 0.9 had no effect, confirming the
result with high confidence (i.e. strongly supported by the
data). This was further confirmed by the fact that a Vari-
ational Bayesian State Space Model (VBSSM) network
(which did not account for prior knowledge of known
mediator interactions in their construction) revealed con-
servation of the core network structure, including hubs
(except MIP-1α) akin to those obtained from the seeded
Bayesian models (Additional file 3). IL-10, IL-12 (p70)
(a child of the seeded network parent IL-12 (p40)),
IL-13, eotaxin and MIP-1β were parents, and

Fig. 3 Correlations between cytokine and hormone mediators; Panel a Heat map demonstrating the correlations between cytokines, E2, P4 and
PRL. Red coloring indicates positive correlations, while blue coloring indicates negative correlations. The strength of color reflects the strength of
correlation (as indicated by the scale) – numbers in brackets refer to cluster identities. Panel b clusters indicating relationships between mediators.
Three clusters were identified: Cluster 1 - IL-9, E2, P4, PRL; Cluster 2 - IL-1α, IL-1β, IL-12 (p40), IL-12 (p70), IL-17, MIP-1β, RANTES; and cluster 3 - eotaxin,
G-CSF, GM-CSF, IL-2, IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, IFN-γ, KC, MCP-1, MIP-1α, TNF-α
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RANTES and TNF-α were terminal nodes (with IL-1α
and IL-2 as peripheral termini). These topological
changes were expected given that the VBSSM network
only featured a subset of the original network nodes fol-
lowing automated construction (Additional file 3). The in-
ference process was performed without prior knowledge
bias of mediator interactions. As indicated in Table 2, the
F-score value, high number of true negatives, and the
relatively high sensitivity value when compared to the

seeded network in Fig. 4 show that there is a rela-
tively high topographical similarity between the two.
This is further confirmed by the retention of major
regulatory hubs and the fact that all the edges associ-
ated with TNF-α are incoming.

Exploration of networks
Perturbation of PRL in silico PRL perturbation in silico
in the lactation model was chosen as a starting point

Fig. 4 Bayesian network showing cytokine interrelationships in murine lactation. The nodes are color-coded according to the conditional probability
of corresponding mediator relative concentrations being high (green), low (red) or medium (white) concentration given the state(s) of their parent
nodes; however, within the present network no nodes fell into the medium category. Relative to the white color, the normalized concentration (low
or high) determines the intensity of the node color. Very high confidence level edges (causal connecting lines between nodes) are colored in green
(or grey if lower than the 0.9 cutoff), based upon the confidence analysis of the Bayesian result
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given that this hormone is widely considered as having
potent immunomodulatory properties. Perturbation was
achieved by allocating its low concentration bin a condi-
tional probability of 1. This perturbation revealed that,
apart from a fall in P4 profile, the downstream nodes,
hubs and edges remained qualitatively unchanged (i.e.
no/minimal directional shift (up or down) in conditional
probabilities such that nodal status also remained un-
changed (Table 3), an observation supported by the lack
of correlation between PRL and the majority of other
mediators (Fig. 3). The terms ‘increased’ and ‘decreased’
are used as less cumbersome terminology throughout
this manuscript to describe changes in node conditional
probabilities following perturbation (e.g. ‘decreased’ ef-
fectively relates to a shift in node conditional probability
towards a low concentration bin). The only exceptions
were IL-13, MCP-1 and IL-2, whose concentrations
‘increased’, indicating a degree of negative regulation
of these cytokines by PRL (Table 3 and Additional file 4).
Due to the relatively minor influence of in silico PRL
depletion on the overall network (except, most notably, its
negative regulation of the immediate downstream hubs
IL-13 and MCP-1), further perturbations were performed
in order to explore the relative importance of other
network elements.

IL-13, MCP-1 and IL-12 (p40) are key driver nodes
As outlined above, IL-13 and MCP-1 were selected for
perturbation by allocating them to a high concentration
bin with a probability of 1 (based on their ~3 and 2-fold

increases in high concentration conditional probabilities,
respectively, following in silico PRL depletion) (Table 3).
They were perturbed both individually and in combin-
ation. Increasing IL-13 concentration caused extensive
network changes, including a shift in MCP-1 and GM-
CSF to a higher concentration and IFN-γ to a moderately
high concentration (Additional file 5 panel A). The effects
extended as far downstream as the terminal node: KC be-
came medium and MIP-1α, RANTES and TNF-α became
more medium. Note that the term ‘medium’ is used herein
as shorthand to refer to the intermediate, mid-range rela-
tive concentration ‘equal frequency’ bin based on the data
discretization (i.e. the bin containing the third of samples
falling in the middle of the range analyzed). Increasing
MCP-1 resulted in similarly extensive changes: among its
children, GM-CSF concentration increased markedly
while MIP-1β and RANTES became medium (Additional
file 5 panel B). Further downstream effects included MIP-
1α concentration becoming high, KC moderately
medium-high, and IFN-γ and TNF-α both more medium.
PRL branch perturbation (combined PRL/IL-13 and PRL/
MCP-1) also resulted in significant changes to down-
stream node conditional probabilities as far as the ter-
minal node (Additional file 5 panel C). Similarly marked
effects were noted for combined PRL/IL-13/MCP-1 per-
turbation, which resulted in marked changes in all down-
stream hub statuses and conditional probability values
(Additional file 6).
As a major parent of the second network branch (i.e. the
one without IL-3, E2 and eotaxin as first-line parents),
IL-12 (p40) was chosen for perturbation. IL-12 (p40)
perturbation in silico (by allocation to a high concentra-
tion bin) had a dramatic downstream impact: IL-1β, IL-12
(p70) and KC concentration increased, MIP-1α became
moderately high, and MIP-1β, IFN-γ and TNF-α became
medium (Additional file 7 panel A). Combined perturba-
tions of both network branches (IL-12 (p40) and eotaxin)
also affected common downstream nodes (Additional file
8, panels A and B).

MCP-1 can act synergistically with IL-13 and/or IL-12
(p40) The combined perturbation of IL-13 and MCP-1
on a background of low PRL had particularly marked
effects on IFN-γ, resulting in an increase in its high con-
centration bin conditional probability (0.343), an effect
greater than that achieved by each parent perturbation
in isolation (0.338 and 0.323 from 0.236 for IL-13 and
MCP-1, respectively). This suggests the presence of a syn-
ergistic interaction in which IL-13 may co-opt MCP-1
given that it is also one of its parents (Table 3). However,
more striking still were the synergistic effects of MCP-1
and IL-12 (p40) in relation to MIP-1α (Fig. 5). Conditional
probabilities in the MIP-1α high concentration bin were
much greater when both were combined (0.363 and 0.370

Table 2 Sensitivity, specificity and F-score values for comparisons
between lactation, pup-free and VBBSM networks

VBSSM vs
Seeded lactation
network

VBSSM vs
Seeded pup-free
network

VBSSM Lactation
vs VBBSM
Pup-free network

Specificity 0.94 0.95 0.88

Sensitivity 0.30 0.14 0.17

F-Score 0.46 0.25 0.28

True positives 13 6 5

False positives 18 14 15

False negatives 30 36 25

True negatives 263 268 108

Bayesian networks model conditional independence so that accurately
removing arcs from all possible connections is an important measurement for
accuracy. This is reflected in the specificity, which is close to one if true
negatives (TNs) are high and false positives (FPs) are low. For the purpose of
internal validation (in addition to the experimental aspects), the VBSSM-based
results obtained without prior knowledge were compared to those from
seeded Bayesian learning. It is important to note that VBSSM results were
derived under a strict confidence level check. However, we cannot expect a
high agreement in true positives (TPs) for the structural comparisons per-
formed for both the lactation and pup-free data but the high TN and specifi-
city values are encouraging (first two data columns). The last column
represents the network structural comparison within the VBSSM analysis be-
tween lactation and pup-free data
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Table 3 Changes in conditional probability associated with
perturbation of PRL and structural hubs

Cytokine Low Medium High

PRL 0.065 0.692 0.243

P4 0.066 0.786 0.148

P4-PRL 0.778 0.111 0.111

P4-PRL+IL-13 0.778 0.111 0.111

P4-PRL+MCP-1 0.778 0.111 0.111

P4-PRL+IL-13+MCP-1 0.778 0.111 0.111

IL-13 0.400 0.499 0.101

IL-13-PRL 0.379 0.348 0.272

IL-13-PRL+IL-13 0.000 0.000 1.000

IL-13-PRL+MCP-1 0.379 0.348 0.272

IL-13-PRL+IL-13+MCP-1 0.000 0.000 1.000

IL-2 0.274 0.602 0.124

IL-2-PRL 0.274 0.481 0.246

IL-2-PRL+IL-13 0.111 0.111 0.778

IL-2-PRL+MCP-1 0.274 0.481 0.246

IL-2-PRL+IL-13+MCP-1 0.111 0.111 0.778

MCP-1 0.431 0.458 0.111

MCP-1-PRL 0.418 0.386 0.196

MCP-1-PRL+IL-13 0.200 0.229 0.571

MCP-1-PRL+MCP-1 0.000 0.000 1.000

MCP-1-PRL+IL-13+MCP-1 0.000 0.000 1.000

GM-CSF 0.359 0.526 0.115

GM-CSF-PRL 0.353 0.469 0.178

GM-CSF-PRL+IL-13 0.225 0.316 0.458

GM-CSF-PRL+MCP-1 0.111 0.111 0.778

GM-CSF-PRL+IL-13+MCP-1 0.111 0.111 0.778

MIP-1α 0.235 0.687 0.078

MIP-1α-PRL 0.250 0.644 0.106

MIP-1α-PRL+IL-13 0.250 0.521 0.229

MIP-1α-PRL+MCP-1 0.270 0.360 0.370

MIP-1α-PRL+IL-13+MCP-1 0.270 0.360 0.370

MIP-1β 0.607 0.208 0.186

MIP-1β-PRL 0.570 0.224 0.205

MIP-1β-PRL+IL-13 0.434 0.293 0.273

MIP-1β-PRL+MCP-1 0.321 0.357 0.321

MIP-1β-PRL+IL-13+MCP-1 0.321 0.357 0.321

KC 0.165 0.706 0.129

KC-PRL 0.168 0.692 0.140

KC-PRL+IL-13 0.183 0.635 0.181

KC-PRL+MCP-1 0.201 0.569 0.230

KC-PRL+IL-13+MCP-1 0.201 0.569 0.230

IL-1α 0.626 0.223 0.151

IL-1α-PRL 0.605 0.230 0.165

Table 3 Changes in conditional probability associated with
perturbation of PRL and structural hubs (Continued)

IL-1α-PRL+IL-13 0.528 0.256 0.216

IL-1α-PRL+MCP-1 0.465 0.281 0.254

IL-1α-PRL+IL-13+MCP-1 0.465 0.281 0.254

IL-10 0.648 0.230 0.122

IL-10-PRL 0.622 0.245 0.133

IL-10-PRL+IL-13 0.526 0.301 0.173

IL-10-PRL+MCP-1 0.448 0.348 0.204

IL-10-PRL+IL-13+MCP-1 0.448 0.348 0.204

IFN-γ 0.504 0.299 0.197

IFN-γ-PRL 0.465 0.299 0.236

IFN-γ-PRL+IL-13 0.325 0.337 0.338

IFN-γ-PRL+MCP-1 0.352 0.325 0.323

IFN-γ-PRL+IL-13+MCP-1 0.316 0.341 0.343

IL-5 0.517 0.327 0.156

IL-5-PRL 0.487 0.336 0.177

IL-5-PRL+IL-13 0.377 0.386 0.237

IL-5-PRL+MCP-1 0.398 0.375 0.228

IL-5-PRL+IL-13+MCP-1 0.370 0.390 0.240

IL-17 0.513 0.391 0.096

IL-17-PRL 0.486 0.406 0.108

IL-17-PRL+IL-13 0.390 0.467 0.144

IL-17-PRL+MCP-1 0.407 0.454 0.138

IL-17-PRL+IL-13+MCP-1 0.384 0.470 0.146

IL-6 0.608 0.306 0.086

IL-6-PRL 0.585 0.319 0.096

IL-6-PRL+IL-13 0.506 0.371 0.123

IL-6-PRL+MCP-1 0.521 0.361 0.119

IL-6-PRL+IL-13+MCP-1 0.501 0.374 0.124

RANTES 0.483 0.276 0.241

RANTES-PRL 0.454 0.287 0.259

RANTES-PRL+IL-13 0.373 0.322 0.305

RANTES-PRL+MCP-1 0.328 0.347 0.326

RANTES-PRL+IL-13+MCP-1 0.327 0.347 0.326

TNF-α 0.372 0.317 0.311

TNF-α-PRL 0.364 0.321 0.316

TNF-α-PRL+IL-13 0.346 0.328 0.325

TNF-α-PRL+MCP-1 0.341 0.331 0.329

TNF-α-PRL+IL-13+MCP-1 0.340 0.331 0.329

Conditional probabilities are given to each of three bins (low, medium and
high). Highest conditional probability values in any given bin indicate a greater
likelihood of the relevant mediator’s concentration being in that concentration bin.
The large font denotes the node of interest; small font indicates the perturbed
parent node; a ‘-’ sign indicates perturbation by reducing concentration while a ‘+’
sign indicates perturbation by increasing concentration
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compared to 0.600 in combination). Comparable, though
less striking effects were noted for MIP-1β when IL-12
(p40) and MCP-1 were perturbed together, and for IFN-γ
when IL-12 (p40) and IL-13 were perturbed in combin-
ation (Additional file 9).

IL-3 and PRL are potentially antagonistic Similar per-
turbations of the parent node IL-3 were also performed.
Allocation of IL-3 to low, medium and high concentra-
tion bins affected IL-2, IL-13 and MCP-1 concentrations
to some degree, although the most striking feature of
these changes was that the greatest effects were noted
when IL-3 concentration was medium, rather than high
or low (i.e. its effects were not linearly related to concen-
tration; Additional file 10). Perturbing IL-3 by allocat-
ing it to a high concentration bin resulted in an
increase in IL-13 concentration, as did perturbing
PRL to a low concentration. This suggested that, as par-
ents, IL-3 and PRL may be antagonistic in terms of their
effects on IL-13, a notion supported by the intermediate
conditional probabilities for IL-13 concentration resulting
from high levels of both these parents (Fig. 5).

MIP-1β exhibits a biphasic response to eotaxin Allo-
cating eotaxin to a high concentration bin had minor ef-
fects, causing little more than a shift in MIP-1β towards
a higher concentration (Additional file 9 and Additional
file 11 panel A). By contrast, allocating eotaxin to a low
concentration bin had marked effects on its children: IL-9
concentration was reduced whereas MCP-1 and MIP-1β
became more medium, an effect carried through down-
stream to GM-CSF (Additional file 11 panel B). Intri-
guingly, the shift in MIP-1β concentration was in the
same direction, independent of whether eotaxin concen-
tration was perturbed upwards or downwards, suggesting
a concentration-dependent biphasic response.

In vivo validation
Cytokine profiles fall when lactation is not established
In order to determine experimentally the impact of lacta-
tion on cytokine and hormone profiles relative to a base-
line, samples were obtained from dams whose pups were
removed at birth (i.e. from animals which would not
have exhibited a lactation-dependent rise in PRL). This
physiological perturbation resulted in a fall in maternal
serum concentrations of IL-17 and a rise in KC on day 2
(corrected P < 0.05) (Fig. 6). By day 4 post-partum, the dif-
ferences between females with and without pups were
more pronounced: IL-1α, IL-12 (p40), IL-17, IFN-γ, G-
CSF, E2 and PRL levels were significantly higher in nursing
dams (P < 0.05). Similar trends were also noted for IL-2,
IL-5, IL-9 and IL-12 (p70).

Comparison of Bayesian networks
Lactation and pup-free networks share striking
similarities Strikingly, the pup-free dam Bayesian net-
work retained the same core structural hubs as the lacta-
tion network (IFN-γ, IL-13, MCP-1, MIP-1α, MIP-1β, and
RANTES), with IL-12 (p40) as the principal parent and
TNF-α as the terminal node, despite expected differences
in network topology (Fig. 7). This second network fea-
tured an additional parent (IL-10), three orphan nodes
(G-CSF, IL-4 and IL-6) unconnected to the main network
and a total of 42 edges (32 of high confidence) which
connected 23 of the 26 nodes. When the lactation and
pup-free dam networks were compared using accepted
measures of network comparison (see Experimental
Procedures), the F-score was 0.861 and the total complex-
ities of these networks were 379 and 375, respectively.
These scores imply a striking similarity in terms of top-
ology and complexity between both networks despite their
being generated from entirely independent data sets.

Fig. 5 Synergistic and antagonistic relationships between mediators. Schematic representation of a MCP-1 and IL-12 (p40) synergy on MIP-1α with
associated conditional probability table, and b antagonism between PRL and IL-3 on IL-13
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As noted for the lactation network, the VBSSM vari-
ant for pup-free dams retained many of the core fea-
tures of its Bayesian counterpart, with the exception
of eotaxin which became a terminal node (Additional
file 3, panel B). IL-12 (p40) and IL-10 were principal
parents, with IFN-γ and MIP-1β displayed as struc-
tural hubs. As with the earlier case, the inference
process was performed without bias of any prior
knowledge of the interactions between the cytokines
being studied. The associated F-core of 0.28 (as dis-
played in Table 2) is low, although this was expected
given the relatively low number of edges and nodes
observed (under very high confidence criteria) in
comparison to the seeded network obtained in Fig. 4.
The high true negative values and specificity (i.e. true
negative rate) as well as the conservation of the major
regulatory hubs again point to the relatively high
topological similarity between the VBSSM and seeded
networks (Table 2).

In silico perturbation can correctly predict in vivo
responses The most striking difference between the two
physiological networks was that half of the nodes had
moved to high concentration bins (a relative observation)
in the pup-free scenario, echoing the node status distribu-
tion in the in silico perturbed network driven by high con-
centration IL-13 and MCP-1 (Fig. 7 and Additional file 5).
Based on a comparison between predicted (Additional file
6) and monitored (Fig. 7) effects, PRL perturbation alone
only categorized four nodes correctly/closely (P4, IL-1α,
IL-2 and IL-10 to low concentration bins). However, com-
bined PRL/IL-13/MCP-1 perturbation correctly classified
the qualitative (i.e. quantitatively high/medium/low con-
centrations relative to the equal frequency bins) nodal
status of P4, IL-1α, IL-10 (low concentration),
RANTES, TNF-α (medium), IFN-γ (moderately high)
and GM-CSF (high). Close categorization was noted for
MIP-1β (predicted to be medium instead of moderately
high), IL-6 (moderately low instead of medium), IL-17

Fig. 6 Systemic cytokine profiles following parturition with and without lactation. Comparison of cytokine and PRL/P4/E2 concentrations in mice
with/without pups on a day 2 and b day 4 of lactation (*P < 0.05)
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(moderately low instead of low) and MIP-1α (moderately
high instead of high) (Table 3 and Fig. 7). In addition to
having MCP-1 as a parent, MIP-1α, MIP-1β and IFN-γ
were also children of IL-12 (p40), and perturbing both of
these parents by allocating them to a high concentration
bin in silico led to their correct categorization in the pup-
free network (Additional file 7 panel B and Fig. 7). Only
the qualitative profile of G-CSF, KC, IL-5 and IL-9 in the
pup-free network could not be predicted/validated by in
silico perturbation of the lactation network (i.e. 79 % of
nodal statuses were correctly predicted by the pertur-
bations performed). Thus, the relative changes of
levels (in both positive and negative directions ) as
encoded in the probability tables broadly agreed with
overall states of the nodes in the physiologically per-
turbed pup-free network model.

Discussion
This study aimed to characterize physiological cytokine:-
cytokine and cytokine:hormone interactions in murine

lactation as a model of inflammatory/immune mediator
regulation using a Bayesian network-based approach.
This method revealed a robust lactation network structure
featuring two main branches organized around principal
parents (IL-12 (p40), IL-3, E2 and eotaxin), structural hubs
(IFN-γ, IL-13, MCP-1, MIP-1α, MIP-1β, and RANTES)
and a terminal node (TNF-α). These pivotal roles resonate
with the central role reported for these mediators in the
control of cytokine networks: IFN-γ in atherogenesis [41],
IL-12 (p40) in those governing T cell and macrophage
responses [42], IL-13 in the pathophysiology of ulcera-
tive colitis [43], IFN-γ, IL-12 (p40/p70) and MCP-1 in
Erdheim-Chester disease [44] and eotaxin, IFN-γ, MIP-
1α and MIP-1β in asthma [45]. A second network was
generated from data drawn from pup-free dams in
which removal of the suckling stimulus physiologically
prevented the rise in PRL levels characteristic of the
onset of lactation. This second Bayesian network, which
validated in vivo the predictions made in silico, had
broadly similar topology (F score 0.861) and total

Fig. 7 Bayesian network displaying cytokine interrelationships associated with pup-free dams in vivo. Color coding of both nodes and edges is as
described for Fig. 4. Symbols indicate if the nodal concentration bin was correctly categorized by in silico perturbation. ✓✓ - Correctly/closely
categorized by PRL perturbation alone. ✓ - Correctly/closely categorized by PRL perturbation in combination with IL-12 (p40), IL-13 and MCP-1, or
by any other single mediator perturbation. X – Not correctly categorized by any perturbation. * - Could not be evaluated due to being upstream
of the perturbations performed

Field et al. BMC Systems Biology  (2015) 9:76 Page 12 of 22



network complexity and, most significantly, featured
the same conserved structural hubs. These findings
suggest that these hub nodes connected by high confi-
dence edges may act as structural lynchpins around
which both networks assemble, potentially playing a
role in integrating diverse upstream cytokine-mediated
signals to induce coordinated downstream responses.
In silico network perturbation allowed a more detailed
analysis of the relative contribution of various nodes to
the control of the overall network behavior. The results
also pointed to the presence of ‘driver’ nodes (nodes
which, when perturbed, propagated maximum amounts of
changes in terms of the number of downstream nodes af-
fected). In this respect, one branch parent (IL-12
(p40)) and two structural hubs (IL-13 and MCP-1)
were responsible for orchestrating the most significant
changes within the network, thereby reinforcing the
proposed concept of a signal integration role played
by the latter two cytokines.
The original premise underlying the choice of lactation

as a model system was that this physiological setting
would feature marked changes in PRL, a hormone that
has been proposed as a central regulator of cytokine net-
works [30]. Surprisingly, PRL functioned neither as a par-
ent nor as a structural hub, and its only connection to the
rest of the network via P4 was through a weak confidence
edge. However, the cluster analysis demonstrated that
most cytokine profiles clustered separately and peaked
later than PRL suggesting that these may be independently
regulated in vivo, as reflected by the Bayesian analysis.
Furthermore, when PRL was perturbed (reduced) in silico,
there were, with the notable exception of P4, only minor
qualitative shifts in conditional probability values in down-
stream mediators (including those for IL-13 - PRL’s con-
nection to the rest of the lactation network - and MCP-1).
These findings point to a limited role for PRL as an
immunoregulator in murine lactation, the presence of
extensive functional redundancy for its actions and/or,
possibly, reflect the fact that its purported effects on
cytokine profiles are largely drawn from the in vitro set-
ting. Our findings are consistent with the observation
that both PRL and PRL receptor knockout mice do not
feature substantial immune dysfunction [46, 47]. The ef-
fects of PRL on MCP-1 are rather more unclear: in con-
trast to our findings, existing data implicate PRL as an
inducer of MCP-1 in ovarian luteolysis and lactational
bone resorption [48, 49], although the systemic/circulatory
relationship between these mediators in response to the
prolactinaemia of lactation remains unknown. Nevertheless,
its effect on P4 supports PRL’s reported role in increasing
serum P4 in rats [50].
In silico perturbation of downstream IL-13, by contrast,

had marked effects on network response, suggesting that
this cytokine had a threshold conditional probability at

which downstream signaling was achieved which PRL
alone as an IL-13 input function was unable to achieve. It
is tempting to speculate that oxytocin, a lactation-related
neurohypophyseal hormone which causes smooth muscle
contraction during the let-down reflex, may represent an
additional input given that the highest cytokine concentra-
tions coincided with the period of maximal suckling/milk
production [51–55]. This would be consistent with oxyto-
cin’s known modulation of cytokine production and
receptor-dependent activity in a range of settings [56, 57],
and the ability of IL-13 to modulate oxytocin receptor
expression [58].
A principal aspect of this study focused on the ability

of in silico perturbation to predict cytokine levels in a
different physiological scenario in vivo. This premise’s
biological validation was achieved by comparing in silico
lactation network behavior following perturbation in-
duced by pup removal and the consequent abrogation of
lactation in vivo. Strikingly, allocation of the driver
nodes IL-13 and MCP-1 to high concentration bins in
silico (akin to what occurred physiologically in the in
vivo pup-free network) correctly (or closely) predicted
the relative concentration status of 13 out of their 14
downstream cytokines in vivo. IL-13 and MCP-1 per-
turbation less accurately predicted MIP-1α and MIP-1β’s
response to pup removal (based on their conditional
probabilities). However, they were correctly categorized
when their direct driver node parent (IL-12 (p40) and
MCP-1) perturbations were used instead. These findings
are consistent with the documented effects of MCP-1 in-
duction of MIP-1α expression in murine aneurysm
models and total IL-12 induction of MIP-1α in isolated
human natural killer cells (albeit in the presence of IL-15)
[59, 60]. By contrast, in silico perturbation failed to predict
the cytokine concentration response of the peripheral
terminal cytokine KC correctly. These findings may be
accounted for by the possibility that despite KC being
connected to its parents via high confidence edges in
the lactation network, its regulation may be under the
control of additional mediators and/or involve changes
in cell-specific receptor expression not measured as
part of this investigation.
In silico lactation network perturbation also pointed to

a recognized feature of cytokine interactions: synergy
(the joint action of two or more cytokines which, when
acting in concert, potentiate each other’s effects). Previous
studies have found IL-13 to be a selective inducer of
MCP-1 [61] as supported by the present data. Furthermore,
we noted an additional and previously unreported synergis-
tic relationship between these mediators in relation to IFN-
γ concentration. When IL-13 and MCP-1 were perturbed
together (i.e. both allocated to high concentration bins), this
resulted in a greater increase in IFN-γ concentration than
that observed when either was perturbed alone. Further,
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more striking evidence of synergy was noted following the
combined perturbations of both network branches. IL-12
(p40) and MCP-1 perturbation independently increased the
concentration of their direct child MIP-1α, but this effect
was markedly greater when these parents were perturbed
together. Analogous, though less pronounced synergistic
interactions were also noted for combined IL-12 (p40) and
IL-13 perturbation which, independently, are both known
to increase IFN-γ concentration [62, 63]. To the best of our
knowledge, these synergistic functional relationships
have not previously been reported in the literature
and will form the basis of our future investigations
into how widespread/conserved these relationships
occur across different physiological/pathological set-
tings, body compartments (particularly in relation to
immune privileged sites) and species.
In silico lactation network perturbation also revealed

another functional property of inflammatory networks:
antagonism (the opposing/modulatory action of one
cytokine on another). In this regard, IL-3 and PRL had
opposing actions on IL-13, with IL-3 seemingly increasing
IL-13 concentrations (in line with its documented effects
on cultured murine bone marrow cells [64]), such that
when these parents were perturbed together (low PRL
and high IL-3), the effect on IL-13 was greater than
those induced by the independent perturbation of its
parents (Fig. 5).
Another recognized property of cytokine networks is

functional redundancy, wherein two independent medi-
ators can fulfill the same role, thereby physiologically
compensating for each other’s absence. In both in vivo
scenarios, IL-4 was peripheral to the main Bayesian
network despite tracking IL-13 levels, as established by
the cluster analysis. This feature suggests functional re-
dundancy, which is consistent with the fact that IL-4
and IL-13 are known to operate through the same re-
ceptor system [9, 14, 65]. It is worth noting that IL-6
and G-CSF were also orphaned in the pup-free dam
network. It is unclear whether this reflects true func-
tional redundancy rather than simply the smaller sam-
ple size used to construct this particular network.
However, even in the lactation network where a larger
overall sample size was used, the edges connecting IL-6
and G-CSF to the rest of the network were of low con-
fidence. This highlights the caveat that the interpret-
ation of Bayesian networks can benefit from additional
a priori functional knowledge of the mediators investi-
gated and that larger data sets - unsurprisingly - gener-
ate models which more accurately represent mediator
inter-relationships, as demonstrated by the use of
VBSSM models.
Another interesting phenomenon noted was the re-

sponse of MIP-1β to changes induced by in silico eotaxin
manipulation. Intriguingly, perturbing eotaxin to either

high or low concentrations both resulted in MIP-1β con-
centration being higher. Concentration-dependent para-
doxical effects are well recognized among cytokines and, in
this instance, MIP-1β responses point to a concentration-
dependent biphasic response to eotaxin. The implica-
tions of this observation are currently unclear but we
speculate that this relationship allows scope for
homeostatic control, possibly through the existence of
physiological feedback loops undetectable using
Bayesian methodologies. Alternatively, this may, as
outlined for KC, reflect the influence of unknown me-
diators not measured as part of this investigation.
The broad conservation of cytokine relationships

across physiological scenarios points to their integrated
regulation and indicates that changes in a small number
of driver nodes can potentially affect the concentration
of multiple downstream mediators. Given their critical
role in orchestrating cytokine networks, identifying driver
nodes such as IL-12 (p40), IL-13 and MCP-1 may prove
valuable in the exogenous manipulation of inflammatory
networks. Major, more predictable network changes could
thus be induced through the selective targeting of driver
nodes (e.g. by using antibody-based interventions). More-
over, desired cytokine level modulation could be induced
without causing major network disruptions in instances
where terminal nodes are targeted instead. This would be
consistent with current clinical practices such as the use
of anti-TNF therapy in the management of a range of
autoimmune disorders [66–68]. Interestingly, com-
parative trials of various agents in rheumatoid arth-
ritis suggest that agents such as these (e.g. etanercept,
certolizumab) are superior to those targeting other
cytokines such as IL-1 (e.g. anakinra) [69], which res-
ide further upstream in our models. If analogous net-
works could be constructed using clinical data, there
would be scope for developing novel, targeted thera-
peutic interventions with more predictable immune-
related side effects.
This Bayesian network-based analysis has proved valu-

able in clarifying the complex structure and causal mur-
ine systemic cytokine-hormone network relationships.
However, these findings must be interpreted in the light
of certain caveats. Firstly, the present Bayesian networks
are necessarily incomplete by virtue of the fact that they
do not contain the entire array of possible interacting
mediators. Secondly, the interpretation of predicted
qualitative changes in network behavior must be consid-
ered in a context-specific manner in order to glean
physiologically meaningful inferences from the data (e.g.
in relation to specific pathophysiologies or in a whole
animal instead of cell-specific in vitro models which dif-
fer in functional receptor expression/cytokine produc-
tion profiles). Thirdly, they do not represent all possible
edges given that the methodology inherently precludes
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the use of structural loops [25]. This accounts for why
the present networks consistently feature TNF-α as the
terminal node, despite studies indicating that, for ex-
ample, TNF-α can induce MIP-1β expression in mice
[70]. Fourthly, these networks allow investigators to
make valuable predictions about causality, although
these may still require empirical verification through
specific experiments in vivo and/or in vitro (e.g. by
using specific exogenous cytokines, inhibitors/traps,
antibodies, pharmacological agents, hormones, patho-
gens or physiological insults). Nevertheless, the present
findings are, to the best of our knowledge, the earliest
available data providing a detailed characterization and
assessment of cytokine networks in a whole animal
model. The networks generated were statistically robust
and independently corroborated many established cyto-
kine interrelationships described in the literature (e.g.
between IL-13 and MCP-1, between IL-12 (p40) and
IFN-γ) [61, 71].

Conclusions
The identification of synergy, antagonism, functional re-
dundancy and concentration-dependent biphasic re-
sponses within these networks lifts this method of
analysis from being purely descriptive to mechanistic.
This suggests that Bayesian in vivo cytokine networks as
shown herein describe real physiological changes in a
non-biased fashion, in contrast to modeling endeavors
performed on in vitro systems (which fall short of pre-
senting a realistic physiological picture) or differential
gene expression studies (which do not account for the
post-transcriptional regulation of cytokine production)
[72]. Furthermore, the identification of conserved regu-
latory hubs points to the existence of a previously un-
known core structure within these cytokine networks
whose responses can be predicted with some accuracy.
Whilst we believe that the exciting findings of this study
are a significant first step towards improving our
understanding of complex systemic inflammatory/im-
mune networks, we remain mindful that many of the re-
lationships described herein remain to be individually
and more fully validated in the in vivo setting. We accept
that multiple approaches may be needed in this context
in order to build a comprehensive picture of multiple
interactions, such as the use of (conditional) knock-
out animal models and infusions of cytokine traps,
antibodies, cytokines and their soluble/decoy recep-
tors. To this end, our future work will focus on es-
tablishing whether the network structures that we
have identified herein appear to be conserved across
both a range of pathophysiological scenarios (e.g. can-
cer, autoimmune disorders, cardiovascular disease) as
well as across species.

Methods
Methodology
Figure 2 demonstrates the workflow used within this
study. Initial biological analysis (Experiment 1, see below)
investigated the cytokine/hormone profiles in lactating
mice, from which Bayesian networks were developed and
explored in silico. In vivo validation of networks was
achieved by investigation of cytokine/hormone networks
in non-lactating mice (Experiment 2).

Animals
Experiment 1
Eight to ten-week old virgin CD1 female mice were group
housed (10 per cage) with ad libitum access to water and
Standard Beekay diet (B&K, Grimston, Aldborough, UK).
The lighting cycle was 14 h:10 h light:dark, and humidity
and temperature were maintained at 55-65 % and 21.5 ±
1 °C. Females were naturally pair-mated to 12–14 week
old CD1 stud males of proven fertility following Whitten
effect-induced estrus synchronization. Females were caged
individually in late pregnancy to litter down and nurse
their pups, then sacrificed throughout lactation on days 1
(<24 h of littering), 2, 4, 10, 16, 21 and 24 (n = 8, 8, 8, 7, 8,
7 and 7 animals, respectively i.e. 53 data points from
which the lactation network was constructed; see later).
Weaning occurred on day 21, when the independent pups
were removed from their mothers. Samples were collected
±1 h half way through the lighting cycle to minimize the
impact of circadian rhythms on any analytes measured.
The number of pups per dam was adjusted to 8 by cross-
fostering to standardize the suckling stimulus. Negative
(baseline) controls were provided by naturally cycling
virgin females of the same age and strain (n = 7).

Experiment 2
An independent data set to test the predictive power
(thereby providing biological validation) of the lactation
Bayesian network was generated by preventing the estab-
lishment of lactation in dams whose entire litters were
removed from them at birth (thus maintaining low PRL
levels). These females were sacrificed on days 2 and 4
(time-matched) (n = 8 in both groups; these 16 data points
were used to construct pup-free networks). Seventy-six
mice were used in total.

Ethics statement
The animals used in this study were sacrificed under
Schedule 1 of the Animals (Scientific Procedures) Act,
1986 (UK). The use of different animals for each individual
time point was required on both ethical and biological
grounds given the severe physiological repercussions of
collecting blood from lactating dams at such closely spaced
time intervals. On one hand, this would have been
inappropriate in causing unnecessary ‘pain, distress and
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lasting harm’ in the eyes of the UK legislative framework.
On the other, significant, repeated blood loss would have
upregulated both adrenocorticotropic activity and the pro-
duction of haematopoietic endogenous colony stimulating
factors, thereby affecting cytokine networks as a result of
sampling rather than true changes in physiology. More-
over, dams subjected to such repeated stress would have
been more prone to pup cannibalism, resulting in uneven
suckling stimuli across females.

Sample collection and analysis
For the sake of text readability, cytokine and hormone
acronyms are listed in the abbreviations section. Whole
blood was collected by cardiac puncture as previously
described [73], allowed to clot on ice and serum isolated
by centrifugation at 5,000 rpm for 3 min. Serum was
stored at −80 °C until analysis. The panel of cytokines
chosen was based on the widest murine analytical array
(with known immunoendocrine interactions) commer-
cially available at the time of the study. Serum samples
were analyzed for IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-
6, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-17,
eotaxin, G-CSF, GM-CSF, IFN-γ, KC, MCP-1, MIP-1α,
MIP-1β, RANTES and TNF-α by multiplex immunoassay
(Bio-Rad Laboratories, Hemel Hempstead, Hertfordshire,
UK) on a Luminex-100 cytometer (Luminex Corporation,
Austin, Texas), equipped with StarStation software
(Applied Cytometry Systems, Dinnington, UK), as pre-
viously described [9]. Samples were analyzed on one
plate to avoid any potential batch or inter-plate variation.
No missing values were identified, and samples falling
below the level of detection of the assay were allocated a
concentration of 0 pg/ml in relation to the blank in order
to avoid skewing the data sets to an unrepresentative
higher concentration. Hormones relevant to lactation with
putative immunomodulatory effects were also selected for
analysis: PRL concentrations were determined by homolo-
gous specific radioimmunoassay [74], while E2 and P4
were assayed by enzyme-linked immunosorbent assay
according to the manufacturer’s instructions (Alpha
Diagnostic, San Antonio, Texas).

Data presentation and analysis
Data were expressed as pg/ml (cytokines, E2) or ng/ml
(PRL, P4) ± SEM. All data distributions were assessed for
normality by Anderson-Darling tests. Basic analytical ap-
proaches were performed to highlight time course-related
changes in analyte profiles and to better appreciate the
data before applying machine learning approaches. These
were based on subsequent Kruskall-Wallis/analysis of
variance with post hoc Mann–Whitney-U/Fisher’s LSD
tests, as appropriate. Pup removal data were similarly
compared using t-tests or Mann–Whitney-U tests. Cor-
rections for multiple comparisons were applied using the

Benjamini and Hochberg False Discovery Rate method
[75]. Statistical analyses were performed using Minitab
(Version 16) and ‘R’.
In order to identify significant changes in mean concen-

tration of each cytokine over time throughout lactation, z-
scores were computed for each of these, assuming a null
hypothesis that the variable was constant at the weighted
mean value, where the weight was (standard error)−2 i.e.
the inverse square of the standard error (estimated for
each cytokine/hormone at each time point using the avail-
able multiple measurements). Resultant z-score P values
(0.05 threshold) were corrected using the False Discovery
Rate. Time-series were also analyzed using Bayesian Hier-
archical Clustering (BHC) in order to define the number
of data clusters in a principled manner, wherein the BHC
algorithm identified distinct groupings solely on the basis
of input data [76]. They were modeled as being drawn
from one of a number of underlying curves and assigned
to a specific cluster on strictly probabilistic grounds. Since
the time-series were normalized to have zero mean and
unit variance, the clustering analysis was sensitive only
to their shape. A flexible, non-parametric regression
Gaussian Process Model (herein inferring a nonpara-
metric latent function over time) was fitted to the mean
at each time point in order to model the trend underlying
mean value changes over time for each mediator. Correla-
tions between cytokine, steroid hormone and PRL profiles
were determined using Pearson’s product–moment corre-
lations as a basis for the heat map.

Bayesian network construction
In Bayesian network formalism, a network of interacting
variables is represented as a graph in which the variables
are nodes and their interactions are directed edges [18].
The edge between two nodes, P1 and P2, is associated
with a conditional probability table containing probability
of the state of P2 given the state of P1. The approach only
allows dependencies between a node and its immediate
parents. Formally, a Bayesian network is defined to be a
pair (G, ΘG) where G is a directed acyclic graph whose
vertices are random variables Pi and ΘG is the conditional
distribution for each variable given its parents: Pb(Pi |
Pa(Pi)), where Pa(Pi) denotes the set of all parents of Pi in
the graph. Conditional independence statements, encoded
by the network structure, define the conditional probabil-
ity distribution.
In order to establish a prior network containing proteins

from the present analytical target set, a seed network
learned from the biomedical literature, protein-protein
interaction databases, or any combination thereof, was
used. The information incorporated in the seed network
was solely restricted to well-established mouse-based in-
teractions, given that many cytokines exhibit species-
specific differences in function owing to evolutionary
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adaptation of what is effectively a plastic system with
inbuilt functional redundancy. MetaCore Inc. (GeneGo, a
Thomson Reuters business, http://thomsonreuters.com/
en/products-services/pharma-life-sciences/pharmaceuti-
calresearch/metacore.html) was principally used to gener-
ate the prior network along with thorough hand curation.
The resultant seed network was then combined with the
results obtained from ‘Predictionet’ (http://www.biocon-
ductor.org/packages/devel/bioc/html/predictionet.html), a
text mining web application which retrieves gene interac-
tions reported in the literature by focusing on a core set of
targets and the context within which the information per-
taining to them is retrieved/based [77]. Any conflicting
edges in the prior network causing feedback cycles were
removed since Bayesian networks inherently preclude the
existence of structural loops: no node/child can be either
its own ancestor or descendant (analogously, the prior
of the network structure could not contain such loops ei-
ther as it was incorporated as a multiplicative factor in the
scoring metric). The network structure close to the prior
network has higher probability: the parametric formula
for this prior structure-related factor in the scoring metric
is given in Heckerman et al. (1995) [24]. Prior to perform-
ing the Bayesian network analysis, z-score normalizations
were applied to the raw data in Matlab. A machine learn-
ing algorithm (implemented in the WEKA-based open-
source package MeV [78]; http://www.cs.waikato.ac.nz/
ml/weka/) was used to refine the seed network in conjunc-
tion with the experimental data derived from postpartum
mice in order to predict a high-confidence network [21, 79].
We found that the literature mining and the protein:protein
database (PPI) toolbox embedded within the MeV package
proved largely ineffective for establishing a seed network.
Cytokine and hormone profiles were further discre-

tized into categorical data for the BN analysis following
z-score application in order to reduce computational
expense, making these relative over time courses and
thus a prerequisite for assessing network behavior, which
is based on relative rather than absolute concentrations.
These were assigned to three mutually exclusive equal
width relative concentration bins i.e. rescaled/normalized
data spreading between 0 and 1 were categorized into low,
intermediate/neutral and high bands of different sizes but
with the same frequency such that the number of samples
allocated to each category was the same. Thus, in the
learned networks, each protein had an underlying condi-
tional probability table where the color of each node was
determined by its own allied underlying histogram. The
snapshot of a network thus represents relative (rather than
absolute) concentrations of each protein in a given physio-
logical setting (i.e. lactation or pup-free) following the inde-
pendent categorization described above for each dataset.
Time-dependent autocorrelations may have been present

across different temporal measurements in each series

(since the data were drawn from a time course) such that
there was a violation of the static BN learning assumption
that training samples are independent. However, an as-
sumption of independence between time points is less
problematic in defining the 3 bin-based concentration
states than the first-order Markov assumption in a typical
dynamic state space model on continuous data. Moreover,
the Spearman correlation coefficient between two nodes is
significantly reduced when the system is randomly sam-
pled over time with fewer time points. Hence, a static
Bayesian network structure learning is expected to provide
a more appropriate model for sparsely sampled data, as is
often the case in a biological context. On the other hand,
static modelling for a time series data is more meaningful
under the assumption that the effects exist long enough to
be visible across multiple time steps, such that causal rela-
tionships are sustained rather than one-off events. The
Spearman correlation coefficients between two causally
connected nodes remained high in both short and long
sampling schemes. As regards data discretization, even in
the presence of a periodic cycle, it would have been valid
to apply this to concentration differences for the purposes
of training a relationship model involving multiple vari-
ables. These data were then used to learn the Bayesian
network. Both the network topology and edge-specific
conditional probabilities were learned from the data,
starting from the initial seed network. Only nodes with
three parents were selected, as per convention in the
field [21, 80]. Searching for a best possible network for
a given set of moderate numbers of proteins or genes is
computationally expensive. Among the various simpli-
fying assumptions to tackle this problem, one is to re-
duce the number of parameters associated with the
conditional probability tables for each non-root node
by restricting the maximum number of parent nodes
for a given child to be three - a reasonable assumption
in a biological context. However, in the present study,
the very high bootstrapping stringency resulted in more
than three parents for some nodes in the final network.
In this regard, standard non-parametric bootstrapping
was applied (100 operations) to address potential over-
fitting in the Bayesian analysis, wherein multiple data
sets were created by re-sampling with replacement to
estimate the confidence in the various network features,
such as edges between the nodes learned [81]. Several
metrics and search algorithms were employed in com-
bination in order to optimize the sensitivity of the re-
sults to the learning procedure scoring metric [82]; the
Tabu Search algorithm was used to optimize the Bayes
(BDe) score as the selected scoring metric.
Overall, 53 data points were used in total but none of

the 81 cells filled by the prior probabilities were zero:
this is inherent to the Bayesian metric with Dirichlet
prior distribution (the Bayes and the special case BDe
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metric) structure. The scoring metric contains both the
coefficients denoting the number of records in the data-
set and the choices of priors on the counts coming from
the Dirichlet distribution in order to fill all 81 cells. The
assumptions behind the Bayesian measure of the goodness
of a belief-network structure lead to strong constraints on
the exponents so that all of them can be constructed [24].
For a brief description of the Bayes and its special case the
BDe metric, and the Tabu search algorithm used herein,
please refer to the Weka manual: http://weka.sourcefor-
ge.net/manuals/weka.bn.pdf.
Bayesian networks represent a ‘snapshot’ at any given

time; however, the networks generated herein reflected
sustained effects or causal events seen across multiple
time points. For Bayesian network generation, the inter-
action matrix between each node for each time point
was learned and then used to initialize the inference
process for the next time point. Therefore, the final
Bayesian network visualized from the final time point
reflected the dynamic process encoded by the previous
time step. Overall, therefore, the structure of seeded net-
works was learned both from the data and prior know-
ledge network, which biased the search to a subspace.
This way of optimization is an alternative to heuristic
methods which avoids the likelihood of hitting local
minima.
The robustness of the present approach was ensured by

the bootstrapping experiment outlined above which pro-
vided good feature confidence measures and returned few
low confidence edges, even after increasing the stringency
of the bootstrap confidence to 0.9 (i.e. features occur-
ring in ≥90 % of iterations). The network directed
acyclic graph was then visualized using Cytoscape
(http://www.cytoscape.org) [83].

VBSSM model generation
In order to further validate the robustness of this model,
a VBSSM was built in Matlab [77]. VBSSM implements
an analytical approximation scheme to Bayesian state-
space models and, unlike other related methods, does
not take prior information (i.e. the seed network) into
account for network reconstruction [84], such that net-
works were solely constructed from the experimental
data. It should be noted that although time t + 1 in-
volved 7–8 replicates independent from those of time
t, these experiments used mice of the same strain/age
with even litter sizes whose lactation started at ap-
proximately the same time under identical conditions.
In this way, the sets of replicates across time points
were assumed to be dynamically related so as to
make VBSSMs meaningful for the purposes of
internal, independent validation of the models learned
using a seeded Bayesian network method.

VBSSM is a dynamic Bayesian network inference algo-
rithm that uses linear Gaussian state-space models to
help reverse-engineer interactions between proteins or
transcriptional networks from time series data, thereby
explicitly modelling the progression of a system over a
multi-step time course. In state-space Bayesian models,
the observed measurements depend on hidden states,
which are assumed to evolve according to first order
Markov chain. A variational approach to the above
models presents a novel way to learn the structure and
the optimal dimensions of the state space and, as such,
the VBSSM algorithm provides distributions over the
model parameters leading to an inference of its under-
lying structure. The majority of algorithms, including
VBSSM, only allow edges across time steps and transi-
tion models that are stationary (linear time invariant)
and first order Markovian. It is relatively efficient in
terms of the size of the network search space and does
not require sub computations, such as checking cycles
within the network. However, the assumption of a sta-
tionary, first order Markov model is not appropriate for
sparsely sampled datasets with a small number of time
points each featuring a limited number of biological
replicates as in the present data sets. For example, if
node A inhibits B, the corresponding high negative
Spearman correlation coefficient is significantly re-
duced when the system is randomly sampled over time
with fewer time points. Hence, the traditional static
Bayesian network structure learning is expected to pro-
vide a more appropriate model for sparsely sampled
data (as is frequently the case in a biological context),
which accounts for the use of static networks described
above. Nevertheless, static modelling for a time series
data is more meaningful under assumption that the ef-
fects exist long enough to be visible across multiple
time steps and causal events are sustained causes, not
one-shot triggers. The Spearman correlation coeffi-
cients between two causally connected nodes remain
high in both short and long sampling schemes. Since
the data are drawn from a time course, it invalidates
the static Bayesian network learning assumption that
training samples are independent. However, due to the
nature of the sampling process, it is believed that a vio-
lation of this assumption is less problematic than the
first-order Markov assumption.
In the present study, the VBSSM was constructed from

6 randomly chosen replicates from each time point (as
there were 7–8 total replicates for each time point). The
interaction matrix between nodes for each time step was
learned and used to initialize the inference process for
the next time step. In order to get the final static snap-
shot of the Bayesian network, the network was taken
from the final time step, which takes into account the
history of the dynamic process as encoded in the
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networks from previous time steps; recall, as outlined
above, that VBSSMs are linearly time invariant.
The VBSSM algorithm allowed for the selection of a

high significance level network interactions (measured in
terms of z-score). In this regard, the z-score was used to
calculate the normal cumulative distribution p, viz. that
the probability that an observation from a normal distri-
bution with mean zero and variance one will be less
than z, giving a significance level of 1-p. Accordingly,
a larger z-score means a lower significance level and
a more stringent requirement level for the edges and
nodes in a derived network [77]. The networks ob-
tained herein had a z-score of 2.33, which corre-
sponded to a significance level of 0.01 and cumulative
probability of 0.99.

Bayesian network perturbation and in vivo validation
Based on the results obtained in the first network, the
systematic in silico perturbation of eotaxin, IL-3, IL-12
(p40), IL-13, MCP-1 and PRL nodes was performed by
altering their conditional probability table values
(thereby removing the uncertainties of concentration
status) in order to determine their relative contribution
towards the cytokine network structure [63]. PRL (the
key expected change between both experiments which
would offer biological validation of in silico predictions)
was perturbed first by allocating it to a low concentra-
tion bin (probability of 1) and the effects of this oper-
ation recorded as conditional probability tables which
represented shifts in concentration (i.e. bin conditional
probability) status of downstream nodes. This enabled
us to determine its positive effects on immediate down-
stream hub nodes. Thereafter, as main first network
downstream branch hubs from PRL, IL-13 and MCP-1
were perturbed (given a high concentration status),
both individually and in combination. As a final step,
IL-3 and IL-12 (p40) were perturbed alone and in com-
bination with IL-13, MCP-1 and PRL in various combi-
nations in order to determine their relative interactions
and contributions to the network structure. The
changes in conditional probabilities for downstream
nodes elicited by these in silico perturbations were then
compared to those obtained in vivo following pup-
removal (which naturally abrogated lactation and thus
prevented a rise in PRL).

Network structural comparisons
In silico network perturbations preserved network struc-
ture as they only propagated the disturbance along a
fixed network topology. By contrast, in vivo perturbation
(i.e. pup removal) resulted in network topological
changes, as anticipated given that the second network
was constructed from an independent data set. The R
package Catnet (http://cran.r-project.org/web/packages/

catnet/index.html), a categorical Bayesian network infer-
ence framework was used to systematically assess the
structural similarities between the lactation and pup-free
networks by computing the F-score, which represents
the harmonic average of specificity and sensitivity, and
accounts for inter-structural edge appearances/disap-
pearances. It is expressed in terms of the number of true
positive (TP), true negative (TN), false positive (FP) and
false negative (FN) edges, and represents a statistical
score of similarity between any two networks in terms of
edge connection features. In this instance, TP, TN, FP
and FN refer to the directed edges of the in vivo per-
turbed network with respect to the lactation network
(taken as the standard of truth). The following formula
was used:

F‐score ¼ 2� specificity � sensitivity= specificity þ sensitivityð Þ

Where: specificity = TN/(TN + FP)
sensitivity = TP/(TP + FN)
As an additional measure of network similarity, the

comparative complexity of these networks was also
assessed as a representative measure given that this
feature depends on both graphical structure and node
categorization, and thus hinges on the number of
parameters needed to define network probability dis-
tributions. The present Bayesian networks are cat-
egorical (i.e. discrete), with each node being assigned
a value in a fixed set of categories. Total network
complexity was thus measured as the sum of all of its
node complexities, which were individually deter-
mined by the number of their respective parents and
categories. A node with k parents with respective
number of categories c1, c2, .., ck has complexity c1 x
c2 x … x ck. Although in the original analysis the net-
works constructed were category 3 with 3 bins for
evaluating each node’s conditional probability, cat-
egory 2 was chosen herein during the simulation
process for simplicity. This change in category did
not affect any of results obtained because only struc-
tural features, in particular topological similarity be-
tween the different networks, were being investigated.
It is worth noting that the discretized concentration

distributions and binning were independent for the lac-
tation and pup-free data sets. This was deliberate given
that, firstly, relative concentrations define a system’s be-
havior rather than absolute values [85], making it more
meaningful to compare relative nodal statuses across
models, especially if covering different time courses (and
thus tailored to different biological endpoints as herein).
Secondly, for unbiased model validation, it is crucial that
the validation data set should not inform model develop-
ment based on the training data set (a paradigm which
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would be have been violated had the categories been
defined on the basis of pooled data).

Additional files

Additional file 1: Changes in cytokine and hormone profiles
throughout lactation; Cytokine, E2 (pg/ml), PRL and P4 (ng/ml)
concentrations throughout lactation (mean ± SEM). Groups that do
not share a common superscript letter are significantly different from
each other (P < 0.05). NC - naturally cycling. (TIF 644 kb)

Additional file 2: Prior network utilised to develop the Bayesian
network. The prior network was learned from the literature relating to
murine cytokine interactions only. Nodes are displayed within circles, with
edges representing known interactions. Due to the nature of the discovery
of the prior network, edges do not represent directionality. (TIF 1064 kb)

Additional file 3: Circular variational Bayesian state-space model
(VBSSM) of cytokine interactions during physiological lactation;
Although it was created entirely from the experimental data with
no inferences drawn from prior knowledge, much of the core nodal
structure present in the seeded network also emerges in this acyclic
graph (A). Circular VBSSM of cytokine interactions in the pup-free group.
The nodes p40 and p70 refer to the IL-12 (p40) subunit and (p70) heterodimer,
respectively (B). (TIF 914 kb)

Additional file 4: Bayesian lactation network perturbation by
deterministically decreasing PRL concentration; Includes conditional
probability indicators for each component node (color coding is as
described for Fig. 3 in the main text). Bars beside each node represent
conditional probabilities (low to high, from right to left). (TIF 3620 kb)

Additional file 5: Bayesian lactation network perturbation by
deterministically increasing IL-13 concentration (A), MCP-1
concentration (B) and in combination (C). (TIF 3966 kb)

Additional file 6: Bayesian lactation network perturbation by PRL
branch (combined PRL/IL-13/MCP-1) perturbation. (TIF 6170 kb)

Additional file 7: Bayesian lactation network perturbation by
deterministically increasing IL-12 (p40) concentration alone (A) or in
conjunction with increasing MCP-1 (B). (TIF 2996 kb)

Additional file 8: Bayesian lactation network perturbation by
deterministically increasing IL-12 (p40) concentration in the presence
of decreased (A) or increased (B) eotaxin. (TIF 3060 kb)

Additional file 9: Changes in conditional probability associated
with perturbation of eotaxin and IL-12 (p40) as parent nodes relative
to those induced by perturbing MCP-1 and IL-13 as hubs. Subscripts
indicate the direction of the perturbation (−low, +high). (DOCX 14 kb)

Additional file 10: Conditional probabilities associated with IL-3
perturbation. Subscripts indicate the direction of the perturbation
(L-low, M-Medium, H-high). (DOCX 14 kb)

Additional file 11: Bayesian lactation network perturbation by
deterministically increasing (A) and decreasing (B) eotaxin
concentration. (DOCX 14 kb)
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