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Abstract— Radiation therapy (RT) is one of the most 
effective treatments for cancer, and its success relies on 
the accurate delineation of targets. However, target 
delineation is a comprehensive medical decision that 
currently relies purely on manual processes by human 
experts. Manual delineation is time-consuming, laborious, 
and subject to interobserver variations. Although the 
advancements in artificial intelligence (AI) techniques have 
significantly enhanced the auto-contouring of normal 
tissues, accurate delineation of RT target volumes remains 
a challenge. In this study, we propose a visual language 
model-based RT target volume auto-delineation network 
termed Radformer. The Radformer utilizes a hierarchical 
vision transformer as the backbone and incorporates large 
language models to extract text-rich features from clinical 
data. We introduce a visual language attention module 
(VLAM) for integrating visual and linguistic features for 
language-aware visual encoding (LAVE). The Radformer 
has been evaluated on a dataset comprising 2985 patients 
with head-and-neck cancer who underwent RT. Metrics, 
including the Dice similarity coefficient (DSC), intersection 
over union (IOU), and 95th percentile Hausdorff distance 
(HD95), were used to evaluate the performance of the model 
quantitatively. Our results demonstrate that the Radformer 
has superior segmentation performance compared to other 
state-of-the-art models, validating its potential for adoption 
in RT practice.  

 
Index Terms—medical image segmentation, large 

language model, vision language model, radiation therapy.  

I. INTRODUCTION 

ADIATION therapy (RT) is a widely used modality for the 

treatment of cancer [1]–[3]. In RT, ionizing radiation is 

used to kill the cancerous cells by inflicting damage to their 

DNA. The therapeutic efficacy of the RT is achieved by 

administering sufficient radiation doses to the tumor target 

while minimizing the exposure to normal tissues [4]. In RT, 

precision delineation of the treatment target plays an important 

role, and it directly impacts the treatment outcomes. 

Furthermore, advanced RT treatment plans, such as the 

volumetric-modulated arc therapy (VMAT), are more 

susceptible to contouring inaccuracies. However, manual 

contouring of target volume is a complex, laborious process, 

subject to intra- and inter-observer variations [5].  Moreover, 

studies have demonstrated that a fire amount of the manually 

delineated target volumes are subjected to changes during the 

peer review process [6]–[8]. Over the last decade, deep learning 

(DL) has achieved significant progress in medical image 

segmentation tasks. Convolutional neural network (CNN) has 

demonstrated significant achievements in medical image 

segmentation [9]–[16]. Among CNNs, UNet stands out as one 

of the most extensively employed networks for segmentation 

tasks. For instance, a UNet-based hybrid densely connected 

network has been proposed for hepatic tumor segmentation 

from the combination of magnetic resonance (MR) and 

computed tomography (CT) images[17]. Similarly, a three-

branch two-dimensional (2D) U-Net termed multiple branch 

UNet (MB-UNet) has been proposed for the concurrent 

segmentation of the prostate and lesions from the T2-weighted, 

diffusion weighted (DWI), and apparent diffusion coefficient 

(ADC) MR images [18]. To facilitate rapid target contouring, 

U-Net has also been extended to 3D volumetric data.  For 

instance, 3D-UNet has been proposed for segmenting the 

prostate and the related organs for dose optimization in 

radiation therapy [19]. Moreover, a two-channel input 3D-UNet 

has also been proposed for the target volume segmentation in 

head and neck cancer [20].  In another implementation, CUNet, 

a modified 3D U-Net with residual block integrated with 

attention center block, has been proposed for prostate 

segmentation from CT images [21].  Similarly, DSD-UNet, a 

3D-UNet-inspired architecture incorporating residual 

connection and dilated convolution, has been implemented for 

target volume segmentation in brachytherapy [22].  However, 

these methods suffer from limited delineation accuracy and are 

deemed unacceptable in routine clinical practice. 

Over recent years, attention-based transformers have 

significantly advanced natural language processing (NLP) and 

computer vision domains [23]–[28]. Moreover, transformer-

based backbones have achieved comparable or better 

performance than those of CNN-based backbones. Inspired by 

their success, attention-based transformers have also been 

adapted for various medical segmentation tasks. For instance, 

CoTr model interleaves transformers between the CNN decoder 

and encoder to enhance the tumor and organ segmentation 

performance [29]. In another development, TransUNet employs 
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stacked self-attention-based transformers as an encoder 

backbone for multi-organ segmentation from CT images [30]. 

Similarly, UNETR utilized a transformer-based encoder 

backbone for tumor and organ segmentation [31]. Recently, 

SWIN-UNETR, a more efficient U-shaped architecture 

incorporating hierarchical shifted windows-based transformers 

as the encoder, has been proposed for tumor and organ 

segmentation [32], [33].  

The development of transformers also ushered the rise of 

vision language models (VLMs), where combined visual and 

text representation learning are utilized for various downstream 

tasks such as classification, object detection, and segmentation 

[34]–[36]. Notably, the segmentation of target objects described 

by the natural language expression has garnered much attention 

in computer vision, leading to the development of VLM 

architectures such as Vision-Language Transformer (VLT) 

[37], Referring image Segmentation using Transformer 

(ReSTR) [38],  Language-Aware Vision Transformer (LAVT) 

[39], Clip-driven referring image segmentation (CRIS) [40], 

etc. However, the implementation of VLM for medical image 

segmentation is limited. In this study, we propose a VLM-based 

3D medical image segmentation network called Radformer. 

The Radformer utilizes 3D medical images and text-rich 

clinical information to delineate the RT target volume. The 

Radformer employs a hierarchical shifted window (SWIN) 

transformer [33] as its backbone and integrates large language 

models (LLMs) comprising of Generative Pre-trained 

Transformer 4 (GPT-4) [41]  and PubMed Bidirectional 

Encoder Representations from Transformers (PubMed-BERT) 

[42] to extract the text-rich clinical information. The language 

and visual information are integrated through language-aware 

visual encoding (LAVE) via the visual language attention 

module (VLAM) at each stage of the network. A CNN-based 

decoder is adopted to generate the 3D segmentation masks 

using the language-aware visual features. To evaluate the 

effectiveness of the proposed Radformer architecture, a public 

dataset comprising 2985 patients with head-and-neck cancer 

who underwent radiation therapy was used. Our Radformer 

achieves a Dice similarity coefficient (DSC) of 76%, an 

intersection over union (IOU) of 69%, and an 95th percentile 

Hausdorff distance (HD95) of 7.82 mm over a test set 

comprising 597 patients, respectively, significantly 

outperforms the state-of-the-art methods.  

The summarization of this study is as follows: 

1. Radformer, a VLM-based 3D segmentation approach 

utilizing the hierarchical vision transformer and LLMs has 

been developed for RT treatment target volume delineation.  

 

2. The Radformer was evaluated on a large cohort of test data 

comprising 2985 patients to demonstrate its effectiveness and 

generalizability. 

    

3. The Radformer outperformed the baseline 3D-UNETR by 

15% with respect to mean DSC, and 17% with respect to mean 

IOU exhibiting high performance and excellent efficiency.  

II. MATERIALS AND METHODS 

A. Method 

The overview of the Radformer is shown in Figure 1. The 

Radformer utilizes an encoder-decoder architecture, utilizing 

hierarchical vision transformers [33] in the encoder to generate 

cross-modal alignments between visual and textual 

information. A CNN-based decoder is utilized to generate 3D 

segmentation maps. In this section, we begin with the 

introduction of Language-Aware Visual Encoding (LAVE), 

followed by the Vision Language Attention Module (VLAM), 

the Language Gating Unit (LGU), and the CNN-based decoder.  

 

1) Language- Aware Visual Encoding (LAVE) 
 

The encoder of the Radformer is designed to extract and fuse 

the features from the 3D images and the text-rich clinical data. 

Typically, a patient’s clinical data comprises extensive 

unstructured information. To extract the features that are 

relevant to defining the treatment targets, we leverage the 

potential of the Generative Pre-trained Transformer 4 (GPT-4) 

[41]. We utilize tailored prompts to guide the GPT-4 to extract 

tumor-related information from the clinical data. A domain-

specific Bidirectional Encoder Representations from 

Transformers (BERT) model pre-trained on the PubMed corpus 

called PubMed-BERT [42] was utilized to contextually embed 

the data extracted by GPT-4.  The embedded high-dimensional 

word vector is represented as  𝐿 ∈ ℝ𝐶𝑡 × 𝑇, where 𝐶𝑡 represents 

the number of channels (768, corresponding to the size of the 

PubMed BERT hidden layer) and 𝑇 represents the number of 

words.  

Following the language feature extraction, we employ a 

SWIN-UNETR [33] based encoder to perform the combined 

visual feature fusion and visual language feature fusion. The 

encoder layer comprises four stages 𝑖 ∈ {1, 2, 3, 4}. Each stage 

of the encoder has two transformer blocks, and it is designed to 

take two inputs, a 3D image of dimension 𝐻 ×  𝑊 ×  𝐷 (𝑉 ∈

ℝ𝐻 × 𝑊× 𝐷) and vectorized tumor information of dimension 

𝐶𝑡  ×  𝑇 (𝐿 ∈ ℝ𝐶𝑡 × 𝑇). A patch partition layer is used to divide 

the 3D image volume into patches of dimension 
𝐻
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  ).  The partitioned patches are then projected 

into an embedding space dimension 𝐶𝑖. In the encoder, the first 

three stages consist of two SWIN transformer blocks 𝛼𝑖, a 

multimodal feature fusion module 𝛽𝑖  , and a gating unit 𝜓𝑖 . In 

these stages, the generation of semantic-aware visual features 

involves a three-step process inspired by language-aware vision 

transformer (LAVT) model [39]. In each of the initial three 

stages, the SWIN transformer blocks 𝛼𝑖  utilize the features 

generated by the preceding stage as input to generate visual 

features as output 𝐼𝑖 ∈ ℝ𝐶𝑖×𝐻𝑖 × 𝑊𝑖× 𝐷𝑖 . The resultant visual 

features 𝐼𝑖  are then integrated with the language features 𝐿 via a 

multimodal feature fusion module termed VLAM to generate 

multimodal attention features 𝑀𝑖 ∈ ℝ𝐶𝑖×𝐻𝑖 × 𝑊𝑖× 𝐷𝑖. A learnable 

gating unit 𝜓𝑖   called LGU weighs the attention features 𝑀𝑖; the 

weighted features 𝐺𝑖  are then combined elementwise to the 
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visual feature 𝐼𝑖 to produce language-enriched visual features 

𝐸𝑖. The final stage of the encoder comprises only the SWIN 

transformer block without the VLAM and LGU.  

 

2) Visual Language Attention Module (VLAM) 
 

The schematic of the VLAM is shown in Figure 2. The 

VLAM utilizes the visual features as the query 𝐼𝑖 ∈

ℝ𝐶𝑖×𝐻𝑖 × 𝑊𝑖× 𝐷𝑖and language features 𝐿 ∈ ℝ𝐶𝑡 × 𝑇 as the key and 

value to generate position-specific sentence-level feature 

vectors 𝐹𝑖 ∈ ℝ𝐶𝑖 × 𝐻𝑖× 𝑊𝑖× 𝐷𝑖 as follows. 

 𝐼𝑖𝑞 = 𝑓𝑙𝑎𝑡𝑡𝑒𝑛 (𝜌𝑖𝑞(𝐼𝑖)) (1) 

 

 𝐿𝑖𝑘 = 𝜌𝑖𝑘(𝐿) (2) 

 

 𝐿𝑖𝑣 = 𝜌𝑖𝑣(𝐿) (3) 

 

 
𝐹𝑖

′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝐼𝑖𝑞

𝑇 𝐿𝑖𝑘

√𝐶𝑖

)𝐿𝑖𝑣
𝑇  

(4) 

 

 𝐹𝑖𝑗 = 𝜌𝑖𝑤(𝑢𝑛𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝑖
′𝑇)) (5) 

 

Where, 𝜌𝑖𝑞 , 𝜌𝑖𝑤 , 𝜌𝑖𝑘 , 𝜌𝑖𝑣 ,  are projection functions. The  

projection functions 𝜌𝑖𝑞  and 𝜌𝑖𝑤  are implemented as  1 × 1 ×

1 convolutions followed by instance normalizations to generate 

projections resulting in channels 𝐶𝑖. The projection functions 

𝜌𝑖𝑘 and 𝜌𝑖𝑣  are implemented as 1 × 1 × 1 convolutions to 

generate 𝐶𝑖 number of output channels. The terms flatten and 

unflatten refer to the transformation of data from the original 

three spatial dimensions to a singular dimension and vice versa.  

The generated position-specific sentence-level feature vector 𝐹𝑖 

is then fused with the visual projections  𝐼𝑖  to generate the multi 

modal feature maps 𝑀𝑖 as follows: 

 

 𝐼𝑖𝑚 =  𝜌𝑖𝑚(𝐼𝑖) (6) 

 

 𝑀𝑖 = 𝜌𝑖𝑜(𝐼𝑖𝑚 ⊙ 𝐹𝑖) (7) 

 

Where, 𝜌𝑖𝑚 and  𝜌𝑖𝑜 are projection functions and ⊙

 

 
Fig. 2.  Schematic of the Visual Language Attention Module (VLAM) 

 
 

Fig. 1.  Schematic of the proposed Radformer architecture. The Radformer utilizes 3D SWIN transformers as backbone to perform visual aware 
encoding.  At each stage, the encoder generates visual features 𝐼𝑖 𝑖 ∈ {1, 2, 3, 4} , which are used as the queries for the generation of position 
multimodal feature maps 𝑀𝑖 𝑖 ∈ {1, 2, 3, 4}  through the visual langauge attention module (VLAM). These multimodal feature maps  𝑀𝑖 are then 

adaptively fused with the visual features 𝐼𝑖. The fused features 𝐸𝑖 are then used to generate the segmentation output through a CNN-based decoder 
employing skip connections. 
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 represents element-wise multiplication. These projection 

functions are implemented as 1 × 1 × 1  convolutions 

followed by rectified linear unit (ReLU) activation. 

 

3) Language Gating Unit (LGU) 
 

Figure 3 illustrates the schematic of the LGU. The LGU is 

designed as a language gate that adaptively regulates the 

amount of information flowing to the subsequent stage of the 

transformer. The LGU is implemented as follows:  

 

 𝐻𝑖 =  γ𝑖(𝑀𝑖) (8) 

 

 𝐺𝑖 = 𝐻𝑖 ⊙ 𝐹𝑖 + 𝐼𝑖  (9) 

 

Where   γ𝑖 refers to a two-layer perceptron; the first layer 

consists of 1 × 1 × 1  convolution paired with RELU 

activation, and the second layer comprises 1 × 1 × 1  
convolution followed by hyperbolic tangent function. The ⊙ in 

Eq. (9) signifies the element-wise multiplication. 

   
4) Decoder 
 

The multimodal feature maps 𝑀𝑖 generated by the encoder are 

utilized to generate the 3D segmentation maps using a CNN-

based decoder. The decoding process at each stage of the 

decoder is implemented as follows: 

 

 𝑆0 =  Ɍ(𝑉), 𝑉 = 𝑉1 + 𝑉2  (10) 

 

 𝑆1 =  Ɍ(𝑃), 𝑃 = 𝑃1 + 𝑃2 (11) 

 

 𝑆𝑗 = Ɍ(𝑀𝑗),    𝑗 ∈  {  2, 3, 4} (12) 

 

𝑌𝑖 = Ɍ[υ(𝑌𝑖+1); 𝑆𝑖], 𝑖 ∈  { 0, 1, 2, 3, 4}      (13) 

 𝑌5 = 𝑆5 (14) 

Where, Ɍ represents a residual block implemented with two 

1 × 1 × 1 convolutions with instance normalization υ. The 

signifies the deconvolution based up sampling operation.  The 

symbol [;] represents the concatenation among the channel 

dimensions. The final 3D segmentation outputs are generated 

from the feature maps 𝑌0  utilizing a 1 × 1 × 1 convolution 

with a SoftMax activation.  

B. Data 

We evaluated the Radformer on a public head-and-neck 

cancer dataset (RADCURE) [43]. The dataset comprises CT 

volumes and gross tumor volume (GTV) contours of patients 

who underwent radiation therapy, along with clinical data such 

as demographic details, clinical histories, and treatment 

specifics.  The average age of the patients in the dataset was 63 

years and the dataset consists of individuals diagnosed with 

oropharyngeal, larynx, nasopharynx, and hypopharynx cancer. 

The clinical information was based on the 7th edition TNM 

staging system and was standardized to adhere to the American 

Association of Physicists in Medicine (AAPM) Task Group 

report no.263 (TG263) nomenclature. To optimize the 

Radformer, we preprocessed the CT images and the GTV 

contours. The patient cases with data inconsistencies and 

corrupt labels were removed during the preprocessing.  The CT 

images were center cropped to a size of 336 ×336 × 64 voxels 

to ensure all regions of interest were included. The contours 

were used to generate segmentation masks, including the 

background and targets. The dataset was randomly divided into 

two groups: one comprising 2,388 datasets for training and 

validating the model, and another group with 597 datasets 

designated for testing. 

The prompt developed for our experiments to guide GPT-4 in 

summarizing clinical information, along with two example 

summaries used for the patient cases, is shown in Figure 4. 

 

C. Training 

1) Loss Function 
 

The loss function employed is a composite loss function 

comprising dice focal loss and Tversky loss from the MONAI 

library [44]. The composite loss function is formulated as: 

         𝐿𝑡𝑜𝑡 = 𝐿𝐷𝐹𝐶(𝑦𝐺 , 𝑦𝑃) +  𝐿𝑇𝑉(𝑦𝐺 , 𝑦𝑃) (15) 

Where, 𝑦𝐺  denotes the true label and 𝑦𝑃  denotes the predicted 

label. The dice focal loss, and Tversky loss are represented as  

𝐿𝐷𝐹𝐶  and 𝐿𝑇𝑉.  

 

 

 
      Fig. 3.  Schematic of the Language Gating Unit (LGU) 

 

 
Fig. 4.  Prompt and examples of language Information used for patient 
cases. 
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2) Implementation 
 

Besides our introduced multimodal model, we also 

implemented advanced models including SWIN-UNETR and 

3D-UNETR for comparisons. Each model (Radformer, SWIN-

UNETR, and 3D-UNETR) was implemented using the PyTorch 

deep learning library [45] on an Nvidia RTX 4090 GPU with a 

batch size of 1. Adam optimizer with a learning rate of 

4 × 10−4 was utilized with a weight decay of 1 × 10−3.  All the 

models were trained for 100 epochs. We utilized 

HuggingFace’s Transformer library [46] to integrate the 

PubMed BERT into the Radformer. The PubMed BERT 

utilized is a base model comprising of 12 layers with a hidden 

size of 768. The SWIN transformer layers of the Radformer are 

initialized with pre-trained weights from the BraTS dataset 

[32]. The remaining weights are randomly initialized.  

D. Evaluation Metrics 

For evaluating the segmentation performance, we chose 

commonly used metrics including the dice similarity coefficient 

(DSC), intersection over union (IOU), and 95th percentile 

Hausdorff distance (HD95) [44]. These metrics were calculated 

on 3D volumes. Statistical analysis such as paired t-test was 

performed between our proposed method and other models 

across all metrics (DSC, IOU, and HD95). 

III. RESULTS 

The performance of the Radformer was assessed utilizing the 

public RADCURE dataset as described in the above session. 

We also compared the performance of the Radformer with other 

state-of-the-art DL-based segmentation approaches including 

SWIN-UNETR and 3D-UNETR.   The SWIN-UNETR and 3D-

UNETR networks are DL approaches widely utilized for 3D 

segmentation tasks. As summarized in Table 1, the Radformer 

significantly outperforms other networks over all the metrics (p 

< 0.05). In particular, Radformer achieved a mean DSC score 

of 0.76, a mean IOU of 0.69, and a mean HD95 of 7.82 mm.  

The Radformer outperformed the baseline 3D-UNETR by 15% 

in terms of mean DSC and 17% in terms of mean IOU. 

Furthermore, a 45% improvement in the boundary accuracy 

(HD95) was noted compared to that of the 3D-UNETR.  

The results of the ablation study containing the Radfromer 

implementation without LAVE are summarized in Table 2. 

Compared to the Radformer without LAVE (VLAM and LGU 

module), the Radformer with LAVE improves the segmentation 

performance by 8% in terms of mean DSC and 9% with respect 

to the mean IOU. Moreover, incorporating the language 

modules (VLAM and LGU) in the Radformer improved the 

segmentation accuracy (HD95) by 36%, with the improvements 

being statistically significant (p < 0.05). 

 

 
 

The qualitative results of the Radformer's GTV segmentation 

on a patient with early-stage laryngeal cancer and a patient with 

stage Ⅲ nasopharyngeal cancer are illustrated in Figures 5 and 

6, respectively. These figures are arranged into columns 

depicting the CT images, manual contours, and the GTV 

predictions by the proposed Radformer, Radformer without 

LAVE, SWIN-UNETR, and 3D-UNETR. Figures 5 and 6 show 

that the Radformer precisely segmented the GTVs in both cases 

when the language and image information were integrated. 

Whereas the Radformer without LAVE, the SWIN-UNETR, 

and 3D-UNETR overestimated the GTVs in most slices.  

IV. DISCUSSION 

Delineation of the treatment target is a crucial step in RT 

treatment planning, and its accuracy significantly affects the 

quality of the RT plan. Currently, the delineation of target 

volume purely relies on human expert’s manual process, which 

is time-consuming, laborious, and subject to intra- and inter-

observer variability depending on the individual's knowledge 

and experience. Although DL-based segmentation approaches 

have made considerable advancements in recent years, its 

success in RT target delineation compared to normal organ 

segmentation is limited.  At present, the delineation of RT 

treatment targets is still clinically unacceptable in most 

situations. The inferior performance of DL-based approaches 

for RT target delineation compared to normal organ 

segmentation could be attributed to the complexity of target 

delineation in RT. In fact, RT target delineation is a 

comprehensive medical decision-making process. In routine 

clinical practice, radiation oncologists consider the entire 

medical history and diagnosis of the disease when performing 

target delineation. In this study, we tested our hypothesis that, 

in addition to images, radiation oncologists leverage clinical 

data for RT target delineation. Therefore, integrating both text-

TABLE I I 

COMPARISON OF THE PERFORMANCE OF  RADFORMER FOR GTV 

SEGMENTATION WITH RADFORMER WITHOUT LAVE 

Network DSC IOU HD95 (mm) 

Radformer 

(1) 

0.76±0.09 0.69±0.08 7.82±6.87 

Radformer 

without LAVE 

(2) 

0.70±0.10 0.63±0.08 12.27±7.68 

p-value 

(1 vs 2) 

<0.05 <0.05 <0.05 

 

TABLE I 

COMPARISON OF THE PERFORMANCE OF RADFORMER FOR GTV SEGMENTATION 

WITH OTHER METHODS INCLUDING RADFORMER WITHOUT LAVE, SWIN-

UNETR, AND 3D-UNETR 

Network DSC IOU HD95 (mm) 

Radformer 

(1) 

0.76±0.09 0.69±0.08 7.82±6.87 

SWIN-UNETR 

(2) 

0.69±0.11 0.64±0.09 12.88±6.60 

UNETR 

(3) 

0.66±0.09 0.59±0.07 14.28±6.85 

p-value 

(1 vs 2) 

<0.05 <0.05 <0.05 

p-value 

(1 vs 3) 

<0.05 <0.05 <0.05 
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Fig. 6.  Illustrative example of the GTV segmentation for a patient stage Ⅲ nasopharyngeal cancer 

 

Radformer Radformer
W/O LAVE

GTCT SWIN-UNETR 3D-UNETR

 
 

  
 

Fig. 5.  Illustrative example of the GTV segmentation for a patient with early-stage laryngeal cancer 

 

Radformer Radformer
W/O LAVE

GTCT SWIN-UNETR 3D-UNETR
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rich clinical information and imaging data will improve DL-

based auto-segmentation methods for RT target delineation. 

We developed a VLM-based 3D medical image segmentation 

network called Radformer. The Radformer utilizes the SWIN 

transformer as the backbone to extract visual features from 

images and LLMs to extract text-rich features from clinical 

data. The visual and linguistic features are fused through 

language-aware visual encoding and then leveraged by a CNN-

based decoder to output segments. The Radformer was trained 

on a dataset from 2388 patients and evaluated on a test dataset 

comprising of 597 patients. Our results demonstrate that the 

Radformer achieves superior performance in comparison with 

the other state-of-the-art architectures purely leveraging visual 

features (SWIN-UNETR, and 3D-UNETR). Moreover, the 

statistical analyses using paired t-tests over the metrics DSC, 

IOU, and HD95 further substantiate the significant 

improvement achieved by Radformer.  Furthermore, the 

enhanced accuracy in segmenting the GTV between the 

Radformer and Radformer without LAVE (Table 2) 

underscores the importance of linguistic and visual feature 

integration for GTV segmentation. 

Figure 7 depicts the violin plots of segmentation performance 

distribution on all patient test cases, evaluated over the metrics 

including DSC, IOU, and HD95. These plots reveal the spread 

and density of the segmentation performance scores across 

~600 patient cases. Figures 7(a) and 7(b) highlight that the 

Radformer architecture generally surpasses the performance of 

other models in most patient cases for both DSC and IOU 

metrics. This suggests a consistent, robust, and generalized 

segmentation capability. Furthermore, over other architectures 

such as Radformer without LAVE, SWIN-UNETR, and 3D-

UNETR, it can be noted that the performance scores are tightly 

clustered within the interquartile range and are characterized by 

lower median values, indicating a relative underperformance in 

certain patient scenarios. This variability in performance 

substantiates the advantages of integrating linguistic and visual 

features. Furthermore, the violin plots representing 

performance over the HD95 metric indicate that the majority of 

the Radformer's performance is skewed towards a lower median 

value, suggesting enhanced accuracy in contour segmentation 

compared to other methods. This skewing towards lower values 

indicates the tendency of the Radformer to yield more precise 

segmentations with less deviation from the ground truth, as 

lower HD95 values correspond to smaller distances between 

predicted and actual contours. Moreover, the improvement in 

segmentation performance when linguistic information can be 

noted by comparing the performance distribution between the 

Radformer and Radformer without LAVE over all the metrics. 

At present, the clinical data associated with the medical 

images are unstructured and extensive. In this study, we 

leverage the potential of LLMs to extract valuable information 

from the clinical data through customized prompts. In 

particular, we used GPT-4 to extract tumor-related information 

from clinical data. As GPT-4 only generates output texts for 

public access, we utilized PubMed BERT (an open-source 

model) to contextually embed the lesion information provided 

by GPT-4. Ideally, the process of extracting tumor-related 

information and contextual embedding can be masked by a 

single LLM. The proposed approach is generic and has the great 

potential to be adaptable to the segmentation of various cancer 

types in radiation oncology.  

Moving forward, integrating our proposed method into 

standard radiotherapy treatment planning could transform 

 

 
 
 

 

 
Fig. 7.  Violin plots demonstrating the performance of the Radformer, 
Radformer without LAVE, SWIN-UNETR and 3D-UNETR on all 
patient test cases. 

(a)

(b)

(c)
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clinical practices. The Radformer’s ability to delineate target 

volumes quickly and precisely could drastically decrease the 

manual effort and time typically required for this task. This 

increase in efficiency is especially important in the context of 

advanced RT treatment plans, where even small errors in 

contouring can lead to significant consequences. 

V. CONCLUSION 

In conclusion, in this study, we propose a large language 

model-augmented approach for RT treatment target auto-

delineation. Breaking away from the conventional architectures 

relying only on visual features, our model leverages text-rich 

clinical information and visual features to enhance the accuracy 

of target delineation. The proposed method could be adopted 

into routine radiotherapy treatment planning, offering a means 

to rapidly contour the target volumes with high precision.  
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