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Abstract: The role of purified natural products in the prevention and treatment of countless diseases
of bacterial, fungal, and viral origin cannot be overestimated. New antiviral drugs have been
obtained from natural sources and transformed into preparations for prophylactic and therapeutic
purposes. Flavonoids, polyphenols, saponins, proanthocyanins, polysaccharides, organic acids,
proteins, polypeptides, and essential oils derived from plants, animals, or microorganisms can
control and combat foodborne viral infections, including hepatitis A. The components of essential oils
are characterized by numerous therapeutic and antioxidant properties and exhibit a broad spectrum
of antimicrobial and antiviral activity. Due to these properties, they can be used to preserve meat,
fruit, vegetables, and their products. Over the past two decades, much effort has been made to
identify natural products, mostly of plant origin, to combat foodborne viruses. Natural plant extracts
have several potential uses, not limited to increasing the safety of food products and improving their
quality, but also as natural antiviral agents.
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1. Introduction

Food contaminated with viruses can be a source of contamination for consumers,
although foodborne viruses cannot multiply in food, unlike many microorganisms. Hepati-
tis A virus (HAV) has been associated with many recorded major outbreaks, while other
human intestinal viruses such as human astrovirus (HAstV), human rotavirus (HRV),
sapovirus (SaV), enterovirus (EV) and Aichi virus (AiV) have caused sporadic outbreaks
around the world [1]. According to Yeargin et al., human intestinal viruses were detected
in 13.1% and 45% of foodborne outbreaks in the EU and the USA, respectively [2].

The transmission of viruses to humans occurs through the consumption of contami-
nated food, through direct interpersonal contact, or through the environment, e.g., water [3].
Viruses can contaminate food at different stages of its production, from harvesting to post-
harvest [4], and food ingredients can protect the virus during processing and human
consumption. For example, fat, sugar, and protein in food can prevent viruses from deacti-
vating [5,6]. The infectious dose of foodborne virus is generally low and a small quantity
of virus particles can cause infection. Foodborne viruses can survive in food for long
periods without losing infectivity [1]. Heat treatment is an effective means of deactivating
foodborne viruses, but it can alter the organoleptic properties (e.g., color and texture) and
reduce the nutrient content (e.g., protein and vitamins) of food [7]. Methods based on the
use of heat as an effective method of pathogen deactivation are currently used in the food
industry to combat bacteria and yeasts [8]. However, thermal deactivation of intestinal
viruses, especially HAV in food, has not been fully understood [9–12]. Several studies have
shown that heat treatment induces a conformational change in the capsid, leading to a

Pathogens 2021, 10, 1095. https://doi.org/10.3390/pathogens10091095 https://www.mdpi.com/journal/pathogens

https://www.mdpi.com/journal/pathogens
https://www.mdpi.com
https://orcid.org/0000-0003-1972-1548
https://doi.org/10.3390/pathogens10091095
https://doi.org/10.3390/pathogens10091095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pathogens10091095
https://www.mdpi.com/journal/pathogens
https://www.mdpi.com/article/10.3390/pathogens10091095?type=check_update&version=2


Pathogens 2021, 10, 1095 2 of 19

reduction in initial viral titers, but the effect depends on the heat treatment conditions and
the composition of the processed food [13,14]. A wide variety of food items, including
drinks and juices, are usually preserved through heat treatment, which is characterized
by a combination of two parameters: temperature and time. However, high-temperature
treatment negatively affects food quality, ultimately reducing both the nutritional and
sensory value of food [15,16].

Foodborne virus outbreaks are frequently associated with minimally processed and
ready-to-eat foods, which is why alternative preservation methods are needed to inac-
tivate viruses. It should also be noted that companies responsible for processing food
should consider whether innovative non-thermal food processing technologies to deac-
tivate viruses can also deactivate bacterial pathogens, such as Listeria monocytogenes,
which may potentially survive in food during cold storage [17].

Gut viruses have received less attention than other foodborne pathogens, and strate-
gies to combat them are necessary to ensure food safety and reduce the number of infections
in humans.

Today, vegetables and berries are most commonly associated with intestinal virus
outbreaks as they are generally eaten fresh or mildly processed (e.g., frozen or freeze-dried
blueberries, blanched vegetables), increasing the risk of infection. These foods are prone
to contamination due to the use of fecally contaminated water for irrigation or the lack of
proper hygiene among food contact persons [18,19].

The consumption of fresh vegetables has increased significantly around the world
with the advent of new technologies, and a wide range of products, from packaged salads
to freshly cut fruit, makes the consumption of fresh fruit and vegetables affordable and
convenient for consumers.

The consumption of fresh produce is part of a healthy diet, but pathogenic contamina-
tion has serious public health implications. Outbreaks of infections are often associated
with tomatoes, spinach, lettuce, and seed sprouts. Vegetables can become contaminated
with human pathogens at several points along the production chain [20].

Clear strategies for identifying sources of pathogens should be developed and steps
taken to prevent contamination of vegetables along the entire production chain [21]. Sources
of plant contamination have been broken down into pre-harvest (focused on improving
soil quality, irrigation water, climate change, and geographic location) and post-harvest
(harvesting, handling, and processing).

Potential sources of pathogen contamination prior to harvest include soil, wildlife
feces, soil alteration, agricultural water, reconstituted fungicides and insecticides, dust,
wild or domestic animals, field workers, and harvesting equipment [20,22,23]. Research
shows that animal manure used to improve soil can contain viruses, parasites, or bacteria,
which pose a risk to human health.

Irrigation is considered to be one of the most important ways of transmitting intestinal
human intestinal pathogens to vegetables [24].

It is known that plants produce secondary metabolites with antimicrobial activity in
response to pathogen attack as a defense mechanism. Today, there has been a significant
increase in the interest of usage of natural products as effective antiviral therapeutic agents.
This paper discusses the action of selected essential oils and natural products against
hepatitis A virus. Recent in vitro study revealed that green tea extract (GTE) demonstrated
excellent antiviral activity against hepatitis A virus under controlled conditions of concen-
tration, pH, temperature, and also time exposure. It now appears that grape seed extract
(GSE) exhibits rather greater antiviral activity by potentially blocking host cell receptors
and consequently preventing virus entry, replication, and infection, while not causing any
structural damage to the HAV viral capsid. In turn, proanthocyanidins from blueberries
slightly reduce HAV replication in the host cells, but they interrupt HAV binding and
penetration to a much greater extent. Research into natural anti-HAV products is promising
as several have shown remarkable potential for controlling HAV infection and replication.
These natural agents have been shown to exhibit significant antiviral activity against HAV
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and can act at different stages of the virus life cycle, replication, assembly, release, as well
as targeting specific virus–host interactions.

The aim of the study was to evaluate, based on the available literature, the effect of
essential oils and plant substances on the growth and survival of HAV.

2. Hepatitis A Virus

Hepatitis A virus (HAV), the cause of hepatitis A, is responsible for approximately
1.5 million reported cases and tens of millions of infections each year. Although hepatitis A
is a self-limiting disease of the liver, it sometimes progresses to a severe, life-threatening
form. HAV is a non-enveloped, single-stranded, positive polarity RNA virus belonging
to Enteroviruses, genus Hepatovirus, family Picornaviridae, and can survive for several
weeks in water or sewage. The HAV virus is resistant to external factors (temperature,
chemicals, e.g., acids). It is stable in an environment with a high degree of acidification
(pH 3) for about 4 h, which makes it resistant to digestive enzymes, which helps to survive
the passage through the stomach on the way to another replication site in the small intestine.
It is deactivated by autoclaving, boiling, UV radiation, disinfectants containing chlorine, or
formalin. The viral particle is spherical, non-enveloped, 27 nm in diameter [25,26].

2.1. Genotypes of HAV

The HAV genome is approximately 7500 nucleotides, consisting of untranslated re-
gions and a coding region. The coding region encodes a large polyprotein and has been
divided into P1, P2 and P3 segments. P1 is translated into the three major viral capsid
proteins, VP1, VP2, VP3 and VP4, which plays a role in virion formation. Non-structural
proteins are generated by cleavage of P2 and P3 by proteases. The genome is heteroge-
neous, which allows the classification of HAV into six genotypes and several sub-genotypes.
Heterogeneity has a limited effect on antigen diversity and results in the existence of single
serotypes. So far, six genotypes have been identified (I, II, III, IV, V and VI) [27]. The most
frequently isolated genotypes in humans are I and III. On the other hand, three consecutive
genotypes (IV, V and VI) occur in monkeys of the macaque family (Cercopithecidae). Within
genotypes I, II, and III, sub-genotypes A and B are distinguished. HAV genotypes and
sub-types do not occur evenly all around the world, and genotype I is the most common.
In areas characterized by low endemicity, such as North America and Europe, the most
common is sub-genotype IA. Furthermore, other genotypes and sub-genotypes, such as
IB and IIIA, are also isolated in Europe. The IA and IB subtypes are widespread in North
and South America, Europe, China, Japan, and Thailand. Most of the human strains be-
yond genotype I belong to sub-genotype IIIA and are found in India, Kazakhstan, Europe,
and the USA. The most common sub genotype in the USA is IA, followed by the IB and
IIIA sub-genotypes [28].

Recent studies have shown that HAV is evolutionarily different from other picor-
naviruses, not only in the nucleotide sequence of its genome, but also in the structure of
its capsid, which shares features with primitive insect viruses. Although for many years
only humans and other primate species were susceptible to infection with hepatoviruses,
numerous distinct species of hepatovirus closely related to human HAV have recently
been identified in various species of small mammals and are now classified under the
same genus. Unlike many other picornaviruses, including the well-studied poliovirus,
HAV does not block cellular protein synthesis in infected cells and generally replicates
without a cytopathic effect. One of the most interesting functions of the virus is its recently
recognized non-lytic ability to be released from infected cells in a membrane-wrapped form
as infectious quasi-enveloped virions (eHAVs). eHAV particles are similar in infectivity to
the non-enveloped virion and represent the second form of infectious virus [29].

2.2. Food Sources of HAV

Hepatitis A is mainly infected by the fecal–oral route (“dirty hands” disease). Infection
can occur through direct contact with an infected person, consumption of contaminated
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food, consumption of contaminated water (also in the form of ice cubes), washing hands in
contaminated water or following sexual contact with an infected person. Foods involved
in the transfer of HAV include vegetables, fruits (fresh or frozen, especially berries), recon-
stituted frozen orange juice, shellfish, salads, sandwiches, ice cream, cheese, rice pudding,
frozen dough, pudding, milk, bread, biscuits, and other raw or undercooked foods. Food
may become contaminated with HAV in several different ways: fruits and vegetables
grown and/or irrigated with fecally contaminated materials, crustaceans grown in and
harvested from dung waters, food processing and preparation using fecally contaminated
equipment or machinery, and handling of ready-to-eat food products by infected persons
with poor personal hygiene. Food establishments with poor sanitation and inadequate
waste disposal systems, along with unsatisfactory manufacturing practices, can also con-
tribute to food contamination [30,31]. Frozen fruit has been shown to be a major carrier
of foodborne illness attributed to hepatitis A virus (HAV) infections. Fresh products can
become infected with viruses through direct contact with a contaminated surface, water,
or hands, and then frozen without proper sanitation. Due to their structural integrity,
foodborne viruses are able to withstand hostile conditions such as drying out and freezing
and survive for long periods without losing infectivity. In addition, these foods are often
eaten raw or undercooked, increasing the risk of infection. The Nasheri results revealed
that frozen fruit, especially blueberries and pomegranate shells, contributed to most of the
outbreaks, with outbreaks frequently reported in industrialized countries [32]. Analyses of
the persistence of HAV RNA in water, on non-porous surfaces, and on blueberries were
performed. A study by Trudel-Ferland showed that RNA associated with deactivated
HAV persists significantly over time on non-porous surfaces and on foods over a wide
temperature range. Stability at above freezing temperatures is also a cause for concern,
although less so [33].

2.3. Epidemiology of HAV

The time from infection to the onset of symptoms may be 15 to 50 days (average
30 days). An infected person sheds large amounts of the virus in their feces for up to
several weeks, and shedding may begin 2 to 3 weeks before the onset of jaundice, that
is, while the person appears to be healthy. The excretion of the virus in the feces may
take up to 6 weeks following infection. Prolonged viral excretion via the feces occurs
mainly in children, while in immunocompetent adults the amount of virus excreted in
the feces drops sharply after the onset of jaundice. The virus is also found in the blood
and saliva of an infected person. Household members and sexual partners of infected
people, intravenous drug users, and those traveling to endemic areas of hepatitis A are
at increased risk of infection [34].

HAV infection is asymptomatic or with mild symptoms or symptoms varying in inten-
sity from flu-like symptoms (in the first stage) and gastrointestinal symptoms—belching,
heartburn, nausea, flatulence, early satiety, dark urine—to jaundice (i.e., yellowing skin,
whites of the eyes, or mucous membranes). Acute inflammation and damage to the liver
parenchyma may occur. In adults, the disease has a sudden onset and is severe, requiring
hospitalization, occurring in the form of jaundice in 70% of people. In children up to
5 years of age, illnesses are rare, and if they do occur, the disease is asymptomatic or very
mild. Over 70% of children under 6 years of age and 20% of children over 6 years of age
have asymptomatic HAV infections. The severity of the disease is higher in the older age
groups [34]. HAV complications are dangerous and can even lead to death. Complications
of hepatitis A include hyperacute hepatitis and bone marrow aplasia. Hepatitis A virus
does not cause chronic hepatitis, and immunity after falling ill is life-long. The long incu-
bation period of viruses such as HAV makes it difficult to accurately determine the food
product that is the source of infection for the people infected.

In animal models, HAV antigens can be detected in the stomach, small intestine, and
large intestine throughout the duration of the infection, suggesting that some degree of
viral replication is present in the gut. HAV reaches the liver via systemic circulation and
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infects hepatocytes. On entry into a cell, HAV interacts with HAVCR1, with a receptor
attachment present on the cell surface. Additionally, HAVCR2 and the asialoglycoprotein
receptor have been reported to participate in HAV entry into the cell. After replication in
the liver, the virus is released into the bile and eventually excreted in the feces [35].

It is believed that the course of viral hepatitis is genetically determined by the variabil-
ity of the hosts, whilst infection with the same virus leads to different disease courses of
individuals. The molecular mechanisms responsible for the wide range of disease severity
caused by HAV infection are not well understood. It is widely accepted that virulence
factors associated with specific viral lines and various host factors such as age, sex, and
race play a role in the clinical outcomes of HAV infections [35].

It is estimated that almost 80% of the population aged 30–55 is non-immune. The
elderly over 70 years of age are immunized after exposure to the virus, but only 6.5%
of adults up to 40 years of age have HAV antibodies. Figure 1 shows the characteristics
of HAV.
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Annually, between 1.2 and 1.4 million cases of the disease are recorded, although there
are actually many more cases, as it is estimated that only every tenth case of the disease is
reported. Overall, the WHO estimated that 7134 people worldwide died from hepatitis A in
2016 (corresponding to 0.5% of the death rate from hepatitis). Among the sick, 20% require
hospitalization, and mortality is low, at 0.6–2.1%. HAV infections most often occur in areas
of poor sanitary conditions, among people who do not observe good personal hygiene. The
countries with high endemic incidence of HAV include Bulgaria, Egypt, Tunisia, countries
of the Mediterranean basin and Africa, countries of Eastern Europe, and Russia [25,26,36].
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Foodborne HAV outbreaks have previously occurred concerning, for example, infec-
tions caused by the consumption of frozen or fresh blueberries and sun-dried tomatoes, as
well as oysters and other crustaceans. Food contact can be another source of HAV, as HAV
is environmentally stable and can remain contagious for long periods in the environment
and on inanimate surfaces. An epidemic, recorded in Germany in 2017–2018, was caused by
one of the HAV strains identified from those infected with an MSM group combined with
a contact person working in a food store as the most likely source of the outbreak. Through
contact tracing, two direct contacts were diagnosed by stool examinations, and over the
next few weeks, seven of the store’s customers were identified as confirmed cases [34].

Based on data published by ECDC in 2018, a total of 42 atypical cases of hepatitis
A were reported in six European Union (EU) countries. They were infected with one of
two different strains of hepatitis A virus (HAV) genotype IA. The cases were classified as
either indigenous, i.e., infected in the EU, or travel-related, i.e., travel history to Morocco.
Both HAV strains have historically been found to be epidemiologically linked to Morocco.
However, many of the 2018 cases have no history of travel to Morocco. These cases were
identified by sequencing the viral RNA fragment in the VP1/P2A overlap region. HAV
strains with one to two nucleotide differences in this RNA region are likely to have a
common ancestry. Based on the molecular findings on returning Moroccan travelers and
residents of Morocco, it is likely that these strains have been circulating in Morocco since at
least 2011 and this transmission in Morocco continued until recently.

In EU countries in 2012–2014, strains associated with two foodborne disease outbreaks
were related to the consumption of frozen strawberries and frozen mixed berries [26,36–38].
In 2016–2018 in the USA, the number of hepatitis A infections increased by 294% com-
pared to 2013–2015; they were mainly associated with outbreaks related to contaminated
foodstuffs, among MSM, and mainly among those reporting drug use or homelessness [39].

3. Composition and Biological Activity of Essential Oils

Essential oils (EOs) are liquid, volatile fragrances which are most often obtained by
steam distillation from a suitable plant material. They are a mixture of various compounds,
such as ketones, aldehydes, alcohols, esters, lactones, terpenes, and organic compounds.
The components of essential oils are characterized by numerous therapeutic and antioxidant
properties and exhibit a broad spectrum of antimicrobial and antiviral qualities. Due to
these properties, they can be used to preserve meat, fruit, vegetables, and their preserves.

The available literature provides information on the use of various EOs against hep-
atitis A virus (HAV). These oils include oregano oil, thyme oil, Zataria multiflora oil, lemon
oil, sweet orange oil, grapefruit oil, rosemary oil, C. indicum oil, and C. morifolium oil.

The main components of oregano EO extracted from Origanum vulgare are carvacrol
(0.3–80.8%), belonging to the monoterpenes; and thymol (0.96–63.7%), belonging to the sesquiter-
penes. The other ingredients present in lower proportions are gamma-terpinene (0.8–21.0%),
P-cymene (<0.1–16.94%), alpha-terpineol (<0.09–12.0%), and limonene (0.3–0.7%) [40,41]. Nu-
merous in vitro and in vivo studies have shown the antibacterial, antiviral, and antifungal
effects of the oregano EO. This essential oil was shown to possess antibacterial activity against
Gram-negative bacteria: Escherichia coli, Salmonella choleraesuis, Salmonella Typhimurium, Shigella
sonnei, Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca and Gram-positive bacte-
ria: Clostridium botulinum, Clostridium perfringens, Listeria monocytogenes, Staphylococcus aureus,
Bacillus subtilis, Sarcina lutea, and Mariniluteicoccus flavus [42]. The oregano essential oil was also
shown to be effective against fungal pathogens—Candida albicans, Malassezia furfur, Trichophy-
ton rubrum, Trichosporon beigelii, Aspergillus niger, and Aspergillus tubingensis [43–46]. Due to
antimicrobial, antifungal, and antioxidative properties oregano essential oil can be used as a
food preservative [47]. Studies have shown that these properties are related to the presence of
carvacrol and thymol [48].

The main ingredient of the essential oil obtained from Thymus vulgaris is thymol
belonging to sesquiterpenes (27.6–100%). The other ingredients of thyme oil are trans-
sabinene hydrate (0.43–39.4%), menthol (1.3–39%), bornyl acetate (0.2–25.57%), limonene
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(0.4–24.2%), carvacrol (2.0–20.5%), and gamma-terpinene (0.6–14.9%) belonging to monoter-
penes [40,49,50]. The research results presented by Borugă et al. 2014 showed the effective-
ness of thyme EO against the food-related bacteria and fungus—S. aureus, P. aeruginosa,
S. Typhimurium, E. coli, K. pneumoniae, E. faecalis, and C. albicans. This antimicrobial property
of EO could be attributed to the presence of the major constituent—thymol. The antioxi-
dant properties of the T. vulgaris EO allow it to be used as a food additive as a means of
protecting it from spoilage [51].

The main active substances in the essential oil obtained from Zataria multiflora Boiss
are thymol (40.8%), belonging to sesquiterpenes; and carvacrol (27.8%), belonging to
monoterpenes. P-cymene—alkylbenzene related to a monoterpene (8.4%), sesquiterpene—
beta-caryophyllene (2.0%), and monoterpenes: gamma-terpinene (4.0%), linalol (1.7%),
and alpha-terpinolene (1.3%) are the remaining ingredients of the oil [40,52]. It was
found that Z. multiflora EO has antimicrobial properties. The growth of P. aeruginosa,
K. pneumoniae, methicillin-resistant and methicillin-sensitive S. aureus strains was inhibited
in the presence of EO [52–55]. The key ingredients, carvacrol and thymol, are responsible
for the antimicrobial and antioxidant properties of Z. multiflora EO [55]. This EO exhibits
positive antioxidant, antibacterial, and antifungal properties, and can therefore function as
an effective preservative in food—for example, in cookies or hamburgers [56,57].

Limonene, beta-pinene, and gamma-terpinene, belonging to monoterpenes, are the
key components of the essential oil derived from lemon essential oil (Citrus limon). Their
content is 61.09–71.18%, 10.03–13.41%, and 7.73–9.89%, respectively. In much smaller
quantities are geranial (1.9–2.4%) and neral (1.39–1.77%), belonging to monoterpene alde-
hydes [40,58,59]. Lemon EO showed antibacterial properties against Gram-positive strains:
MRSA, MSSA, E. faecalis, L. monocytogenes, B. subtilis and Gram-negative strains: E. coli,
K. pneumoniae, and P. aeruginosa [58,60,61]. The antifungal activity of lemon oil against
some food spoilage fungal species, especially Aspergillus and Penicillium species, was also
described [62]. C. limon EO can be use in the prevention of contamination and growth
of pathogenic bacteria during minced beef meat storage at 4 ◦C [58]. Ajayi-Moses et al.
2019 [63] noted that lemon EO exhibited pronounced inhibitory potential against microor-
ganisms associated with fruits spoilage; therefore, it can be used as a preservative agent.

The main ingredients of sweet orange EO derived from Citrus sinensis are limonene
(92.1–95.9%) and linalool (0–5.6%) [40,59,64]. Sweet orange EO was reported to inhibit the
growth of Gram-positive and Gram-negative bacteria, including S. aureus, L. monocytogenes,
Vibrio parahaemolyticus, S. Typhimurium, E. coli, and P. aeruginosa [65–67], as well as sev-
eral fungal species, such as Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus,
A. niger, Alternaria alternata, Cladosporium herbarum, Curvularia lunata, Fusarium oxysporum,
Helminthosporium oryzae, Penicillium chrysogenum, Penicillium verrucosum, and
Trichoderma viride [68–70]. Sweet orange EO exhibits antioxidant, antifungal, and antibacte-
rial properties, which have important applications in food industries [71,72].

Limonene is the main ingredient in grapefruit EO (Citrus paradisi). Its content ranges
from 84.8 to 93.45%. The remaining ingredients are present in small quantities: myrcene
(6.9%) and alpha-pinene (1.7%), belonging to monoterpenes; and beta-caryophyllene (1.1%),
belonging to sesquiterpenes [40,59,73]. C. paradisi EO inhibited the growth of E. coli, S. aureus,
E. faecalis, S. Typhimurium, Lactococcus lactis, Leuconostoc mesenteroides, Lactobacillus plantarum,
Staphylococcus epidermidis, Serratia marcescens, and Proteus vulgaris [73–75]. The effectiveness of
C. paradisi EO against fungi: A. niger, A. flavus, C. albicans, Penicillium chrysogenum,
Fusarium moniliforme and Saccharomyces cerevisiae has been confirmed [76]. According to Lu-
ciardi et al. 2019 [77], grapefruit essential oils could be used as a food preservative to control
P. aeruginosa virulence.

The major constituents of essential oils from Rosmarinus officinalis are 1,8-cineole (16.0–58.6%),
alpha-pinene (2.5–48.0%), and camphor (1.4–26.0%). Much smaller amounts of alpha-terpineol
(0.7–12.8%), beta-caryophyllene (0.5–13.6%), borneol (1.0–9.0%), camphene (1.7–7.0%), limonene
(1.8–5.4%), and beta-pinene (0.7–3.8%) are also present in the oil [40,59,78]. EO from R. officinalis
has been demonstrated as having antibacterial properties against E. coli, P. aeruginosa, S. aureus,
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B. subtilis, Bacillus cereus, Bacillus pumilis, Clostridium perfringens, Aeromonas hydrophila,
Salmonella choleraesuis, and Salmonella poona [79,80]. Rosemary EO exhibited fungitoxic activity
against Penicillium spp., A. niger, and A. flavus [81–83]. Due to its antimicrobial and antioxidative
properties, rosemary EO can be successfully used as a food preservative, especially in foods that
contain animal or vegetable fats [84].

Chrysanthemum indicum essential oil contains camphor (7.75–36.69%), bornyl acetate
(10.00–21.33%), and borneol (3.3–18.34%) as the major constituents followed by 1,8-cineole
(0.12–10.4%), alpha-terpinene (5.73%), and caryophyllene oxide (0.13–5.46%) [85–87]. The essential
oil of C. indicum exhibited stronger antibacterial activity against all oral bacteria:
Streptococcus mutans, Streptococcus sanguinis, Streptococcus sobrinus, Streptococcus ratti,
Fusobacterium nucleatum, Prevotella intermedia, and Porphylomonas gingivalis. E. coli and S. aureus
strains appeared to be less sensitive to C. indicum EO [85]. Shunying et al. 2005 demonstrated the
strong activity of the essential oil against clinical (E. coli, K. pneumoniae, Staphylococcus saprophyticus,
Enterobacter cloacae) and reference (B. subtilis, S. aureus, Salmonella typhi) bacterial strains. Fungi:
Candida spp. and Hansenula anomala were also sensitive to C. indicum EO [86]. The anti-infectious
and antioxidant properties of C. indicum EO make it suitable for use as a food spice to preserve it
and protect it from deterioration [87].

Chrysanthenone was also the predominant component of Chrysanthemum morifolium
essential oil (9.71–48.96%). The other ingredients of the oil are verbenone (17.33%), cam-
phor (14.56–44.6%), curcumene (10.50%), eudesmol (8.92%), pentacosane (8.65%), borneol
(7.95%), and copaene (5.61%) [87–89]. The essential oil of C. morifolium exhibits signifi-
cant inhibitory effects toward E. coli, S. aureus, S. epidermidis, S. Typhimurium, S. sonnei,
Shigella flexneri, Citrobacter freundii, Streptococcus agalactiae, Streptococcus pyogenes, and
Pseudomonas fluorescens [87,89]. Bacteria P. aeruginosa and K. pneumoniae were resistant to the
essential oil [89]. Other research suggests that secondary metabolites of C. morifolium pos-
sess antifungal activity against F. oxysporum, Magnaporthe oryzae, and Verticillium dahlia [90].
C. morifolium EO, just like C. indicum EO, can be used as a food preservative due to its an-
timicrobial and antioxidative properties [87]. The effect of essential oils on microorganisms
is shown in Figure 2.
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4. Review of Antiviral Use of Essential Oils, Juices, and Other Plant Extracts
against HAV

Essential oils are volatile substances which are naturally produced by plants, and are
obtained from parts of plants such as flowers, buds, stems, leaves, seeds, twigs, roots, fruits,
bark, and wood. They are produced by plants as secondary metabolites and are valuable for
their antibacterial, antifungal, insecticidal, and antiviral properties [91]. Essential oils are
used in the production of cosmetics and in the perfumery and pharmaceutical industries.

In the studies of Battistini et al. [59], the HAV virus was multiplied in Frp3 cells. Virus
titer was determined using the Reed and Muench method to set the 50% dose of infectious
tissue culture (TCID50). Four oils in various concentrations were used in the research:
lemon EO (0.5%), sweet orange EO (0.1%), grapefruit EO (0.1%), and rosemary cineole EO
(0.05%). Five mixes (one for each oil and one control) of frozen berries weighing 12.5 g
were used (three raspberries, four blackberries, four blueberries, four currants were in
each mixture). After thawing, the berry blends were inoculated with HAV (ATCC/HM
strain) at a concentration of 106.74 TCID50/mL. The inoculated samples were air-dried in
a laminar chamber. Then, the samples were placed for 1 h in 20 mL of working solution
(66% Tris/glycine/beef extract buffer (TGBE) pH 9.5, 33% peanut oil 0.1% Tween 80)
with four EOs at room temperature. A statistically significant reduction in HAV titer
on the fruit surface was found after the action of lemon oil (2.84 log TCID50/mL) at a
concentration of 0.5%, grapefruit oil (2.89 log TCID50/mL) at a concentration of 0.1%,
and rosemary cineole (2.94 log TCID50/mL) at a concentration of 0.05%. The effect of
orange essential oil, although it reduced HAV infectivity by >2 log TCID50/mL, was not
statistically significant compared to the control. Rosemary cineole worked best, followed
by lemon EO, then grapefruit EO. The main active substances in rosemary cineole EO
are 1.8 cineole (51.79%), α-pinene (16.54%), camphor (8.38%), and camphene (4.27%), in
lemon EO-limonene (71.18%), β-pinene (8.76%), and γ-terpinene (8.24%), in grapefruit
EO-limonene (93.45%). Research results indicate that essential oils are more effective in
deactivating HAV (by about 2–3 logs) compared to the chlorine disinfection methods
described so far.

Fadia S. et al. [92] used essential oils from the flower heads of Chrysanthemum indicum
and Chrysanthemum morifolium in their research. In the flowers of Chrysanthemum indicum,
64 active substances were detected, mainly camphor (36.69%), isoborneol (7.64%), α-terpinene
(5.73%), and caryophyllene oxide (5.46%). Fifty-five active substances similar to those in
C. indicum were detected in Chrysanthemum morifolium. The dominant constituents were
camphor (14.56%), curcumene (10.50%), τ-eudesmol (8.92%), pentacosane (8.65%), borneol
(7.95%), and copaene (5.61%). The research was carried out directly in the cell cultures. EO
concentrations ranged from 1 to 1000 µg/mL. A plaque reduction test was used to determine
the antiviral activity of the essential oils. Vero cells (CCL-81) were grown for 24 h in 5% CO2 at
37 ◦C and then inoculated for 1 h with viruses: herpes simplex type 1 HSV-1 (ATCC VR-1493),
hepatitis A HAV virus (ATCC VR-1357), VSV vesicular stomatitis virus (ATCC VR-1238).
Infected cells (2 × 103 PFU) were washed and incubated with several different concentrations
of EO and aciclovir (positive control) for 1 h. The IC50 value for the oil derived from C. indicum
was 3.38 µg/mL, while the IC50 for aciclovir was 1.84 µg/mL. Both EO and C. indicum, in
particular, showed concentration-dependent antiviral activity. They can be used as spices in
foods and can be added to a variety of food products and pharmaceutical preparations as
natural preservatives with antioxidant potential as both oils showed antioxidant potential
with IC50 values of 2.21 and 2.59 mg/mL, respectively, for C. indicum and C. morifolium.

Sanchez et al. [93] conducted studies in which the effects of three essential oils in
various concentrations were assessed: oregano EO (0.5, 1, 2%), thymus EO (0.1; 0.5; 1;
2%), and zataria EO (0.01; 0.05; 0.1%). The HAV strain HM-175 (ATCC VR-1402) was
used. The oils were added at various concentrations to the virus suspensions (titer approx.
6 log TCID50/mL) in DMEM with 2% FCS and then incubated at 37 ◦C in a water bath,
shaking at 150 rpm for 2 h. Ten-fold dilutions of the essential oil treated and untreated virus
suspensions were inoculated onto monolayers on 96-well plates. Treatment of EO with
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oregano and zataria resulted in a slight decrease in HAV titer with a maximum reduction
of less than 0.5 log TCID50/mL at 0.1% EO Zataria. Thymol at concentrations of 1 and 2%
reduced to 1.66 and 2.45 log TCID50/mL, respectively. For thymol on HAV, no effect was
observed at any of the concentrations tested.

The role of purified natural products in the prevention and treatment of countless
diseases of bacterial, fungal, and viral origin cannot be overestimated. New antiviral drugs
have been obtained from natural sources and transformed into preparations for prophylac-
tic and therapeutic purposes [91]. Flavonoids, polyphenols, saponins, proanthocyanins,
polysaccharides, organic acids, proteins, polypeptides, and essential oils derived from
plants, animals, or microorganisms can control and combat foodborne viral infections,
including hepatitis A [94]. Over the past two decades, much effort has been made to iden-
tify natural products, mostly of plant origin, to combat foodborne viruses. Natural plant
extracts have several potential uses, not limited to increasing the safety of food products
and improving their quality, but also as natural antiviral agents [95].

Green tea extract (GTE) is made from the leaves of the evergreen green tea Camellia sinensis L.
of the Theaceae family [96]. Studies have shown that GTE has inhibitory properties against a wide
variety of foodborne pathogens [97,98]. Important chemical components of GTE are catechins
belonging to the flavonoids [99], which have antibacterial properties against a wide spectrum
of Gram-positive and Gram-negative bacteria [98]. In the studies of Randazzo et al. [96], the
HAV virus (HM-175/18f strain) was multiplied on FRhK-4 cells cell lines. Various concentrations
of green tea extract (from 0.5–10 mg/mL) were added to the cell line wells and incubated for
2 h in 5% CO2. DMEM (Dulbecco’s modified Eagle’s medium) was then added to the cells and
incubated for 2–15 days. The cytotoxic effect was determined by observation under an optical
microscope. One of the objectives of the study was to determine the effectiveness of GTE on the
HAV suspension at a concentration of 5 log TCID50/mL for 2 h at 37 ◦C in PBS with different
pH values (5.5, 6.5, 7.2, 8.0, and 8.5). Another aim of the research was to determine the suitability
of GTE for disinfecting stainless steel and glass surfaces. The antiviral quality of GTE proved
effective in the surface disinfection tests as a 1.5 log reduction and complete deactivation for
HAV were recorded on stainless steel and glass surfaces treated with 10 mg/mL GTE for 30 min,
analyzed according to ISO 13697: 2001. The next aim was to determine the suitability of GTE as a
virucidal agent for washing vegetables. Pieces of fresh lettuce and spinach were inoculated with
HAV, and then treated with GTE extract at a concentration of 5 and 10 mg/mL for 15 and 30 min.
The HAV titers in lettuce and spinach were significantly reduced after 30 min of treatment with
GTE at a concentration of 10 mg/mL. Studies have shown that GTE reduces the number of
HAV cells depending on pH. GTE at a concentration of 5 mg/mL reduced the HAV titer by
more than 1 log TCID50/mL after 2 h exposure at 37 ◦C in slightly acidic solutions (pH 6.5).
The same concentration of GTE resulted in complete deactivation of HAV and MNV (below the
detection limit of 1.15 log TCID50/mL) at neutral (7.2) and slightly basic (8 and 8.5) pH. GTE at
a concentration of 0.5 mg/mL showed generally poor inhibition in the tested pH range, with a
slight reduction in HAV titer at alkaline pH (8 and 8.5). Research indicates that GTE can be used
to control foodborne viral infections by using it to disinfect food products prior to consumption.

In turn, the studies by Falcóa et al. [100] used the HAV HM-175/18f strain (ATCC
VR-1402) and FRhK-4 cells. GTE (Naturex SA, Avignon, France) was dissolved in PBS
(pH 7.2) and incubated for 24 h (aged GTE) to increase antiviral activity. The GTE was
then mixed with an equal volume of MNV-1 and HAV suspensions (approximately 6
or 5 log TCID50/mL, respectively) and incubated at 25,40,50 or 63 ◦C for 30 min. The
antiviral activity was determined by comparing the number of virus particles in suspension
with and without GTE. In the next study, fruit juices J1 (with the addition of strawberries,
carrots, beetroot, and apples—pH 4.1) and J2 (from apples—pH 3.75) were used. The
juices were artificially inoculated with MNV-1 (about 6 log TCID50/mL) and HAV (about
6 log TCID50/mL) and mixed in the same volume with GTE (aged GTE) (10 mg/mL) and
incubated for 30 min at 25, 40, 50 and 63 ◦C. The controls included only juices (cytotoxicity
controls) and juices inoculated with viruses without the addition of GTE. There were no
significant differences (p > 0.05) compared to the control in HAV suspensions subjected to
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heat treatment, even after heating at 63 ◦C for 30 min. HAV titers were not significantly
lowered (p > 0.05) by any of the factors (GTE, temperature) used alone or in combination.
The action of GTE and temperature were important in reducing MNV.

Hibiscus sabdariffa, belonging to the Malvaceae family, is an annual tropical or sub-
tropical shrub species found in countries such as Mexico, Sudan, India, and Thailand. The
calyx of flowers of this plant was found to be rich in bioactive compounds, such as antho-
cyanins, saponins, phenolic acids, organic acids, and alkaloids [101]. Active substances
contained in H. sabdariffa calyx are believed to have a wide range of health properties,
including antioxidant, anticancer, cardioprotective, antidiabetic, and antibacterial [102,103].
Protocatechic acid (PCA), the basic component of H. sabdariffa, has been shown to be the
component responsible for its antibacterial quality [104]. Another chemical component
of Hibiscus plants, known as ferulic acid (FA), has also been reported to exhibit antimi-
crobial properties. The aim of the research by Snehal et al. [105] was to determine the
antiviral effect of aqueous extracts of H. sabdariffa (HE) and hibiscus components such as
PCA (protocatechuic acid), and FA (ferulic acid). Hibiscus flowers were chosen and the
HAV-HM175 strain was grown on the fetal rhesus monkey kidney cell line (FRhK4) for
8 days in 5% CO2. The virus (5 log PFU/mL) was incubated with 40 or 100 mg/mL of
aqueous hibiscus extract (HE; pH 3.6), protocatechic acid (PCA; 3 or 6 mg/mL, pH 3.6),
ferulic acid (FA; 0.5 or 1 mg/mL; pH 4.0), malic acid (10 mM; pH 3.0), and PBS (pH 7.2
as control) at 37 ◦C for 24 h. All studies were performed in three replications, and plaque
reduction in two replications. The HAV titer was reduced to an undetectable level by both
HE concentrations after 24 h. HE at 40 mg/mL reduced the HAV titer by 1.29 ± 0.05 and
1.14 ± 0.01 log PFU/mL after 3 and 6 h, respectively, and to an undetectable level only
after 24 h. HE at 100 mg/mL reduced the HAV titer by 1.37 ± 0.02 and 1.33 ± 0.01 log
PFU/mL after 3 and 6 h, respectively, and to an undetectable level only after 24 h. PCA at
a concentration of 1.5 mg/mL lowered the HAV titer by 0.26 ± 0.01 and 0.25 ± 0.01 log
PFU/mL after 6 and 24 h, respectively, and at a concentration of 3 mg/mL by 0.42 ± 0.06
and 0.74 ± 0.06 log PFU/mL after 6 and 24 h, respectively. FA concentrations of 0.5 and
1 mg/mL did not reduce the HAV titer even after 24 h. Malic acid also did not reduce
the HAV titer, even after 24 h. Transmission electron microscopy did not show conclusive
results. The results suggest that H. sabdariffa extracts have the potential to prevent the
spread of foodborne viruses. The consumption of hibiscus tea is becoming a popular trend
all over the world, and H. sabdariffa extracts are widely used in the preparation of teas with
medicinal properties.

The results of research by Snehal et al. [105] show promise for the use of aqueous
H. sabdariffa extracts as food and drink additives or direct consumption products to reduce
or alleviate the symptoms of foodborne viral diseases.

On the other hand, in the studies conducted by El-Shiekh et al. [106], the alcoholic
extract of Hibiscus schizopetalus showed only weak activity against HAV.

Blueberries and berry extracts are known for their health and antimicrobial properties.
Natural therapeutic or prophylactic approaches to reduce the incidence of foodborne viral
diseases are currently of interest to many authors, and the antiviral activity of blueberries
and berry extracts was assessed in the studies of Snehal et al. [107] using standard plaque
tests at 37 ◦C for 24 h. Viruses with a titer of ~5 log PFU/mL were mixed with equal volumes
of blueberry juice (BJ) (pH 2.8), neutralized BJ (pH 7.0), blueberry proanthocyanidins
(BB-PAC) (1, 2, 4, and 10 mg/mL), malic acid (pH 3.0) or PBS (pH 7.2) and incubated
for 24 h at 37 ◦C. Each experiment was performed in duplicate. HAV titers dropped to
undetectable levels after 30 min with 2 and 5 mg/mL BB-PAC, after 3 h with 1 mg/mL
BB-PAC and by ~2 log PFU/mL at BJ after 24 h.

Grape seed extract (GSE), vitis vinifera, is obtained as a by-product of the production
of juice and wine during the processing of grapes [108]. Currently, it is known that it has a
variety of bioactive compounds, including anthocyanins, flavonoids, proanthocyanidins,
polyphenols, procyanidins; and resveratrol, a derivative of stylbene [109]. The antioxidant,
anti-inflammatory, cardioprotective, hepatoprotective, neuroprotective, and antimicrobial
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properties of these compounds have resulted in the extract having pharmacological and
therapeutic properties (Xia 2010). The antiviral activity of GSE against some foodborne
viruses, including hepatitis A virus (HAV), has been described in the literature.

The studies by Snehal et al. [110] used the HAV-HM175 strain and the FRhK4 cell
line. The research was carried out in model food systems as well as in artificial conditions
similar to those in the stomach. The prepared GSE suspensions at concentrations of 2, 4,
and 8 mg/mL were mixed with the appropriate volume of the HAV virus suspension to
obtain a virus titer of ~5 log PFU/mL. Then, the HAV suspension was mixed with equal
volumes of GSE (2, 4, and 8 mg/mL) with apple juice (AJ; pH 3.6 or pH 7.0) or 2% milk
and then incubated at 37 ◦C for 5, 15, 30, 60, 120, 180, and 360 min. Virus survival was
assessed using standard plaque tests. TEM was used to determine any structural and/or
morphological changes in GSE treated and untreated viruses. GSE at a concentration of 1,
2, and 4 mg/mL in AJ (pH 3.6) reduced HAV to an undetectable level after 1 h at 37 ◦C,
while AJ alone without GSE caused a reduction of 0.63 ± 0.20 log PFU/mL after 24 h.
Concentrations of 1, 2, and 4 mg/mL GSE in milk did not cause a significant difference in
the HAV titer after 24 h. For artificial intestinal fluid studies, the HAV particle number was
reduced to undetectable levels after exposure to GSE at 1 mg/mL after 6 h at 37 ◦C.

A 2011 study showed that GSE decreased HAV titer in a dose-dependent manner,
wherein increasing GSE concentrations resulted in a greater reduction in viral titers [111].
It should be noted that the effectiveness of GSE was also influenced by the temperature
and the level of the virus. At 37 ◦C, the reduction corresponded to the concentration,
0.25 mg/mL GSE, 0.5 mg/mL GSE, 1 mg/mL GSE with a high HAV titer (about 7-log10-
PFU): 1.81; 2.66 and 3.20 and low (ca 5-log10-PFU): 1.86; 2.26 and 2.89. However, significant
differences were visible at room temperature, wherein the reduction was, respectively, to
the concentration, 0.25 mg/mL GSE, 0.5 mg/mL GSE, 1 mg/mL GSE with a high HAV titer
(about 7-log10-PFU): 0, 86; 1.22 and 1.90 and low (approximately 5-log10-PFU): 2.40; 2.62
and 3.01. The greatest effectiveness of GSE was demonstrated at 37 ◦C in a concentration of
1 mg/mL, with a high titer HAV, and the lowest at a concentration of 0.25 mg/mL at room
temperature, also with a high HAV titer. Further studies by these researchers showed that
GSE at concentrations ranging from 0.25 mg/mL to 1 mg/mL reduced viral contamination
levels in food products without causing significant changes in the color of lettuce and
peppers (Su 2013). However, it was found that the reduction caused by GSE was dependent
on the virus type, and the HAV titer was reduced by GSE at concentrations ranging from
0.25 to 1.0 mg/mL by about 1 log10 PFU during 1 min of exposure.

Cinnamaldehyde (CNMA) is an organic compound that gives cinnamon its flavor
and aroma. The studies by Fabra et al. [112] used the HAV-HM-175/18f strain, which was
grown on FRhK-4 cells. Various concentrations of cinnamaldehyde were used—0.1, 0.5,
and 1%—the virus titer was initially 6–7 log10 TCID50/mL, and incubation was carried
out for 2 h at 37 ◦C and 5% CO2. The cytotoxic effects were determined both visually under
an optical microscope and with the Vybrant® MTT cell proliferation assay (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. Each CNMA
suspension was diluted with 50% ethanol and the same concentration of virus particles
was added to them. Each experiment was performed in triplicate. The antiviral activity of
CNMA was assessed by comparing the titer of viruses in the suspensions without CNMA
and the viral suspensions treated with CNMA, which was found to be effective in reducing
the titers of norovirus and HAV surrogate viruses as a function of duration and temperature.
Incubation in CNMA at 4 ◦C for 2 h had no effect on the virus titer. Incubation with 1%
CNMA reduced HAV titers by 1 log10 TCID50/mL. Incubation overnight at 37 ◦C with
CNMA was effective in reducing HAV viral loads in a dose-dependent manner, wherein
increased CNMA concentrations resulted in increased reductions in viral titers. The initial
viral load was 6.03 ± 0.94, after an overnight exposure to CNMA at a concentration of 0.1,
0.5 and 1 mg/mL at 37 ◦C, it decreased to 6.00 ± 0.19, 3.32 ± 0.12, 2.66 ± 0.07.

Ginseng (Panax ginseng Meyer) contains numerous bioactive ingredients, including
ginsenosides, phytosterols, polysaccharides, polyacetylenes, polyacetylene alcohols, fatty
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acids, and peptides. It has anti-stress, anti-carcinogenic, anti-inflammatory, antioxidant,
antibacterial, antiviral, and antifungal properties [113]. During processing, red ginseng is
usually steamed and fermented with the ginseng rind, which affects the composition of the
saponin contained. Due to its various bioactive functions, red ginseng is widely used as an
oriental medicinal herb and food ingredient [114]. The aim of the study was to investigate
the antiviral effect of red ginseng extract and ginsenosides on the hepatitis A virus (HAV).
To test the antiviral activity against HAV, FRhK-4 cells (the fetal rhesus monkey kidney)
infected with HAV were treated with red ginseng and purified ginsenosides Rb1 and Rg1.
The HAV titer dropped significantly in all groups which had previously received either red
ginseng or purified ginsenosides. The results showed that red ginseng and ginsenosides
Rg1 and Rb1 can lower HAV titers. The authors suggest that regular consumption of red
ginseng as a dietary supplement may help prevent HAV infections.

The Egyptian Red Sea seagrass, Thalassodendron ciliatum, is characterized by high levels
of “tanning cells” and a high phenolic content. Compounds isolated from raw seagrass
extract have been shown to have antioxidant and cytotoxic effects [115,116].

Hamdy et al. [116] studied the antiviral quality of extracts from seagrass samples of
Thalassodendron ciliatum. Fresh T. ciliatum (800 g) was blended in an electric blender with
methanol, and the process was repeated until exhaustion. The combined extracts were
filtered, and the solvent was evaporated under reduced pressure at 45 ◦C. The crude extract
was partitioned between ethyl acetate (EtOAc) and H2O several times. The ethyl acetate
fraction (10.61 g) was chromatographed on a Sephadex LH-20 column (600 mm) with step
gradient elution starting from 30% ethanol in H2O to 100% ethanol. Fractions of 250 mL
each were collected and those exhibiting similar TLC profiles were combined. Subfractions
were subsequently fractionated on Sephadex LH-20 columns with different elution systems
to allow the purification and identification of six phenolic compounds: rutin, asebotin,
3-hydroxyasebotin, quercetin-3-O-β-D-xylopyranoside, a racemic mixture of (+)-catechin
and (–)-catechin, and trans-caffeic acid. The total extract, as well as the isolated pure
compounds, were tested against HAV. The antiviral quality of the samples was determined
at non-cytotoxic concentration by the plaque assay method. The crude extract showed
100% inhibition of hepatitis A (HAV) at the lowest concentration tested (20 µg/mL). The
antiviral activity of the crude extract against HAV was lost by fractionation, which could
be explained by the synergistic action of several compounds in the crude extract [116].

The antiviral effect of licorice root has been described. The main chemical components
of licorice root are triterpene saponins. Glycyrrhizin is the main ingredient, with con-
centrations ranging from 1% to 9%, depending on the species, geography, and extraction
method. Glycyrrhizin is a glycoside which occurs as a mixture of the calcium, sodium, and
potassium salts of glycyrrhizinic acid (also called licorice acid). During hydrolysis, two
molecules are released: D-glucuronic acid and Aglycone of 18-β-glycyrrhetinic acid (also
called licorice acid), a pentacyclic triterpenoid of the β-amyrin type [117]. However, there
are no recent reports on the efficacy of licorice against HAV. Table 1 shows the composition
and source of the essential oils and plant substances presented in the literature used in
this review.
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Table 1. Main compounds of essential oils and plant substances.

Name of Plant Source Substance/
Essential Oil (EO)/Plant Extract Reduction in HAV Titer References

Citrus limon (lemon),
Citrus sinensis (sweet orange),
Citrus paradisi (grapefruit),

Rosmarinus officinalis
(rosemary cineole)

Lemon EO: limonene (71.18%), β-pinene (8.76%),
and γ-terpinene (8.24%)

Sweet orange EO: limonene 95.74%)
Grapefruit EO (limonene 93.45%)

Rosemary cineole EO: 1.8 cineole (51.79%),
α-pinene (16.54%), camphor (8.38%), and

camphene (4.27%))

2.84 log TCID50/mL
>2 log TCID50/mL

2.89 log TCID50/mL
2.94 log TCID50/mL

[59]

Chrysanthemum indicum,
Chrysanthemum morifolium

EO from flower heads, major constituents:
camphor, borneol, camphene, α-pinene,

p-cymene and 1.8 cineole,

2.21 log PFU/mL ID50
2.59 log PFU/mL ID50 [92]

Origanum vulgare
Thymus vulgaris
Zataria multiflora

Oregano EO—carvacrol
Thyme EO—thymol

Zataria EO—carvacrol, thymol methyl ether

<0.5 log TCID50/mL
1.66 (1%); 2.45 (2%) log TCID50/mL

<0.5 log TCID50/ml
[93]

Green tea
Green tea natural extract—soluble in

water—content of epigallocatechin-3-gallate:
40–50%

1 (pH 6.5), 1.15 (pH 7.2) log TCID50/mL [96,100]

Hibiscus sabdariffa Hibiscus sabdariffa extract: PCA (protocatechuic
acid), FA (ferulic acid), MA (malic acid)

1.29 ± 0.05–1.14 ± 0.01
(40mg/mL HE) log PFU/mL

1.37 ± 0.02–1.33 ± 0.01
(100mg/mL HE) log PFU/mL

[105]

Blueberry

Blueberry and blueberry extracts, blueberry juice
(BJ) and blueberry proanthocyanidins (BB-PAC,
B-type PAC structurally different from A-type

PAC found in cranberries)

1–2 log PFU/mL [107]

Grape seed Grape seed extract (GSE), Gravinol S,
proanthocyanidins

0.63 ± 0.2 log PFU/mL
1.86 log PFU/mL (0.25 mg/mL GSE),
2.26 log PFU/mL (0.5 mg/mL GSE);
2.89 log PFU/mL (1 mg/mL GSE)

[110,111,113]

Cinnamon Cinnaaldehyde (CNMA)—3-Phenylprop-2-enal;
≥95% purity 1 log10 TCID50/mL [112]

Hibiscus schizopetalus Dichloromethane Fraction (DCM-F),
n-Butanol Fraction (Bu-F) 1–2 log PFU/mL [106]

Panax ginseng Meyer Ginsenosides, saponin 0.23 ± 0.48 to 0.57 ± 0.25 log 10 PFU/mL
0.45 ± 0.46 to 0.66 ± 0.52 log 10 PFU/mL [114]

Thalassodendron ciliatum
Flavonoids: rutin, asebotin, 3-hydroxyasebotin,

quercetin-3-O-β-D-xylopyranoside, and a
racemic mixture of catechin

100% (crude extract) [116]

Glycyrrhiza Glycyrrhizin No data [117]

5. Conclusions

Viruses, including HAV, may cause foodborne diseases. As there is an increasing
demand for food that does not contain synthetic chemicals as preservatives, it is imperative
to research and identify alternative and safe methods for protecting food products. Even
though many natural products are produced today to preserve and extend the shelf life
of foodstuffs, there are still many unexplored sources. The natural compounds from the
by-products of plants, algae, and fungi are now seen as possible compounds to use as new
antimicrobial agents. More research is needed to determine the optimal concentrations
of antimicrobials that can be safely used in food without unduly altering any sensory
characteristics. The antiviral effect of essential oils, including HAV, as well as extracts
and plant substances depends on the concentration of the active substance, its duration of
action, and temperature.

Essential oils and extracts are safe and environmentally friendly, and many essential
oils have anti-inflammatory, antibacterial, antifungal, antiviral, and antiseptic proper-
ties. EO plays an important role in food processing due to the myriad of characteristics
mentioned above.
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