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The pathogenesis of celiac disease (CeD) remains incompletely understood. Traditional diagnostic 
techniques for CeD include serological testing and endoscopic examination; however, they have 
limitations. Therefore, there is a need to identify novel noninvasive biomarkers for CeD diagnosis. 
We analyzed duodenal and plasma samples from CeD patients by four-dimensional data-dependent 
acquisition (4D-DIA) proteomics. Differentially expressed proteins (DEPs) were identified for functional 
analysis and to propose blood biomarkers associated with CeD diagnosis. In duodenal and plasma 
samples, respectively, 897 and 140 DEPs were identified. Combining weighted gene co-expression 
network analysis(WGCNA) with the DEPs, five key proteins were identified across three machine 
learning methods. FGL2 and TXNDC5 were significantly elevated in the CeD group, while CHGA 
expression showed an increasing trend, but without statistical significance. The receiver operating 
characteristic curve results indicated an area under the curve (AUC) of 0.7711 for FGL2 and 0.6978 
for TXNDC5, with a combined AUC of 0.8944. Exploratory analysis using Mfuzz and three machine 
learning methods identified four plasma proteins potentially associated with CeD pathological grading 
(Marsh classification): FABP, CPOX, BHMT, and PPP2CB. We conclude that FGL2 and TXNDC5 deserve 
exploration as potential sensitive, noninvasive diagnostic biomarkers for CeD.
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Celiac disease (CeD) is an autoimmune enteropathy that is characterized by intestinal lesions in genetically 
susceptible individuals who carry the HLA-DQ2/DQ8 genes and consume gluten-containing foods1. The main 
pathological features of CeD include intraepithelial lymphocytosis, crypt hyperplasia, and varying degrees of 
villous atrophy within the mucosal lining of the small intestine1. Although the incidence and prevalence of 
CeD are progressively increasing, its pathogenesis is still incompletely understood. However, dynamic interplay 
among genetic factors, immune responses, and environmental influences is thought to be responsible2. CeD 
presents with a diverse range of clinical manifestations, complicating its diagnosis and resulting in possible 
underdiagnosis or misdiagnosis3,4. Delays in diagnosis and treatment can lead to a variety of complications in 
patients with CeD, thereby increasing the risk of developing secondary autoimmune diseases and even malignant 
tumors, posing a threat to human health5.

CeD is primarily diagnosed by serological antibody testing and endoscopic duodenal biopsy6. Serological 
antibodies, including anti-tissue transglutaminase (tTG) immunoglobulin (Ig)A antibody, endomysial 
antibodies, and anti-deamidated gliadin peptide IgG antibody, demonstrate high sensitivity and specificity 
for the diagnosis of CeD7. However, current antibody tests do not provide 100% sensitivity and specificity8. 
Therefore, the typical endoscopic findings and characteristic histopathological changes observed on biopsy of the 
small intestine remain the diagnostic “gold standard” for CeD, especially in adults9 In terms of therapy, a gluten-
free diet (GFD) is the primary therapeutic approach. It can ameliorate clinical symptoms, gradually reduce 
antibody titers, and progressively restore the histological integrity of the duodenal mucosa10. Monitoring the 
histologic recovery of the duodenal mucosa necessitates endoscopic examination and mucosal biopsy. However, 
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the invasiveness, high cost, and limited patient acceptability of endoscopy have encouraged extensive research 
efforts to identify biomarkers that can be used to confirm CeD diagnosis and assess intestinal villous atrophy11. 
Numerous biomarkers have been identified thus far, with some already being utilized in clinical practice, such as 
immunogenic gliadin peptide analysis in the urine and stool12. However, evidence on the clinical utility of these 
biomarkers is limited.

The search for biomarkers is typically focused on individual biomolecules. This often results in low acceptance 
rates in clinical practice. A systemic approach may be more appealing, especially if circulating biomarker levels 
could be linked to dysfunction in diseased organs. Notably, proteomic techniques based on mass spectrometry 
have seen significant advancements and contributed to many breakthroughs in disease-associated biomarker 
discovery over recent decades13. Proteomics can be leveraged to specifically identify and quantify hundreds 
to thousands of proteins present in biological or clinical samples, making it suitable for studying disease 
mechanisms and identifying biomarkers13.

In this study, we used four-dimensional data-dependent acquisition (4D-DIA) proteomics to discover 
novel molecular biomarkers in duodenal and plasma samples obtained from patients with CeD. We aim to 
systematically characterize the proteomic alterations in both the small intestine and plasma of patients with CeD 
by performing separate and integrated analyses of these two tissue types. Additionally, we assessed the potential 
of plasma proteomics as a tool for exploring clinical diagnostics and intestinal villous atrophy grading in CeD, 
and the results were validated in an independent cohort. This approach is intended to lay the foundation for 
evaluating the pathophysiology of CeD and identifying potential circulating biomarkers for diagnosis.

Results
Study design
This study consisted of two phases: (i) the discovery phase and (ii) the validation phase. The discovery phase 
involved 4D-DIA proteomic analysis of duodenal and plasma samples, while the validation phase involved 
enzyme-linked immunosorbent assay (ELISA) analysis of plasma samples. In the discovery phase, both duodenal 
and plasma samples were analyzed. This is because a correlation between the two types of tissue was anticipated 
due to leakage of tissue proteins into the bloodstream after tissue damage (leakage markers). Therefore, any 
potential protein biomarkers selected from the plasma samples for further analysis may have originated from the 
duodenum (or small intestine)13,14. The study workflow is summarized in Fig. 1.

Fig. 1. Study workflow. a: Study population and sample collection in the discovery phase. b: Liquid 
chromatography separation, mass spectrometry data acquisition, and bioinformatics analysis. c: Potential 
plasma diagnostic markers were identified through weighted gene co-expression network analysis and machine 
learning methods. d: The Mfuzz method and machine learning were used to explore the plasma protein 
candidate biomarkers for small intestinal villus atrophy in CeD. e: Study population and plasma samples 
collected for enzyme-linked immunosorbent assay in the validation phase. Software used for image creation: 
WPS Office (Version 6.10.1; www.wps.com).
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Baseline characteristics of the study population
In the discovery phase, 45 patients with newly diagnosed CeD were recruited. Of these, four underwent plasma 
and duodenal proteomic sequencing. Moreover, 49 age-, sex-, and ethnicity-matched healthy controls were 
recruited.

Overall, 30 patients in each group underwent proteomic analysis of plasma samples. Among these patients, 
the median age of those in the CeD group was 44 years and in the healthy control group was 45 years. There were 
no statistically significant differences in age, sex, and ethnicity between the two groups (all P > 0.05). Among 
the patients in the CeD group, four were classified as Marsh II (13%), five as Marsh IIIa (17%), six as Marsh IIIb 
(20%), and 15 as Marsh IIIc (50%). Overall, 19 patients in each group underwent proteomic analysis of duodenal 
samples. Among them, the median age was 47 years in the CeD group and 48.5 years in the healthy control 
group. There were no statistically significant differences in age, sex, and ethnicity between the two groups (all 
P > 0.05). Among the patients with CeD, four were classified as Marsh II (21%), three as Marsh IIIa (16%), six as 
Marsh IIIb (31.5%), and six as Marsh IIIc (31.5%). All patients in the healthy control group underwent serum 
tTG-IgA antibody and total IgA antibody screening to exclude CeD. The demographic characteristics of the CeD 
and healthy control groups are shown in Table 1.

In the validation phase, we recruited an independent cohort consisting of 40 patients with newly diagnosed 
CeD and 45 healthy controls. The CeD group had a mean age of 48.2 ± 10.8 years, while the healthy control 
group had a mean age of 47.9 ± 15.8 years. Among the patients in the CeD group, four were classified as Marsh 
II (10%), three as Marsh IIIa (7.5%), 17 as Marsh IIIb (42.5%), and 16 as Marsh IIIc (40%). All patients in the 
healthy control group underwent serum tTG-IgA antibody and total IgA antibody screening to exclude CeD. 
The demographic characteristics of the CeD and healthy control groups are presented in Table 1.

Differential analysis of the proteomic profiles of duodenal and plasma samples in CeD
To identify dysregulated proteins in the plasma and duodenum of patients with CeD, we conducted separate and 
integrated analyses of the proteomic profiles of plasma and duodenal tissue samples.

Quantitative proteomic analysis was conducted using the 4D-DIA strategy on duodenal tissue samples 
from 19 patients with CeD and 19 healthy controls. A total of 897 proteins exhibited significant differences 
in the duodenum of patients with CeD compared with healthy controls, with 368 upregulated DEPs and 529 
downregulated DEPs (Supplementary Table S1). The volcano plot and heat map of the DEPs are shown in Fig. 2a 
and b, respectively. Gene Ontology (GO) analysis revealed that the DEPs were primarily involved in activities 
such as regulation of biological processes (BPs) (Fig.  2c). The Kyoto Encyclopedia of Genes and Genomes 
(KEGG)14 enrichment analysis indicated that the DEPs were mainly enriched bile secretion, drug metabolism – 
cytochrome P450 and peroxisome proliferator-activated receptor (PPAR) signaling (Fig. 2d).

As changes in protein expression in the plasma or serum can reflect pathophysiological alterations in various 
human diseases, we analyzed the serumproteomic data of 30 patients with CeD and 30 healthy controls. In the 
serum of patients with CeD, 140 proteins showed significant differences compared with healthy controls, with 81 
upregulated DEPs and 59 downregulated DEPs (Supplementary Table S2). The volcano plot and heat map of the 
DEPs are shown in Fig. 2e and f, respectively. The GO analysis revealed that the DEPs were primarily involved in 
regulation of BPs, organic substance metabolic processes, primary metabolic processes, and nitrogen compound 
metabolic processes (Fig. 2g). The KEGG enrichment analysis showed that the DEPs were mainly enriched in 
alanine, aspartate, and glutamate metabolism, cholesterol metabolism and arginine biosynthesis (Fig. 2h).

Identification and verification of diagnostic hub proteins
To establish associations between the clinical information and key proteins, we performed weighted gene co-
expression network analysis (WGCNA) of duodenal sample proteomics. The hierarchical clustering analysis 
revealed close relationships among the samples, indicating that there was no need to exclude any samples 
and that all samples could be used for the WGCNA (Fig. 3a). A power value (β) of 4 was selected as the soft 
threshold to construct the adjacency matrix, and the resulting network based on β = 4 exhibited a scale-free 
topology (Fig. 3b and c). Using hierarchical clustering and dynamic tree‐cutting methods, a total of 15 distinct 
co‐expressed modules were obtained, each represented by a different color, with grey indicating genes that could 
not be assigned to any module (Fig. 3d). Figure 3e shows that the in-module proteins were correlated with the 
phenotypic data, and the correlation is displayed using heat maps.

A significant positive correlation was observed between group and MEcyan, MEturquoise, and MEsalmon 
(r = 0.34, 0.81, 0.34, respectively, all P < 0.05), whereas a significant negative correlation was observed between 
group and MEred, MEblue, and MEbrown (r = − 0.33, − 0.84, − 0.54, respectively, all P < 0.05). The turquoise 
module, which had the highest association with group, was selected as the clinically significant module for further 
analysis. A strong negative correlation was also observed between nation and MEtan (r = − 0.39, P < 0.05).

To identify circulating proteins with diagnostic value in CeD, we intersected the DEPs from the plasma 
and duodenal samples with the key module identified in the WGCNA (turquoise module) to obtain the key 
proteins. A Venn diagram was used to compare the identified proteins to identify overlap within the target 
module. Finally, 17 DEPs were identified as group markers (Fig. 3f, Supplementary Table S3).

We also performed feature selection on the 17 DEPs using three machine learning algorithms (XGBClassifier, 
LinearSVC, and RandomForest) on all plasma proteomic samples. Each model selected eight features, and 
the importance of these features is illustrated in Fig. 4a. The features selected by the three machine learning 
algorithms were intersected and a Venn diagram plotted (Fig.  4b). Five features (APOC3, FGL2, TXNDC5, 
CHGA, and FAM234A) were selected by all feature selection algorithms, indicating their significant role in 
model decision making (Fig. 4c).

Three features with elevated plasma expression (FGL2, TXNDC5, and CHGA) were further validated. ELISA 
was performed to measure the protein expression of FGL2, TXNDC5, and CHGA in the peripheral blood of 

Scientific Reports |        (2024) 14:29872 3| https://doi.org/10.1038/s41598-024-80391-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Pl
as

m
a 

pr
ot

eo
m

ic
s

Ti
ss

ue
 p

ro
te

om
ic

s
In

de
pe

nd
en

t v
er

ifi
ca

tio
n 

qu
eu

e

C
ha

ra
ct

er
is

tic
C

as
e

(n
 =

 30
)

C
on

tr
ol

(n
 =

 30
)

C
as

e
(n

 =
 19

)
C

on
tr

ol
(n

 =
 19

)
C

as
e

(n
 =

 40
)

C
on

tr
ol

(n
 =

 45
)

Se
x 

n(
%

)

Fe
m

al
e

22
 (7

3)
22

 (7
3)

12
 (6

3)
12

 (6
3)

25
(6

3)
21

(4
7)

M
al

e
8 

(2
7)

8 
(2

7)
7 

(3
7)

7 
(3

7)
15

(3
7)

24
(5

3)

A
ge

(y
ea

rs
)

M
ed

ia
n(

IQ
R)

44
(4

0–
51

)
45

(4
1–

51
)

47
(3

8–
59

)
49

(3
8–

59
)

48
.1

 ±
 10

.8
3

47
.8

9 ±
 15

.7
9

Et
hn

ic
n(

%
)

H
an

3 
(1

0)
3 

(1
0)

2 
(1

1)
2 

(1
1)

5(
12

.5
)

15
(3

3.
3)

U
yg

hu
r

13
 (4

3)
13

 (4
3)

8 
(4

2)
8 

(4
2)

17
(4

2.
5)

11
(2

4.
4)

K
az

ak
h

14
 (4

7)
14

 (4
7)

9 
(4

7)
9 

(4
7)

18
(4

5)
19

(4
2.

2)

M
ar

sh
 g

ra
de

(n
, %

)

M
ar

sh
 0

 ~
 I

0 
(0

)
30

 (1
00

)
0 

(0
)

19
 (1

00
)

0(
0)

45
(1

00
)

M
ar

sh
 II

4 
(1

3)
0(

0)
4 

(2
1)

0 
(0

)
4(

10
)

0(
0)

M
ar

sh
 II

Ia
5 

(1
7)

0(
0)

3 
(1

6)
0 

(0
)

3(
7.

5)
0(

0)

M
ar

sh
 II

Ib
6 

(2
0)

0(
0)

6 
(3

1.
5)

0 
(0

)
17

(4
2.

5)
0(

0)

M
ar

sh
 II

Ic
15

 (5
0)

0(
0)

6 
(3

1.
5)

0 
(0

)
16

(4
0)

0(
0)

Ta
bl

e 1
. 

Ba
se

lin
e d

em
og

ra
ph

ic
 ch

ar
ac

te
ris

tic
s o

f t
he

 st
ud

y 
po

pu
la

tio
n.

 

Scientific Reports |        (2024) 14:29872 4| https://doi.org/10.1038/s41598-024-80391-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


patients with CeD and in healthy controls. For information regarding the included patient details and specific 
inclusion criteria, please refer to the “Materials and Methods” section under the “Participant Recruitment and 
Ethical Declaration” chapter. Compared with the control group, the expression of FGL2 and TXNDC5 was 
significantly elevated in the CeD group (Fig. 4d). CHGA showed an increasing trend, but the difference between 

Fig. 3. Identification of diagnostic hub proteins. a. Sample-level clustering by WGCNA b. Power curve. c. 
Topology distribution diagram. d. Module-level clustering tree and module overview. e. Heat map of the 
correlation between modules and phenotypes. f. Venn diagram.

 

Fig. 2. Proteomic analysis of duodenal samples from patients with celiac disease. a: Volcano plot of DEPs. b. 
Heat map of DEPs. c. Histogram of the GO analysis. d. KEGG enrichment analysis of the DEPs. Proteomic 
analysis of plasma samples from patients with CeD. e: Volcano plot of DEPs. f. Heat map of DEPs. g. Histogram 
of the GO analysis. h. KEGG enrichment analysis of the DEPs.
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the groups did not reach statistical significance (Fig. 4d). Receiver operating characteristic (ROC) curve analyses 
were conducted to evaluate the ability of FGL2 and TXNDC5 to distinguish between the CeD group and the 
healthy control group. The individual AUC values for FGL2 and TXNDC5 were 0.7261 (95% confidence interval 
[CI] 0.6141–0.8382, P = 0.002) and 0.7389 (95% CI 0.6316–0.8462, P < 0.001), respectively, while the combined 
AUC value was 0.7961 (95% CI 0.7023–0.8899, P < 0.0001). This suggests that the identified hub proteins, FGL2 
and TXNDC5, exhibited strong discriminatory ability and could be potentially useful biomarkers for CeD 
diagnosis (Fig. 4e, Supplementary Table S4 and S5).

Exploratory analysis of candidate biomarkers in the plasma for classifying small intestinal 
villus atrophy in CeD
To analyze the differential expression of plasma proteins in patients with CeD of different Marsh grades, 
expression pattern clustering of the plasma proteins was performed using the Mfuzz method. The relative 
expression of the 1,682 proteins identified by plasma proteomics was transformed using Log2 conversion, and 
proteins with standard deviation (SD) > 0.6 were selected. The remaining 460 proteins were clustered into four 
discrete clusters, with proteins in the same cluster exhibiting similar expression transformation trends. The 
analysis of GO functions, KEGG pathways, and domains was conducted for proteins in each cluster (Fig. 5a). 
Among them, proteins in cluster 1 displayed regulatory trends related to the Marsh grade. Proteins in cluster 1 
were mainly enriched in pathways such as colorectal cancer, positive regulation of mitotic nuclear division, and 
positive regulation of biosynthetic processes. Intersection of the proteins in cluster 1 with the DEPs identified 
in the plasma proteomic analysis yielded nine DEPs related to the Marsh grade (Fig. 5b, Supplementary Table 
S6 and S7).

We performed feature selection of the nine DEPs using three machine learning algorithms (XGBClassifier, 
LinearSVC, and RandomForest) on all plasma proteomic samples. The XGBClassifier model selected five 
features, and the importance contribution scores of these five features were plotted (Fig. 6a). The LinearSVC 
model ultimately selected seven features, and the importance contribution scores of these seven features are 
plotted in Fig. 6a. The RandomForest model selected six features, the importance contribution scores of which 
are plotted in Fig. 6a. Then, the features selected by all three machine learning algorithms were intersected, and 
a Venn diagram was plotted (Fig. 6b). Finally, four features (FABP, CPOX, BHMT, and PPP2CB) were common 
among the three selection algorithms, indicating the significant role of these four features in model decision 
making (Fig. 6c).

The ROC curve analysis of individual proteins was performed using the “pROC” function of R software to 
obtain AUC values and ROC curves. For FABP5, CPOX, BHMT, and PPP2CB, the respective AUC values were 
0.6494 (95% CI 0.507–0.7919, P > 0.05); 0.7072 (95% CI 0.5783–0.8361, P < 0.05); 0.7678 (95% CI 0.6465–0.889, 

Fig. 4. Machine learning selects feature molecules and validates them in independent populations. a. 
The significance contribution scores of the eight features identified by XGBClassifier, LinearSVC, and 
RandomForest. b. Venn diagram for the three machine learning methods. c. The difference in the distribution 
of the five selected features between the different sample categories. d. Histogram of the ELISA results for the 
FGL2, TXNDC5, and CHGA proteins. e. ROC curve for FGL2, TXNDC5, and CHGA proteins.
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Fig. 6. Three machine learning methods to screen characteristic molecules. a. The significance contribution 
scores of the features identified by XGBClassifier, LinearSVC, and RandomForest. b. Machine learning Venn 
diagram of the three algorithms. (c) Difference in the distribution of the four characteristics between different 
sample categories. (d) ROC curve of the FABP5, CPOX, BHMT and PPP2CB proteins.

 

Fig. 5. Expression pattern clustering. a. Expression pattern cluster analysis summary graph. b. Venn diagram 
of cluster 1 and plasma differentially expressed proteins.
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P < 0.05); and 0.5661 (95% CI 0.4225–0.7097, P > 0.05). The closer the AUC value to 1, the better the classification 
ability of the protein for the samples. The results are shown in Fig. 6d and in Supplementary Table S8.

Discussion
The pathogenesis of CeD is not yet fully understood, despite the global incidence and prevalence of CeD 
continuing to rise. It was previously believed that CeD was relatively rare in China; however, our research team 
found that the presence of CeD susceptibility genes is not so rare in the Chinese population15. Moreover, the 
serum tTG-IgA positivity rate is as high as 2.53% among patients with gastrointestinal symptoms16. This suggests 
that the actual number of individuals with CeD in China may be much higher than initially thought. Therefore, a 
deeper understanding of the mechanisms underpinning CeD is needed, along with the identification of potential 
noninvasive biomarkers for CeD diagnosis and monitoring. We conducted an in-depth 4D-DIA proteomic 
analysis of plasma and duodenal samples from patients with CeD, including four paired samples, and matched 
controls. The analysis identified plasma protein biomarkers that may be associated with the diagnosis of CeD 
and with small intestinal histopathology grading.

Our proteomic analysis identified 897 DEPs in duodenal tissue samples. These DEPs were mainly involved 
in bile secretion, metabolism of xenobiotics by cytochrome P450, and PPAR signaling, which is consistent with 
previous research findings. For instance, it has been reported previously that bile secretion, including the flow rate 
of bile and its major components (such as cholesterol, phospholipids, and bile acids), is significantly increased in 
patients with active CeD, and that it returns to normal after consumption of an effective GFD17. It is well known 
that CeD leads to changes in intestinal CYP3A4 expression, alongside other physiological changes, which may 
affect the pharmacokinetics of certain drugs, such as nifedipine18. Consistent with previous studies, we observed 
downregulation of protein expression in the PPAR signaling pathway in duodenal samples of patients with CeD. 
Overall, 140 DEPs were identified in the serum samples, which were mostly involved in metabolic pathways 
and cellular, metabolic, and biosynthetic processes. This is consistent with previous research findings. Some 
researchers have found that compared with healthy controls, certain amino acids in the peripheral blood of 
children with active CeD are elevated, suggesting that amino acid metabolism may influence the likelihood of 
systemic inflammation19. However, it is currently unclear whether these findings are a result of inflammation 
in patients with CeD or whether they result from a combination of genetic susceptibility and environmental 
risk factors. Therefore, it is necessary to conduct future studies on samples collected before diagnosis to help 
determine the role of amino acid levels in CeD pathogenesis20.

To identify noninvasive diagnostic biomarkers, we selected key feature proteins by WGCNA and the use of 
three machine learning algorithms. We validated the elevated expression of three key serum proteins by ELISA. 
The expression of FGL2 and TXNDC5 was significantly increased in the CeD group, while CHGA showed an 
increasing trend, but it did not reach statistical significance. This is virtually consistent with the results of the 
proteomic analysis. The unique and novel predictive capabilities of FGL2, TXNDC5, and CHGA may enhance 
our understanding of the pathogenesis of CeD.

FGL2, otherwise known as fibrinogen-like protein 2, is a member of the fibrinogen-related protein family. It 
can be expressed as a membrane-associated protein with coagulation activity or in a secreted form with unique 
immunosuppressive functions. Previous studies have shown that FGL2 plays an important role in various 
inflammatory diseases and malignancies21, and it is considered as both a disease biomarker and a therapeutic 
target. In patients with non-alcoholic steatohepatitis (NASH), FGL2 expression in the liver increases significantly 
with macrophage accumulation. Macrophage-expressed FGL2 upregulates nuclear factor-κB and p38-mitogen-
activated protein kinase signaling, as well as NLRP3 inflammasome expression, leading to an excess of pro-
inflammatory cytokines and activity, thus causing hepatic lipid metabolism disorders and severe liver damage. 
This process may be associated with the interaction between FGL2 and TLR4, as well as activation of the TLR4-
MyD88-TRAF6 signaling pathway. Therefore, FGL2 may serve as a potentially useful biomarker and therapeutic 
target in NASH22. In addition, FGL2 expression is significantly higher in colorectal adenocarcinoma tissues 
than in adjacent healthy tissues, and high FGL2 expression is associated with a poor prognosis in patients with 
colorectal adenocarcinoma23.

TXNDC5, known as thioredoxin domain-containing protein 5, is a member of the protein disulfide isomerase 
family. It contains thioredoxin-like domains that facilitate disulfide bond formation and rearrangement, 
ensuring proper protein folding. TXNDC5 possesses three Trx-like domains, which act independently, rapidly 
introducing disulfide bonds in a disorderly manner. Aberrant TXNDC5 expression is observed in various 
diseases, including cancer, acute respiratory distress syndrome (ARDS), and rheumatoid arthritis, where 
it protects cells from oxidative stress, promotes cell proliferation, inhibits apoptosis, and facilitates disease 
progression. TXNDC5 dysregulation in different diseases suggests that it may play a role in disease diagnosis. 
Furthermore, the application of targeted therapy against TXNDC5 has shown promise24. However, evidence 
on the molecular mechanisms of TXNDC5 in CeD is limited. According to a previous report, TXNDC5 is 
overexpressed in colorectal cancer and is associated with adverse clinical pathological features (and is considered 
as an oncogene); thus, it may be worthy of exploration as a new therapeutic target25. Research has found that 
TXNDC5 in the plasma of patients with ARDS after cardiopulmonary bypass is significantly elevated compared 
with the expression in patients without ARDS. TXNDC5 is significantly correlated with indicators of surgical 
prognosis, positively correlated with the intubation duration, and negatively correlated with oxygenation index, 
and it is a strong predictor of ARDS within 3 days after cardiopulmonary bypass surgery26.

CHGA, otherwise known as chromogranin A, is an acidic precursor protein found in neuroendocrine 
organs, chromaffin granules of pheochromocytoma, and tumor cells. CHGA hydrolysis generates a series 
of biologically active peptides, including pancreastatin, vasostatin, WE14, catestatin, and serpinins, which 
regulate cardiovascular function, metabolism, and inflammation27. Studies have shown that ulcerative colitis 
demonstrates changes in CHGA, selectively activated macrophages (M2), and intestinal epithelial cells. CHGA 
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modulates macrophage involvement in colitis progression and promotes intestinal inflammation by regulating 
M2 and epithelial cells. Targeting CHGA may lead to the identification of new biomarkers and therapeutic 
strategies in ulcerative colitis28. In addition, in a study focusing on endocrine and gastrointestinal autoimmune 
diseases (including 85 patients with CeD), the serum levels of CHGA were elevated, especially in type 1 diabetes, 
autoimmune polyendocrinopathy, and autoimmune gastritis. Therefore, CHGA could serve as a new biomarker 
for endocrine and gastrointestinal autoimmune diseases29. However, this finding is not entirely consistent with 
our research results. We observed increased CHGA expression in duodenal and plasma samples from patients 
with CeD, but the ELISA validation did not reach statistical significance. This discrepancy may be related to the 
limited sample size of our study, and further validation in larger populations is therefore needed in the future.

We also conducted an exploratory analysis of the plasma proteomic results using Mfuzz. This analysis 
identified key proteins associated with the severity of villous atrophy in the CeD group. Using three machine 
learning algorithms, we ultimately selected four proteins: FABP, CPOX, BHMT, and PPP2CB. In the future, we 
will validate and explore the potential of these proteins as diagnostic biomarkers in larger CeD populations. 
Meanwhile, these new biomarkers may offer potential treatment strategies for CeD, including small molecules, 
protein peptides, and nanoparticles30,31.

This study has some limitations that should be considered. This was a single-center study with a relatively 
small sample size, which may affect the generalizability of the findings. Therefore, future validation is needed 
in larger populations across multiple centers. Second, we did not validate the key proteins identified in the 
duodenal proteomic analysis at the tissue level. Finally, functional experiments were not conducted using in 
vivo and in vitro models of CeD to validate the potential involvement of these proteins in CeD development. 
Therefore, validation of these functions will be the next step in our research.

In summary, we utilized 4D-IDA proteomics to analyze differences in protein expression in two tissues 
(duodenum and plasma) between patients with CeD and healthy controls. Through bioinformatics analysis and 
machine learning, candidate biomarker proteins were selected, and three diagnostic candidate proteins (FGL2, 
TXNDC5, and CHGA) were identified. FGL2 and TXNDC5 were identified as noninvasive plasma diagnostic 
biomarkers for CeD detection. Additionally, exploratory analysis of plasma proteomics identified four key feature 
proteins (FABP, CPOX, BHMT, and PPP2CB) that were potentially associated with pathological grading (villous 
atrophy); however, their relevance requires further investigation in future experiments. Our findings provide a 
foundation for the development of noninvasive blood tests for clinical CeD screening and pathological staging.

Materials and methods
Participant recruitment and ethical declaration
The project was approved by the Ethics Committee of Xinjiang Uyghur Autonomous Region People’s Hospital 
(KY20220311067 and KY2023013103). This study followed the principles of the Declaration of Helsinki, and 
each participant provided written informed consent for their specimens to be used in pathological examination 
and related medical research. All participants were recruited at the Xinjiang Uyghur Autonomous Region 
People’s Hospital from April 2022 to April 2024. Patients with CeD were diagnosed according to the 2017 World 
Gastroenterology Organisation Global Guidelines, which require CeD-specific autoantibodies and confirmation 
from a diagnostic intestinal biopsy. Trained pathologists performed pathological diagnoses and Marsh grading.

This research involved 85 patients with CeD and 94 healthy controls, split into discovery and validation 
cohorts. The discovery cohort comprised 30 plasma samples and 19 duodenal mucosal tissue samples from CeD 
patients, with 4 individuals providing both. The control group consisted of 30 and 19 age-, sex-, and ethnicity-
matched healthy participants for plasma and duodenal mucosal tissue samples, respectively. The validation 
cohort included 40 CeD patients and 45 healthy individuals, from whom plasma tissue samples were collected. 
The healthy participants were volunteers without diabetes, free from recent or chronic illnesses, and following 
a regular diet. Additionally, serum-specific antibodies (anti-tissue transglutaminase and anti-endomysial 
antibodies) were used to exclude CeD; detailed information is in Supplementary Table A1.

The following exclusion criteria apply to all groups:

 1.  Patients with parasitic infections, intestinal infections, irritable bowel syndrome, inflammatory bowel diseas-
es (IBD), gastrointestinal dysfunction, or other severe gastrointestinal disorders (e.g., bleeding, perforation, 
malignant tumors) were excluded from the study. 2. Patients with a history of chronic systemic autoimmune 
diseases affecting the gastrointestinal tract were excluded. 3. Patients who had undergone gastrointestinal 
surgery were excluded. 4. Pregnant and lactating women. 5. Patients who are not willing to participate in this 
study.

Sample preparation, 4D-DIA technique, and data analysis
Blood Samples: Blood was collected from the antecubital vein of each patient into 10 ml EDTA tubes. Within 
30 min, the blood was centrifuged at 4 °C and 2000 g for 10 min. The supernatant plasma was then transferred 
to Eppendorf tubes, with 2 to 3 aliquots prepared from each sample for backup and stored at -80 °C until further 
use.

Tissue Samples: All collected tissue samples were stored in approximately 700  µl of RNA later™ (Sigma-
Aldrich, Germany) at -80 °C until further processing. Samples were retrieved from the − 80 °C freezer as needed 
for additional procedures.

According to literature reports32‒34, both plasma and tissue samples were analyzed using liquid chromatography 
tandem mass spectrometry (LC-MS/MS). In alignment with other proteomic analytical approaches, 4D-DIA 
analysis employed a False Discovery Rate (FDR) to facilitate the screening of scoring thresholds for protein 
characterization. Within our research, a Q value of 0.01 served as the qualitative threshold criterion, equivalent 
to a targeted FDR of 1%. Proteins that were corrected for FDR and applicable for interpretation of results 
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were exclusively reported. Protein identification was conducted using the UniProt database. Proteins were 
considered significantly upregulated or downregulated if fold changes (FC) exceeded 1.5 or fell below 0.67, with 
a P-value < 0.05 determined by a two-tailed Student’s t-test.

Bioinformatics Analysis and visualization
The selected DEPs were annotated using GO and KEGG pathway analyses. The GO database effectively annotates 
genes, offering a consistent representation of gene and product attributes across species35. KEGG pathways 
clarify the integrated insights of intrabody responses36. Functional enrichment analysis of DEPs was performed 
using Fisher’s exact test, with a p-value below 0.05 considered statistically significant. The list of differentially 
modulated proteins was submitted to STRING (Version 12.0) to construct PPI networks based on known 
protein associations in the scientific literature. Cytoscape was used to display protein interaction networks, and 
WGCNA (Langfelder and Horvath, 2008) identified distinct protein modules among the proteins21. WGCNA 
was performed on the log2-transformed protein abundance data matrix. Pearson correlation was used to 
identify associations among positively correlated proteins within modules. Mfuzz was used for expression 
pattern clustering to identify candidate biomarkers that aligned with Mash ranking trends; clusters with 
significant variations were selected for further analysis. Analyzing proteins with similar expression profiles aids 
in understanding their dynamic behaviors and functional relationships.

Machine learning
We used ensemble learning algorithms to screen diagnostic biomarkers. The model used an ensemble method 
that combines logistic regression, random forest, and support vector machine. For models using potential 
biomarker combinations, K-fold cross-validation was performed by randomly splitting them into training and 
validation sets, with performance assessed through cross-validation within the training set. The specificity and 
sensitivity of these combinations were assessed using the ROC curve. The AUC measured performance, using the 
logistic regression algorithm in the diagnostic group model with data from potential biomarker combinations. 
The optimal threshold was determined by the Youden index.

Enzyme-linked immunosorbent assay
Collect blood serum from an independent sample set for testing. The levels of TXNDC5 (KD032640405403), 
FGL2 (KD013140405402), and CHGA (KD102040405401) were measured using ELISA kits from Reed 
Biotechnology (Wuhan) Co., Ltd., China, following the manufacturer’s instructions.

Statistical analysis
Clinical data were analyzed using R software. Continuous and categorical variables were assessed with the 
student’s t-test and Chi-squared test, respectively. After filtering protein abundance data, the k-nearest neighbors 
(kNN) algorithm estimated missing values. The Pearson correlation coefficient was used for correlation analysis, 
while the Youden index determined sensitivity and specificity. A P < 0.05 (two-tailed) indicated statistical 
significance.

Data availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the 
PRIDE partner repository with the dataset identifier PXD057692.
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