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Abstract: Chemical water pollution poses a threat to human beings and ecological systems. The pu-
rification of water to remove toxic organic and inorganic pollutants is essential for a safe society and a
clean environment. Adsorption-based water treatment is considered one of the most effective and eco-
nomic technologies designed to remove toxic substances. In this article, we review the recent progress
in the field of nanostructured materials used for water purification, particularly those used for the
adsorption of heavy metal ions and organic dyes. This review includes a range of nanostructured
materials such as metal-based nanoparticles, polymer-based nanomaterials, carbon nanomaterials,
bio-mass materials, and other types of nanostructured materials. Finally, the current challenges in the
fields of adsorption of toxic materials using nanostructured materials are briefly discussed.

Keywords: heavy metal adsorption; organic dye adsorption; nanostructured materials; wastewa-
ter treatment

1. Introduction

With continuous industrialization, water pollution has led to severe environmental
crises around the world and has been a challenging issue to solve. Water contamination not
only damages the environment, but also poses a serious threat to human health and ecosys-
tems. Moreover, the demand for fresh water is continually increasing with the growth of the
human population and the rise in living standards. However, water contaminants reduce
the freshwater supply provided by both surface-water and groundwater resources [1–3].
In addition, due to their limited availability, naturally available freshwater reserves are
still unable to meet this demand. The World Meteorological Organization (WMO) has
reported that, by 2050, more than 5 billion people worldwide will have inadequate access
to water [4]. This problem can only be overcome if people find other ways to reserve or
generate fresh water, or convert wastewater into a usable form. To address these issues,
various water purification methods and novel materials have been developed.

Nanomaterial is defined as material with an external dimension, an internal structure,
or a surface structure at the nanoscale [5]. Nanoscale materials often exhibit very different
physical or chemical properties compared with larger size materials. In particular, the large
surface area and high surface free energy of nanomaterials often result in a high density
of active sites per unit mass, resulting in improved surface reactivity [6–9]. Because of the
abundance of active sites along with their thermal and mechanical stabilities, nanomaterials
have been actively used as water treatment materials to purify water by removing pollutants
such as heavy metals, toxic organic dyes, oily waste, and various industrial and agricultural
waste [10–16]. Various sources of water pollution and nanostructured materials used for
their purification are shown in Figure 1.
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These water treatment processes might be significantly enhanced by incorporating
nanomaterials within the water purification system, taking advantage of their remarkable
capabilities. However, there are drawbacks to using nanomaterials directly in water treat-
ment. First, nanomaterials, particularly nanoparticles, tend to agglomerate during the
water purification process due to their high surface areas and strong dipole–dipole interac-
tions, resulting in significant loss of activity [17–19]. In addition, isolating nanomaterials
from aqueous media remains a difficult task, as it may result in the unintended leakage of
nanomaterials into ecosystems, posing a significant risk to the environment and human
health [20–22]. Therefore, cost-effective and environmentally friendly nanostructure-based
materials designed to be fixed onto various matrices to prevent nanocomposite aggregation
have been developed for water treatment purposes [23–33]. Although a variety of nano-
materials for water purification have been reported and show great potential, most have
several disadvantages and thus do not meet the conditions necessary for practical use.

Herein, we review the recent progress of nanostructured materials and their applica-
tion in water purification, especially the adsorption of toxic materials such as heavy metals
and organic dyes. In each section, we describe some representative results and explain the
concepts, the nanostructured materials employed, their preparation methods, and their
effects on the water purification process. Finally, challenges in the field of toxic material
adsorption using nanostructured materials are also discussed.

2. The Adsorption of Heavy Metals and Organic Dyes

Industrial waste released into water containing toxic organic dyes and heavy metal
ions from the textile, leather, printing, paper, and electroplate industries is a potential
hazard to ecological environments and poses serious risks to human health and other living
organisms [34–38]. Heavy metal ions are non-biodegradable and tend to accumulate in
living organisms. Therefore, removing heavy metal ions from wastewater, including lead,
mercury, cadmium, arsenic, and chromium, is crucial for protecting human health and the
environment [39,40]. Meanwhile, most organic dyes are toxic and have a significant influ-
ence on photosynthetic activity in aquatic biota. In particular, dyes composed of aromatic
rings are inert and non-biodegradable. When they are discharged into wastewater, they are
carcinogenic and mutagenic to humans through contaminated drinking water [41,42]. Due
to their limited biodegradability, dyes are generally extracted from an aqueous medium, and
a number of technologies designed to eliminate them from wastewater have been developed.

Various methods for removing heavy metal ions and dyes from wastewater treatment
include ion exchange, chemical precipitation, bio-sorption, filtration, reverse osmosis, and
adsorption [43–49]. Among these techniques, adsorption is recognized as an effective
and economic method [50,51]. Adsorption is not only one of the most efficient ways to
dramatically reduce the release of toxic substances, but it also immobilizes functional
molecules for catalysis or other applications [36,52]. The most crucial prerequisite for a
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good adsorbent is a large interface [52]. Therefore, porous and nanostructured materials
with significantly improved surface area are widely used for potential adsorption [53–55].

2.1. Removal of Water Contaminants by Adsorption

There are two types of adsorption: physical adsorption and chemisorption [56]. Phys-
ical adsorption is a process in which van der Waals force attraction or dispersion causes
an adsorbate to attach to an adsorbent surface. Physical adsorption is characterized by
a relatively low enthalpy of adsorption and the adsorbed layer may vary in thickness
from monolayer to multilayer [57]. It occurs more readily than chemisorption at room
temperature, and adsorbed layers are more readily desorbed. On the other hand, chemisorp-
tion involves the formation of ions or covalent bonds by chemical reactions, and forms a
monolayer only. This is characterized by difficulty in desorbing the adsorbed layer [55,57].
Commonly, physical adsorption occurs in a second layer on top of the chemisorbed material
in the first layer [58].

2.1.1. Adsorption Capacity

Batch adsorption experiments under various operating conditions, such as pH, ionic
strength, temperature, etc., are generally performed to evaluate the adsorption capacity of
adsorbents [30,32]. The adsorption capacity is the most important parameter for evaluating
an adsorbent. Here, the adsorption capacity (qe, mg g−1) and efficiency (E, %) were
calculated using the following equations [36]:

qe =
(C0 − Ce)× V

m
(1)

E(%) =
(C0 − Ce)

C0
× 100 (2)

where C0 (mg L−1) and Ce (mg L−1) are the initial and equilibrium concentrations of
the adsorbates, respectively; V (V) is the solution volume, and m (g) is the mass of the
adsorbent. Ce (mg L−1) of heavy metal ions can be determined by an atomic absorption
spectroscopy (AAS) [30] or inductively coupled plasma mass spectroscopy (ICP-MS) [28].
The concentration of residual organic dyes can be determined by UV-vis spectroscopy at
the maximum absorption wavelength, using a measured extinction coefficient from Beer’s
law analysis of each dye solution [51].

2.1.2. Adsorption Isotherms

Theoretical adsorption capacity can be calculated using adsorption isotherm mod-
els [3]. The adsorption behavior of contaminants by nanomaterials are described by two
isothermal models, the Langmuir and Freundlich models. These models are expressed
using the following equations [59,60]:

Langmuir :
Ce

qe
=

1
qmKL

+
Ce

qm
(3)

Freundlich : lnqe =
1
n

lnCe + lnKF (4)

where Ce (mg L−1) is the equilibrium concentration of the heavy metal ions; qe (mg g−1) is
the equilibrium adsorption capacity of the heavy metal ions adsorbed on the adsorbent;
qm (mg g−1) is the maximum adsorption capacity of the adsorbents; KL (L mg−1) and
KF (mg g−1) are the Langmuir and Freundlich constants, respectively, representing the
adsorptive capacity and the affinity between the adsorbate and the adsorbent; n is the
constant related to the heterogeneity of the adsorbent sites and indicates the affinity between
the adsorbate and the adsorbent. The Langmuir isotherm model is commonly used for
monolayer adsorption in which most of the adsorption sites have identical affinities toward
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the adsorbate, whereas the Freundlich isotherm model is used to describe a heterogeneous
chemisorption process in which the surface is not energetically uniform [61].

2.1.3. Adsorption Kinetics

Observation of adsorption kinetics is essential in adsorption studies, because it pro-
vides a prediction of adsorption rate and the possible adsorption mechanism. The adsorp-
tion kinetics of aqueous heavy metals by nanomaterials are generally well-fitted by the
pseudo-first-order (PFO), pseudo-second-order (PSO), Elovich, and intra-particle diffusion
models, which are described as follows [62]:

pseudo-first-order: ln(qe − qt) = ln(qe) − k1·t (5)

pseudo-second-order :
t
qt

=
1

k2·q2
e
+

1
qe

t (6)

Elovich : qt =
1
β

ln(αβ) +
1
β

ln t (7)

Intra-particle diffusion : qt = kipt1/2 + C (8)

where qe (mg g−1) and qt (mg g−1) are the adsorption capacity at equilibrium and at contact
time t (min), respectively; k1 (min−1), k2 (g mg−1 min−1) and kip (g mg−1 min−1/2) are the
equilibrium rate constant of the PFO, PSO, and intra-particle diffusion models, respectively;
C (mg g−1) is the intercept that approximates the thickness of the boundary layer [63]. The
PSO and PFO models are based on the assumption that the adsorption rate is controlled by
chemical adsorption, which includes electron transfer and sharing between the adsorbate
and the adsorbent [64]. The Elovich model is a chemical-reaction-based adsorption reaction
model [62,64]. On the other hand, the intra-particle diffusion kinetic model shows that
the sorption process is diffusion-controlled if its rate is dependent on the rate at which the
adsorbate and the adsorbent diffuse towards one another [65].

2.1.4. Thermodynamic Studies

Thermodynamic studies of the adsorption are indispensable for understanding adsorp-
tion reactions such as spontaneity and internal energy transfer. Changes in thermodynamic
parameters, ∆G0 (Gibbs free energy, kJ mol−1), ∆H0 (average enthalpy, kJ mol−1), and
∆S0 (standard entropy, kJ mol−1 K−1) can be determined from temperature-dependent
adsorption isotherms. The parameters are calculated using the following equations [66,67]:

∆G0 = −RT ln Kd (9)

lnKd =
∆S0

R
− ∆H0

RT
(10)

where R (8.314 J mol−1 K−1) is the gas constant; T (K) is the absolute temperature;
Kd (L g−1) is the thermodynamic equilibrium constant, which is calculated by plotting
ln(qe/Ce) versus qe and extrapolating qe to zero.

2.2. Adsorbent Materials

Recently, various nanomaterial-based adsorbents for the removal of heavy metal
ions and dyes have been investigated, including nanosized metal oxides, carbon-based
nanomaterials, biomass, polymers, and other materials. These emerging materials, which
have shown desirable characteristics for heavy metal and dye adsorption, are discussed in
the following sections.
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2.2.1. Inorganic Nanostructured Materials

• Metal Oxide Nanoparticles

Due to their large surface areas and high activities, metal oxide nanoparticles (MONs),
such as iron oxides, magnesium oxides, titanium oxides, manganese oxides, and aluminum
oxides, are classified as promising for targeting contaminants in water systems [10,68–70].
Magnetic MONs, in particular, are gaining intensive attention because they can easily
be isolated from water when exposed to a magnetic field [71–76]. Magnetic MON-based
adsorbents also facilitate recycling or regeneration from aqueous solutions. This ease of
separation is critical for enhancing operational efficiency and lowering costs during water
treatment. However, the surface energy of metal oxides increases as their size is reduced
from the micrometer to the nano scale, resulting in a decrease in their stability [77,78]. As
a result, MONs are agglomerated due to a strong van der Waals force [79,80], and their
water treatment efficiency can dramatically decrease. In recent years, much work has been
done to functionalize magnetic MONs by coating them with polymers, carbon, inorganic
materials, etc., to overcome aggregation and the resulting limited contaminant adsorption
capacity [80–83].

Islam et al. reported a hierarchically structured IO@CaCO3 adsorbent consisting of
magnetic iron oxide (IO) nanoneedles and mesoporous calcite (CaCO3), for the rapid pu-
rification of water contaminated by heavy metal ions such as Cr(VI), As(V) and Pb(II) to
drinking water level (Figure 2) [84]. The hierarchical structure of the IO@CaCO3 adsorbent
was characterized by FE-SEM and spherical particles with a diameter of 2–4 µm, with nano-
sized IO nanoneedles inside the particles. They reported that the IO@CaCO3 adsorbent,
due to the synergistic effect of needle-like IO and porous CaCO3, removed both anionic
(As(V) and Cr(VI)) and cationic (Pb(II)) heavy metal ions from aqueous solutions, with
significantly enhanced adsorption capacities (184.1, 251.6, and 1041.9 mg g−1, for As(V),
Cr(VI), and Pd(II), respectively) compared to conventional adsorbents. Furthermore, it
was demonstrated that it can easily be separated by an external magnetic field, allowing
economical reuse, and that it has an excellent heavy metal removal capability. Wei et al.
reported hollow nest-like α-Fe2O3 nanostructures for water treatment, prepared by a sim-
ple and green synthesis route using a microwave-assisted, template-free, hydrothermal
method [85]. They showed that the hollow nest-like α-Fe2O3 nanospheres with mesoporous
structures consist of hierarchical spheres assembled of nanorod subunits, and exhibit ex-
cellent adsorption capacities toward As(V) (75.3 mg g−1) and Cr(VI) (58.5 mg g−1) ions
and Congo red (160 mg g−1) that are much more enhanced than those of most reported
nanomaterial-based adsorbents. Wang et al. investigated silica-coated Fe3O4 magnetic
nanospheres (Fe3O4@SiO2) for the high removal of Congo red (CR) dye from wastewa-
ter [86]. The calculated adsorption capacity of Fe3O4@SiO2 for CR was 54.64 mg g−1, and
the adsorption mechanism was dominated by an electrostatic interaction between CR and
the adsorbent.
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MgO has also eceived considerable attention in toxic wastewater treatment, as it is con-
sidered a nontoxic, cost-effective, and eco-friendly material [87–89]. Bai et al. showed that
porous rod-like MgO nanoparticles have an extremely high adsorption capacity with respect
to Congo red dye (3236 mg g−1), through a simple precipitation reaction between Mg2+

and carbonate (CO3
2−) in the presence of a trace amount of Na2SiO3 [88]. Cao et al. investi-

gated flower-like MgO nanoparticles with a high surface area, using a microwave-assisted
solvothermal process for heavy metal removal [89]. The flower-like MgO nanoparticles
showed an adsorption capacity of 1980 and 1980 mg/g for Pb(II) and Cd(II), respectively.
They reported that the adsorption mechanism involves a solid–liquid interfacial cation
exchange between magnesium and lead or cadmium cations, resulting in a significantly
high absorption capacity. Xu et al. synthesized hierarchical MgO microspheres with a
diameter of 500 nm using a solvothermal process [90]. According to FE-SEM observation,
the MgO microspheres maintained their microsphere shape after forming a composite
with graphene oxide and showed a large specific surface area and pore volume. Due to
the large specific area, the hierarchical microspheres exhibited a large adsorption capacity
(237.0 mg g−1) for Congo red (Figure 3).
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mechanism between MgO-GO composite and Congo red, which involves electrostatic and π–π
interactions. Reproduced with permission from [90]. Copyright 2018 Elsevier.

• Layer Double Hydroxide(LDH)-Based Materials

Layered double hydroxides (LDHs) are known as hydrotalcite materials and have
been classified as two-dimensional anionic clays, which can be represented by
[M2+

1−xM3+
x(OH)2]x+[(An−)x/n]x−·mH2O (M2+ and M3+ are divalent and trivalent metals,

respectively; A− is the interlayer anion) [91,92]. The uniquely layered structure, together
with the chemical composition of the inorganic layers and the interlayer anions, offers
tremendous potential for dispersing and tuning active sites at the atomic level [93–95].
Furthermore, a simple synthetic protocol allows micro- to nanoscale manipulation of the
LDH structure to stabilize active sites in the LDH layer or the interlayer during a chemical
process. LDH and its related materials have received substantial attention for their use
in the adsorption of anionic and cationic pollutants, due to their highly tunable interior
architecture, exchangeable interlayer ions, large surface area, low cost, and absence of
toxicity. In particular, spherical LDH micro- or nanoparticles with porous architectures
have attracted attention due to their structural stability and high surface area, both of which
are essential factors enhancing their removal capabilities for water contaminants [36,96–99].

Mubarak et al. prepared Mg/Fe-LDH hollow nanospheres with a high specific surface
area by a one-step thermal method in an ethylene glycol solution containing two metal
precursors, Mg2+ and Fe3+ [36]. They further synthesized its oxidized form into Mg/Fe-
layered double oxide (Mg/Fe-LDO) nanospheres by thermal calcination, and used them to
purify wastewater contaminated with oxyanionic heavy metals ions such as AsO4

3− and
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Cr2O7
2− or anionic organic dyes such as Congo red and methyl blue. The Mg/Fe-LDO

nanospheres showed maximum adsorption capacities of 178.6 mg g−1 for AsO4
3− and

148.7 mg g−1 for Cr2O7
2−. Complete removal (~99.9%) from wastewater, to a level appro-

priate for potable water (based on WHO standards), was achieved within 10–20 min. In
addition, these Mg/Fe-LDO nanospheres exhibited over 99% removal efficiency in less than
5 min for methyl blue and 25 min for Congo red. The maximum adsorption capacities for
methyl blue and Congo red were 2000 and 1250 mg g−1 at room temperature, respectively.
Such a high adsorption efficiency for the heavy metals and the organic dyes was attributed
to the hollow structure of the Mg/Fe-LDO nanospheres with an enhanced surface area,
as well as the chemical adsorption between the anionic contaminants and the cationic
Mg/Fe-LDO nanospheres through strong electrostatic interactions.

Recently, LDH-containing magnetic-hybrid nanomaterials have been explored for
wastewater treatment due to their easy separation after the adsorption process [100–103].
The mechanism of the adsorption of water pollutants on magnetic LDH hybrids involves
ion exchange, precipitation, surface modifications, and chelation. The incorporation of
magnetic nanoparticles into the layers of LDH improves adsorption capacity, and their
magnetic properties facilitate the separation of the LDH adsorbent after the adsorption
process. The LDH-containing magnetic nanoparticles showed a high adsorption capacity
of 262.27 mg g−1 for As(V) [101], 649.87 mg/g for Cr(VI) and 528 mg g−1 for methyl
orange [102,103]. The addition of carbon-based components to the LDH layer, along with
the magnetic nanoparticle Fe3O4, resulted in a novel adsorbent that can adsorb a large
quantity of pollutants [104,105]. Zhang et al. prepared a Fe3O4/graphene oxide/LDH
adsorbent for the removal of Pd(II) and the organic pesticide 2,4-dichlorophenoxyacetic
acid from an aqueous solution [106]. The adsorption capacity of Fe3O4/LDH adsorbents for
Pb(II) and the organic pollutant was substantially improved after depositing graphene oxide
on the Fe3O4/LDH. In general, the carbon coating reduces the surface area, but graphene
oxide contains a number of oxygen functional groups capable of binding metal ions,
increasing the adsorption of ionic pollutants. Other LDH-hybrid nanomaterials including
TiO2 and polymer-based LDHs have also exhibited enhanced adsorption behavior for water
contaminants [107–110].

Despite their wide use and high adsorption ability, there are a few limitations to
using nanosized inorganic nanoparticles as adsorbents. The surface energy of inorganic
nanoparticles increases as their size is reduced to the nanoscale, resulting in a decrease in
their stability [77,78]. As a result, they are agglomerated due to a strong van der Waals
force [79,80]. After this occurs, the water treatment efficiency of the nanoparticles is
dramatically decreased. To circumvent these limitations, the inorganic nanoparticles are
typically incorporated into supports or other bulk adsorbents.

2.2.2. Carbon Nanomaterials

Carbon-based nanomaterials, such as activated carbons, carbon fibers, carbon nan-
otubes (CNT), graphene, and graphene-related materials, have been considered some of
the best adsorbents for removing organic and inorganic pollutants from wastewater. They
exhibit high specific surface area, high porosity, excellent chemical stability in acid/alkaline
conditions, and enhanced mechanical and thermal stability [111–115]. Despite these re-
markable properties, carbon nanomaterials, particularly CNT and graphene, have limited
surface functional groups and poor dispersibility in aqueous media, resulting in low ad-
sorption [116]. Accordingly, novel carbon nanocomposite materials have been developed to
improve solvent dispersibility and adsorption performance by the surface modification of
CNT or graphene and the incorporation of other active materials on their surfaces [117–120].

Chemically oxidized CNTs can successfully and selectively adsorb organic dyes from
wastewater through electrostatic and van der Waals interactions [121]. In addition, oxygen
functional groups on the surface of CNTs can produce a partial negative charge and an
electron pair to attract heavy metal ions from wastewater [122]. As a result, the oxidation
of CNTs significantly enhances their adsorption capacity, allowing the selective removal of
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contaminants from wastewater. Yu et al. prepared oxygen-rich pentaerythritol-modified
multi-walled CNTs to adsorb alizarin red S (ARS) and alizarin yellow R (AYR) from con-
taminated wastewater [123]. The modified CNTs showed maximum adsorption capacities
of 257.73 mg g−1 for ARS and 45.39 mg g−1 for AYR. They reported that the excellent
adsorption efficiency of the modified CNTs is due to the synergistic effects of the hydrogen
bonding and the π–π electron stacking interactions between the adsorbents and adsorbates.

Graphene oxide (GO) and reduced graphene oxide (rGO) have oxygen functional
groups on their surface, such as hydroxyl, epoxy, and carboxyl groups, which can bond
with water pollutants [124–126]. Major interactions between inorganic and organic adsor-
bates and graphene oxides involve electrostatic interactions between negatively charged
graphene oxides and positively charged water contaminants. The π–π interaction between
the GO ring and aromatic ring of the adsorbate was accompanied by an organic dye ad-
sorption mechanism [127]. Many studies have reported the excellent adsorption properties
of GO and rGO in regard to organic contaminants, heavy metal ions, and pharmaceutical
compounds [128–130]. Gupta et al. studied rGO with a high surface area due to its large
number of voids and pores, and demonstrated its application for the efficient removal of
malachite green dye from simulated wastewater [131]. The rGO exhibited a high adsorption
capacity (476.2 mg g−1) for malachite green dye, which was attributed to the effective π–π
interaction between the aromatic moiety of the dye and the graphene skeleton, as well as
the electrostatic interactions between the negatively charged oxygen functionalities of rGO
and the positive center of the dye. The oxidized graphene not only increased its solubility
by introducing hydrophilic oxygen species but also improved adsorption efficiency for
ionic water contaminants (Figure 4). According to Zhao et al., the maximum absorption
capacity of Pb (II) ions with respect to GO with few layers was determined to be 842 mg g−1

at 293 K, significantly greater than that of other nanomaterials [132].
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(Right) High-resolution TEM images of rGO demonstrating the holes area (encircled by red color),
defect sites (indicated by white arrows), and a schematic illustration of rGO lamella consisting
of holes and residual oxygen functionalities. Reproduced with permission from [131]. Copyright
2017 Elsevier.

Carbon nanomaterials can also be functionalized with magnetic nanoparticles to en-
able recovery from wastewater and their reuse after adsorption [133,134]. Magnetic metal
oxide nanoparticle and carbon nanomaterial hybrids had a higher adsorption efficiency
than unmodified materials, which was attributed to the active participation of the oxygen
functional groups of the metal oxide in the adsorption of cationic water pollutants [135,136].
Jin et al. synthesized magnetic Ni nanoparticles encapsulated in porous carbon/CNT
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hybrids with a high surface area (999 m2 g−1) for the adsorption of organic dyes including
malachite green, Congo red, rhodamine B, methylene blue and methyl orange, from aque-
ous solutions [137]. This adsorbent showed maximum adsorption capacities of 898, 818,
395, 312, and 271 mg g−1, respectively, resulting in significant improvements in efficiency.
After the adsorption process, magnetic CNT nanohybrids can be simply separated from the
solution using magnets. Kumar et al. demonstrated that the magnetic nanohybrid of GO
with MnFe2O4 nanoparticles had excellent adsorption capacities of 673, 146, and 207 mg g−1

with respect to heavy metal ions Pb(II), As(III), and As(IV), respectively, from contaminated
water [138]. They indicated that the high adsorption was attributable to a combination
of the layered nature of GO, enabling maximum surface area, and the good adsorption
capacities of both the GO and the magnetic nanoparticles. Jiao et al. employed nanohybrids
composed of GO and magnetic nanoparticles (Fe3O4) with tunable dimensions, by an in situ
deposition method for the removal of cationic dyes such as methylene blue and Rhodamine
B from wastewater, and reported very high adsorption efficiencies and exceptionally high
recyclability (100% removal after the 6th recycling) [139]. Koo et al. used flexible graphene-
iron oxide (IO) magnetic nanosheets to purify contaminated water containing As(V) and
Cr(VI) ions [140]. The IO/graphene nanosheets possess needle-like IO nanoparticles up to
several hundred nanometers in length on their surfaces, which increases surface coverage.
Benefiting from the high surface area, the IO/graphene nanosheets exhibited exceptional
effectiveness in the removal of heavy metal ions. In addition, the superparamagnetic
property of iron oxide nanoparticles facilitated recovery and recycling of the adsorbent
after the adsorption process.

CNT and graphene aerogels have a porous structure and high specific surface area,
which increases demand for their adsorption applications [141–143]. Ye et al. used a simple
cross-linking of graphene oxide (GO) and poly(vinyl alcohol) (PVA) with glutaraldehyde
to fabricate low-density (3.3 mg cm−3), mechanically compressible graphene aerogels for
water treatment [144]. The graphene aerogels showed an ability to recover their original
volume under extremely high compression stress, as well as vacuum/air-drying tolerance.
By varying the mass ratio of PVA and GO, the aerogels exhibited controllable amphiphilic
properties, allowing the selective absorption of hydrophilic organic dyes (methylene blue)
and hydrophobic organic solvents or oils from wastewater. Yu et al. prepared hybrid
aerogels composed of cellulose nanofibrile and carbon nanomaterials, CNTs, and graphene,
which demonstrated high adsorption of cationic (methylene blue) and anionic (Congo red)
organic dyes [145]. According to their results, the maximum adsorption capacities were
1178.5 mg g−1 and 585.3 mg g−1 for methylene blue and Congo red, respectively. Generally,
CNTs and graphene together have high mechanical strength and elasticity, whereas aerogels
comprised either of neat CNT or graphene exhibit relatively low elasticity [146]. To address
this drawback, research has been carried out in on combining graphene and CNTs to prepare
three-dimensional aerogels as adsorbents. Incorporating CNTs into graphene aerogels
improved more than 100-fold the adsorption efficiency of the nanohybrid compared with
the graphene aerogel [146]. Lee et al. employed CNT–graphene nanohybrid aerogels to
remove organic contaminants such as methyl orange, methylene blue, Congo red, and
crystal violet from wastewater [147]. In the nanohybrid, CNTs bound to the graphene
aerogel, resulting in considerable improvement in mechanical and electrical properties,
as well as a 57% increase in the surface area of graphene aerogel. The CNT–graphene
nanohybrid aerogel successfully adsorbed both the anionic and cationic organic dyes
with significant efficiency, through π–π and van der Waals interactions (Figure 5). Ai et al.
synthesized a self-assembled cylindrical CNT–graphene hybrid by a one-step hydrothermal
process for the removal of methylene blue, and observed a maximum adsorption capacity
of 81.97 mg g−1 [148]. In another study, Wan et al. prepared a CNT–graphene aerogel
by a hydrothermal redox reaction [149]. According to morphology studies using FE-SEM
and TEM, large numbers of entangled CNTs tightly cover the graphene sheets and the
CNTs are networking graphenes. The aerogel had ultra-light densities in the range of 6.2 to
12.8 mg cm−3, with an improved specific surface area and improved mechanical properties.
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It exhibited excellent adsorption capacity with respect to methyl blue, methyl orange, and
oil species.
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Despite having various advantages as an adsorbent, carbon nanomaterial has several
disadvantages including difficulties in segregating nanoadsorbents from water, limited ad-
sorption capacities, and fouling effects. These problems can be solved by the development
of multifunctional macroscopic three-dimensional (3D) architectures, using carbon nanoma-
terials as building blocks. The construction of carbon nanomaterials into three-dimensional
3D structures has attracted attention for various applications, including adsorption, because
the carbon nanomaterial maintains the intrinsic properties of its 1D or 2D precursor while
overcoming its drawbacks [150–152]. The existing research on 3D carbon-based materials
for adsorption relates mostly to graphene-based nanomaterials. 2D graphene-based materi-
als can be fabricated into 3D graphene-based materials by using template-oriented building
methods, self-assembly methods, and 3D printing methods [153]. Graphene aerogels, hy-
drogels, sponges, and foams are examples of 3D graphene-based nanoadsorbents developed
and applied to adsorption, exhibiting outstanding adsorption capabilities [154–156]. Their
larger pore volumes, high surface areas, controlled geometries, extra-light densities, and
strong mechanical stabilities have made 3D graphene-based materials promising candidates
for environmental remediation adsorbents. In 3D graphene-based nanoadsorbents, major
driving forces for the adsorption of pollutants involve π–π interactions, hydrogen bonding,
electrostatic interactions, ion-exchange, and surface complexation [157,158]. Liu et al. pre-
pared 3D GO sponges from a GO suspension by a simple centrifugal vacuum evaporation
method. These 3D GO sponges exhibited adsorption capacities of 397 and 467 mg g−1 for
methylene blue and methyl violet dyes, respectively (Figure 6) [159]. Sui et al. reported
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the fabrication of 3D GO-PEI (polyethyleneimine) porous foams with bulk densities in the
range of 0.02–0.03 g cm−3, with adsorption capacities of 800 mg g−1 with respect to acidic
dyes such as amaranth [160]. Jayanthi et al. prepared ultra-light and highly porous 3D
GO foams by a lyophilization method. These were used for the removal of three carcino-
genic dyes, ie., rhodamine B, malachite green, and acriflavine, and for the degradation of
E. coli bacteria [161]. For the three dyes, the 3D GO foams exhibited adsorption abilities of
446, 321 and 228 mg g−1, respectively. In another study, CNTs were incorporated into a
polyacrylamide-sodium alginate-based polymer hydrogel, which exhibited a macroporous
structure with a very low density. The adsorption capacity of the CNT–polymer hydrogel
was 1.28 times higher than that of a polymer hydrogel without CNT, showing 38.9 mg g−1

with respect to Cu2+ ions [162].
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Figure 6. (Left) (a) Synthetic scheme of a 3D GO sponge. (b) Flexibility test of a GO sponge.
(c) Low-magnification of SEM image for the GO sponge surface and (d) high-magnification of SEM
image for the inner part of the 3D GO sponge. (Right) Chemical structures of methylene blue,
methyl violet, and GO. Digital images of the original MB dye solution, the pale color solution with
precipitated MB adsorbed GO sponges. Reproduced with permission from [159]. Copyright 2012
American Chemical Society.

The 3D networks integrate the macroscale and nanoscale architectures of the carbon
nanomaterial building blocks, preserving their intrinsic properties while introducing to the
carbon nanomaterials unique features such as easy recycling, additional binding sites, and
simple operation. Meanwhile, problems associated with these structures are instability and
fragility [117]. The mechanical properties of the structures could be enhanced by surface
modification with nanofillers or nanofibers, improving cross-linking conditions, and by
incorporation of the polymer matrix. Moreover, further effort is needed to improve our
understanding of growth mechanisms to produce carbon nanostructured materials that are
stable, shape-controllable, and inexpensive.

2.2.3. Biopolymer Adsorbents

Biopolymers (or natural polymers) have been an area of focus in the treatment of
wastewater pollutants because of their sustainability, biodegradability, availability, and
biocompatibility [117,163,164]. Biopolymers include chemically varied macromolecules
such as polysaccharides, polypeptides, polynucleotides, polyesters, and polyaromatics,
found in plant- and microbe-derived cellulose, fungus-derived chitin, animal-produced
silk, and mammal-derived collagen (Figure 7). The biopolymers most commonly used in
the adsorption of water contaminants are cellulose, chitosan, chitin, and lignin [117].

Nanocellulose-based materials have been widely studied for environmental remedia-
tion due to their low cost, ecological sourcing and non-toxicity [163]. Generally, the primary
types of nanocellulose include cellulose nanocrystals, cellulose nanofibrils, and bacterial cel-
lulose (BC), each with their own production process and morphology [165]. Nanocellulose-
based materials can be used as absorbents, membrane filters, and composites for water
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treatment as well as air purification. In order to further improve adsorption capability for
organics and heavy metal contaminants, the surface of nanocellulose was modified with
various functional groups [163,165]. Hokkanen et al. prepared succinic anhydride-modified
nanocellulose to adsorb Zn(II), Ni(II), Cu(II), Co(II), and Cd(II) ions, demonstrating signifi-
cant efficiency and recycling properties [166]. Maatar et al. used highly porous cellulose
organogels from nanofibrillated cellulose hydrogels as adsorbents of organic pollutants
such as aromatic compounds and herbicides [167]. Chan et al. synthesized cellulose
nanofibrils via an acidified-chlorite bleaching method and used them for methylene blue
adsorption [168]. The maximum adsorption capacity was 123 mg g−1 at 20 ◦C and pH=9.
Cellulose nanocrystals oxidized with TEMPO(2,2,6,6-tetramethylpiperidine 1-oxyl) had
increased adsorption capacity (769 mg g−1) with respect to methylene blue [169]. In an-
other study, amino-functionalized nanocrystalline cellulose exhibited excellent absorption
capacity with respect to Congo red 4BS, acid red GR, and reactive light-yellow K-4G, at up
to 200, 138.9, and 188.7 mg g−1, respectively [170].
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Chitosan, a main derivative of chitin that can be achieved by the bioconversion of
chitin using deacetylation, is an important natural polymer recognized for its biodegrad-
ability and biocompatibility, non-toxicity, and outstanding adsorption capabilities [171].
Many chemical modifications have been performed on chitosan and chitin for specific
environmental application [172,173]. Chitosan, chitin, and their derivative molecules have
been used as natural and environmentally friendly coagulants/flocculants to remove var-
ious charged particles from wastewater, including heavy metal ions and organic dyes.
Polyethylene glycol/chitosan and polyvinyl alcohol/chitosan composites were shown
by Rajeswari et al. to remove aqueous nitrate ions with adsorption capacities of 50.68
and 35.03 mg g−1, respectively [174]. Borsagli et al. used carboxymethyl-chitosan for the
adsorption of Cd(II) and Cr(VI) ions [175], while Rahimi et al. used goethite/chitosan
nanocomposite for the removal of Pb(II) ions [176]. Gibbs et al. studied the sorption of



Polymers 2022, 14, 2183 13 of 26

acid green 25 by chitosan, varying experimental parameters such as pH and the chitosan
adsorbent particle size [177]. They reported a maximum adsorption capacity of 700 mg g−1

in the pH range of 2–4. Marrakchi et al. synthesized a cross-linked chitosan/sepiolite com-
posite from chitosan and sepiolite clay, a porous zeolite-like mineral [178]. The composite
was used as an adsorbent and showed a maximum absorption capacity of 40.99 mg g−1

and 190.97 mg g−1 for methylene blue and orange 16, respectively.
Chitosan-based nanomaterials have been investigated for their ability to remove dye

molecules, with hydroxyl groups efficiently utilized in dye adsorption while the amine
groups firmly remain the most active group and affect other biopolymer activities [179,180].
Gopi et al. fabricated multi-functional hybrid bio-aerogels for wastewater treatment,
composed of chitin nanocrystals and cellulose nanofibers [181]. The hybrid bio-aerogels
showed a considerable adsorption capability for the extraction of dyes (methylene blue and
rhodamine 6 G) from aqueous solutions. They reported that dye adsorption was improved
by the electrostatic interactions between positively charged dyes and negatively charged
chitin nanocrystals containing acetamide-enriched groups. Furthermore, the aerogels
showed antibacterial and antioxidant activity against four bacterial species, including E. coli,
S. typhimurium, S. aureus, and B. cereus. Zhang et al. prepared a dialdehyde microfibrillated
cellulose/chitosan composite film with a 3D network of microcrystalline cellulose for the
uptake of Congo red. The adsorption capacity for Congo red was 152.5 mg g−1 with 99.95%
removal efficiency within 10 min of contact time [182].

Although biopolymers have the potential to be used as pollutant adsorbents due to
their environmental and economic advantages, the contaminant adsorption rate of biopoly-
mers is not commercially practical. This is because water molecules reduce the affinity
between the dye and the biopolymer adsorbent in aqueous environments, interfering with
the adsorption process [183,184]. Furthermore, limitations for practical application also
include the difficulty in recovering biopolymers after contaminant adsorption and their
poor mechanical strength [185]. Therefore, biopolymers are often integrated with carbon-
based nanomaterials to improve their mechanical properties and chemical stabilities; at the
same time, they stabilize the carbon-based nanomaterial to prevent agglomeration [186].
The incorporation of chitosan into graphene is the most popular method of achieving
mutual stabilization and improvement during the adsorption process [187–189]. Dai et al.
prepared polyvinyl alcohol (PVA)/carboxymethyl cellulose hydrogels reinforced with GO
and bentonite [190]. The carboxymethyl cellulose was isolated from pineapple peel, and the
hydrogel was prepared using freeze–thaw cycles. The introduction of GO and bentonite to
the hydrogels improved their thermal stability, swelling ability, and adsorption capacity for
methylene blue dye. By introducing these two fillers, the calculated maximum adsorption
capacity of the hydrogels increased to 172.14 mg g−1 from 83.33 mg g−1. Li et al. success-
fully synthesized a lignin-grafted CNT nanocomposite to remove Pb(II) to obtain significant
adsorption capacity (235.0 mg L−1) [191]. They reported that the high adsorption efficiency
was due to the nanocomposite’s 3D structure, high surface area, large number of oxygen
functional groups, large pore size, and mechanical stability. Gao et al. reported a one-step
synthesis of a polydopamine-functionalized graphene hydrogel for the adsorption of heavy
metal ions (Pd(II) and Cd(II)), an organic dye (rhodamine B), and an aromatic contaminant
(p-nitrophenol) [192]. Saber-Samandari et al. recently described gelatin–CNT–iron oxide
magnetic nanocomposite beads for the adsorption of anionic (direct red 80) and cationic
(methylene blue) dye from aqueous solutions (Figure 8) [193]. The magnetic biosorbent
removed both dyes with high adsorption efficiency (96.1% for direct red 80 and 76.3% of
methylene blue) and was easily isolated with the help of an external magnet.
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Figure 8. Schematic illustration for the adsorption of direct red-80 and methylene blue by the prepared
nanocomposite bead, the digital image of the nanocomposite bead (Gel-CNT-MNPs) immersed in
the dyes solutions in the presence of magnet. Reproduced from [193] with permission. Copyright
2017 Elsevier.

2.2.4. Others

Nanoporous materials, particularly well-ordered mesoporous ones, are recognized as
excellent adsorbents due to their high surface areas and their large and regularly structured
mesoscale channels, allowing fast mass transfer kinetics [194–197]. However, adsorption
efficiency depends not only on surface area to supply active adsorption sites and pathways
for the quick approach of adsorbates, but also on the interaction between the active adsorp-
tion sites and the targeted adsorbates, which controls the strength and the selectivity of
the adsorption [198,199]. Therefore, in addition to pore structure engineering, chemical
modification of the surface is required in the design of nanoadsorbents for wastewater
treatment. Examples include mesoporous silica materials functionalized with thiol-based
functional groups (thiol, thiourea, and thioether) on their pore surfaces for the removal
of mercury ions [199–201]. Li et al. synthesized a thiol-functionalized, porous organic
polymer-based nano-trap for the removal of Hg(II) ions [202]. The nano-trap exhibited
a record-high saturation Hg(II) adsorption capacity of over 1000 mg g−1, able to reduce
Hg(II) concentration from 10 ppm to a level appropriate for potable water (0.4 ppb, WHO
standards) within a few minutes. More importantly, the nano-trap showed high stability
and adsorption efficiency over a broad pH range owing to its stable C–C bond, and it
remained stable at temperatures up to 270 ◦C.

An aptamer is a newly developed type of ligand and short single-stranded oligonu-
cleotide with a highly specific and strong affinity for a target molecules [203,204]. A special
aptamer can be selected via the systematic evolution of ligands by exponential enrichment
(SELEX) for specific target molecules, from a comprehensive library of DNA molecules
containing randomly created sequences [205,206]. This strategy has been used in a variety
of research areas, including nanomaterial synthesis and sensor development, and has
recently been used in water purification [207,208]. Kim et al. selected single-stranded DNA
aptamers from a random library for arsenate [As(V)] and arsenate [As(III)] binding via
SELEX. The selected aptamers had an extraordinarily high affinity for both As(V) and
As(III), with dissociation constants (Kd) of 4.95 and 7.05 nM, respectively [207].
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Similar to the aptamer-based strategy, molecular imprinting techniques have shown
a high affinity and selectivity towards the template molecule even in the presence of
interfering substances [209,210]. One notable study on molecular imprinting for water
treatment involved the fabrication of core–shell structured nanocomposites, consisting of
a magnetic nanoparticle core and a molecular-imprinted polymer shell, for the selective
adsorption of water contaminants. Li et al. recently reported the synthesis of core–shell
molecularly imprinted magnetic polymer beads by reversible addition–fragmentation
chain transfer polymerization [211]. The core–shell magnetic beads were utilized for the
recognition and separation of endocrine disrupting chemicals, such as Bisphenol A, from
aqueous solutions.

A polymer brush is a layer of polymer chains attached to a surface by the end of the
polymer chain, a technique that facilitates an increase in the density of surface functional
groups [212–216]. On the surface of porous adsorbents, functional groups are typically
limited to a single layer incorporated onto the adsorbent surfaces with only a few func-
tionalities per molecule. Polymer brushes possess multiple repeating functional groups
and can be firmly bonded to the surface of a wide range of materials using covalent bonds.
Several research groups have designed cationic or anionic polymer brush-grafted mag-
netic nanoparticles for highly efficient water remediation [216–221]. Bae et al. developed
polymer-grafted sponges composited with various polyelectrolyte brushes, such as poly-
acrylamide (PAM), polyacrylic acid (PAA), and poly polyethyleneimine (PEI), and used
them as portable heavy metal ion (Cu(II) and Pb(II)) adsorbents [222]. To control the length
of the polymer brushes related to the concentration of active functional groups, the authors
employed polyelectrolytes with varying molecular weights and evaluated the influence of
the length of the polymer brush on adsorption performance (Figure 9). According to their
results, the low-molecular-weight PEI-grafted sponges showed fast removal ability with
respect to heavy metal ions, and the high-molecular-weight PEI-grafted sponges showed
the highest adsorption capacities (3.922 mmol g−1) due to their abundant adsorption sites.
These PEI-grafted sponges demonstrated no significant cytotoxic activity in relation to cells.
By simple immersion, they completely purified a glass of water contaminated with a low
concentration of heavy metal ions, proving easy application by individual users.
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Figure 9. (Left) Schematic illustration for the fabrication of melamine formaldehyde (MF) sponge
composites. The PAM and PAA brushes were grafted by the “grafting-from” method, and PEI was
grafted by the “grafting-to” method. (Right) Image of a glass of water containing a low concentration
of each heavy metal ion (Cu2+: 0.368 mg/L or Pb2+: 0.250 mg/L) after submerging a PEI-coated
sponge (upper image). Images of various polymer brush-grafted sponge. Reproduced from [222]
with permission. Copyright 2016 Elsevier.

Nanofibers are fibrous materials with nano-scaled diameters that have received tremen-
dous attention due to their promising properties and characteristics for a variety of applica-
tions. Polymer nanofiber membranes have emerged as attractive adsorbents for wastewater
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treatment applications because of their easy surface modification, high flexibility, high
porosity, and easy separation [223–226]. Polymer nanofiber membranes produced by elec-
trospinning have been the object of increasing attention over the past decade, and the
technique has been extensively studied in terms of its design, mechanism, applications,
and technical issues [227–229]. The electrospinnun polymer nanofiber membranes have a
high aspect ratio and surface adsorption energy, providing an effective adsorbent material
that can be regenerated without secondary contamination [230–233]. Recently, Zhao et al.
reported a simple strategy to fabricate amine-functionalized ultrathin polyacrylonitrile
nanofiber of 100 nm diameter using a mixed solution electrospinning procedure, to effi-
ciently remove organic dyes from aqueous media [234]. The ultrathin polyacrylonitrile
nanofiber membrane possesses abundant amino groups on the surface, contributing to its
ultrahigh adsorption capacity of more than 1800 mg g−1 and rapid adsorption rate with
concentrations ranging from 20 to 100 mg L−1 for organic dye, Direct Red 23. Park et al.
fabricated nanofibrous adsorbents by electrospinning with a blend solution of poly(acrylic
acid) and poly(vinyl alcohol) polymers and used these for Cu(II) removal from indus-
trial plating wastewater. The nanofibrous adsorbents had a maximum removal capacity
of 49.3 mg g−1 for Cu(II) ions with higher selectivity for Cu(II) over Ni(II) in a binary
system [235].

Metal–organic frameworks (MOFs) are highly ordered crystalline coordination poly-
mers with the advantages of large specific surface area, tunable pore size, high porosity,
outstanding absorbability, and controlled modification synthesis [236–238]. Those advan-
tages are highly favourable to adsorption and separation [239–241] and have been widely
utilized to remove toxic contaminants, such as organic dyes or heavy metal ions in aqueous
media [242–244].

Dendritic polymers are novel nanostructured synthetic polymers exhibiting a highly
branched structure with unique three-dimensional architecture and numerous active func-
tional groups [245–248]. Since dendritic polymers are relatively cheap, less toxic, easy to
functionalize over other substrates, and highly efficient, they also have been widely em-
ployed as adsorbents for removal of inorganic and organic pollutants from water [249,250].

3. Summary and Perspective

Hazardous pollutants in wastewater, such as heavy metal ions and organic dyes, pose
a serious environmental threat. Wastewater treatment before disposal and recovery is a
high priority, and it is a challenge to develop a general approach for removing all types
of contaminants from wastewater. In this regard, adsorption technology is well estab-
lished in the industry and has been shown to remove many kinds of contaminants from
wastewater. In recent decades, there have been significant efforts to design and produce
highly efficient and environmentally friendly adsorbents for wastewater treatment. Due
to their unique physicochemical properties, nanostructured adsorption materials have
received intensive attention for their application in the adsorptive removal of various con-
taminants in wastewater. This review summarizes recent advances in the preparation and
adsorption performance of nanostructured materials used for the removal of contaminants
in wastewater.

Inorganic-based metal oxides and carbon nanomaterials have been widely studied
and frequently used as adsorbents for the removal of toxic pollutants in aqueous solutions.
Hierarchical structures, such as core–shell, layered, hollow, and flower-shaped nanoparti-
cles, have been designed to enhance the removal efficiency of adsorbents. The ability of an
adsorbent to regenerate and to be reused is important in terms of practicality and economic
cost. The incorporation of magnetic nanoparticles into an adsorbent has demonstrated
effective regeneration. Despite their wide use and high adsorption ability, metal oxide
nanoparticles and carbon nanomaterials each have technical drawbacks. For instance,
reducing the size of particles into the nanoscale can increase their surface area, but it can
cause instability in an aqueous solution and aggregation into large-size particles. As a
result, their adsorption efficiency is inevitably reduced. In addition, the isolation of used
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nanomaterials from water in an efficient and cost-effective manner remains a challenge.
Inability to isolate can affect the mobility and bioavailability of toxic pollutants in the
environment, and this may increase the toxicity of the nanomaterials and cause secondary
pollution in any surroundings.

Biopolymer- and polymer-based nanomaterials have been considered candidates for
the ecological treatment of wastewater pollutants. Because of their unique structural and
physical properties, their availability, safety, and cost, (bio)polymer-based nanomaterials
offer a variety of uses for the generation of sustainable materials; the biodegradability
and biocompatibility of natural resources can improve their utilization as nanosorbents.
However, though (bio)polymers have the potential to be used as pollutant adsorbents due to
their environmental and economic advantages, contaminant adsorption using biopolymer
is not commercially practical. This is due to the low affinity between pollutants and polymer
adsorbents in aqueous solutions, resulting in low adsorption ability. Other limitations to
practical applications include the difficulty of recovering the biopolymer after contaminant
adsorption, and its poor mechanical strength. Therefore, (bio)polymer is often integrated
with metal oxide and carbon-based nanomaterial to improve its mechanical properties and
chemical stability.

Although adsorption using nanostructured materials is a promising approach for
wastewater purification, it generates secondary environmental toxic waste. It is essential to
mitigate this problem sustainably. It may be solved by reusing spent materials in various
applications, including catalysis, sensors, and energy applications [251,252]. Future study
will be required to add value to secondary toxic waste through recyclability and circu-
lar strategy. Despite several limitations, nanostructured adsorbents have revealed their
effectiveness in removing toxic pollutants from water and wastewater. The use of nanoad-
sorbents to remove pollutants, addressing the limitations of recycling and separation, has
become a practical and easy process. However, it is still in its early stages, and various
challenges need to be addressed, including the development of easier processes to obtain ef-
ficient nanoadsorbents as well as their field application in water and wastewater treatment.
Moreover, strong collaboration between industry and academia is required to develop and
employ novel wastewater treatment technologies as soon as they become available.
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