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A B S T R A C T

The COVID‐19 disease caused by the SARS‐CoV‐2 virus is a health crisis worldwide. While developing novel
drugs and vaccines is long, repurposing existing drugs against COVID‐19 can yield treatments with known
preclinical, pharmacokinetic, pharmacodynamic, and toxicity profiles, which can rapidly enter clinical trials.
In this study, we present a novel network‐based drug repurposing platform to identify candidates for the
treatment of COVID‐19. At the time of the initial outbreak, knowledge about SARS‐CoV‐2 was lacking, but
based on its similarity with other viruses, we sought to identify repurposing candidates to be tested rapidly
at the clinical or preclinical levels. We first analyzed the genome sequence of SARS‐CoV‐2 and confirmed
SARS as the closest virus by genome similarity, followed by MERS and other human coronaviruses. Using text
mining and database searches, we obtained 34 COVID‐19‐related genes to seed the construction of a molecular
network where our module detection and drug prioritization algorithms identified 24 disease‐related human
pathways, five modules, and 78 drugs to repurpose. Based on clinical knowledge, we re‐prioritized 30
potentially repurposable drugs against COVID‐19 (including pseudoephedrine, andrographolide, chloroquine,
abacavir, and thalidomide). Our work shows how in silico repurposing analyses can yield testable candidates to
accelerate the response to novel disease outbreaks.
1. Introduction

The COVID‐19 disease outbreak caused by the severe acute
respiratory syndrome coronavirus 2 (SARS‐CoV‐2), formerly named
“2019 novel coronavirus” (2019‐nCoV), has already infected more
than 108 million people and caused 2 million deaths in the world, in
February 2021 [1]. While several vaccines have become available,
the combat against the COVID‐19 pandemic is still highly challenging
because of the virus's emerging mutant strains, the difficulties of man-
ufacturing and distributing vaccines, and more [2]. Another approach
is small molecule drug research, especially drug repurposing approach
[3], remains an important solution to find rapid therapies. At the time
of the outbreak, being the time of this study, drug repurposing
approach was one of the best strategies to explore efficient therapies
against COVID‐19 rapidly.

Drug repurposing can yield new therapies at a faster rate than novel
drug discovery when the safety profiles of the drugs being repurposed
have been evaluated in the context of drug development for another dis-
ease, and at an even faster rate when the drugs have been approved for
other diseases and postmarketing safety surveillance data are available
[4,5]. By relying on already known preclinical, pharmacokinetic, phar-
macodynamic, and toxicity profiles of the drugs being repurposed, one
can dramatically increase the rapidity of the response against a disease
with unmet clinical needs, especially for an epidemic disease, where
drug proven safe can be immediately tested. At the begging of the pan-
demic, in February 2020, more than 10 repurposed drugs were under
clinical trials evaluation for COVID‐19. Among them, Remdesivir
(Gilead Sciences, in Phase 3, clinical trial No.NCT04257656), originally
developed to treat the Ebola which showed inhibition of replicases in a
broad range of viruses including coronaviruses, and chloroquine (in
Phase 4 ChiCTR2000029975), originally approved as an antimalarial
and autoimmune disease drug, which, unlike Remdesivir, doesn’t target
viral proteins but works as human endosomal acidification fusion inhi-
bitor, which may help to stop the virus’ infection lifecycle [6].

In silico methods offer a way to methodically and rapidly yield
additional repurposing candidates [7]. For instance, when drug targets
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associated with the disease of interest are known, and when their pro-
tein structures or that of close homologs are available, it is possible to
use structural bioinformatics to virtually screen (e.g., using molecular
docking) a library of existing drugs against these known targets [8]. A
study published on February 27, 2020, relied on this approach, using
the predicted structure of all SARS‐CoV‐2 proteins based on their
homology with other known coronavirus protein structures, and iden-
tified several compounds with potential antiviral activity [9].

Another approach to repurposing is the construction of so‐called
“disease‐related molecular networks,” i.e., interactions between gene
products (sometimes together with cellular metabolites) involved in
the etiology and symptoms of that disease [10]. There exist several
ways to identify disease‐related genes, whether using genomic data
(e.g., Genome‐Wide Association Studies), gene expression data (e.g.,
RNAseq differential expression analysis) or data directly collected
from the scientific literature (e.g., text mining or expert curation,
either analyzed in‐house or via recognized structured databases). Com-
pared to virtual screening, where the candidate targets are known
from the start, network biology methods can identify additional, unan-
ticipated targets, which are part of the same molecular pathways than
previously known targets for the disease of interest [7,11].

In this study, we performed network bioinformatics analyses to
repurpose existing drugs, which are at the completed Phase 2 stage
or later, against the now pandemic COVID‐19. At the time of the out-
break, our goal was to yield a list of experimentally testable repurpos-
ing drug candidates, despite the fact that little was known about SARS‐
CoV‐2, by supplementing that little knowledge with extensive data on
closely related viruses and machine‐learning analysis of those data.
Therefore, because in late January 2020, limited knowledge about
COVID‐19 was available, we focused our work on similar pathogens
as indirect cues to identify COVID‐19 related genes and build a
molecular network that could serve the identification of repurposable
drug targets. We first relied on genome sequence alignment of SARS‐
Fig. 1. Sequence analysis suggests SARS-CoV as the most similar virus to the SARS-
nineteen genome sequences were selected as representative and were aligned using
the MEGA-X tool. The percentage of replicate trees in which the associated taxa
branches. The scale represents 0.10 residue substitutions per site.
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CoV‐2 to identify SARS‐CoV (Severe Acute Respiratory Syndrome
Coronavirus) as the most similar virus, followed by MERS‐CoV (Middle
East Respiratory Syndrome Coronavirus) and other related human
coronaviruses. We then applied our AutoSeed program, which per-
formed text mining against all NCBI PubMed abstracts (referenced
before January 2020) and systematic database research, which led to
34 COVID‐19‐related genes, including ACE2.

To study these disease genes and their role at the systems level, we
used an iterative network‐building algorithm “AutoNet” that expands,
prunes and merges subnetworks, leading to a human COVID‐19 dis-
ease network composed of 1344 genes. In total, 24 enriched pathways
were identified in five topological network modules (i.e., community
structure, a region where nodes are more densely connected, more
likely to be related to the same function or disease [12]). We scanned
this network for known drug‐target interactions and applied
proximity‐based topology analysis [13] to obtain a list of 78 drugs
repurposable against COVID‐19. Finally, we manually filtered this list
based on the criteria of the drugs’ mechanisms of action, their adverse
effects, and clinical approvals to yield a total of 30 drugs. In this study,
we also discuss the repurposing and mechanisms of thalidomide in
particular, since, after sharing our findings with multiple institutions
and hospitals in China, one care unit reported the remission of a
patient treated with this drug together with low‐dose glucocorticoids.
In addition, two clinical trials of thalidomide were registered.

2. Results

2.1. Genome sequence analysis suggests SARS as the most similar disease

After performing a BLASTn search using the SARS‐CoV‐2 (a.k.a.
2019‐nCoV at the time of the analysis) genome sequence against the
NCBI GenBank database (see Methods), representative sequences from
top results, all being coronaviruses either in humans or other animals,
CoV-2. Based on the results of BLASTn for SARS-Cov-2 against NCBI GenBank,
EMBI-EBI’s MSA tool, and a neighbour-joining phylogenetic tree was built by

clustered together in the bootstrap test (1000 replicates) is shown above the
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were selected to build a phylogenetic tree using the neighbor‐joining
method (Fig. 1). We found SARS‐CoV to be the evolutionarily closest
sequence to SARS‐CoV‐2, with an 80% sequence identity. Among all
other human coronaviruses, MERS‐CoV is evolutionarily closest to
SARS‐CoV‐2, with a 50% sequence identity. Importantly, we per-
formed this analysis in January 2020, when the virus was less known
and studied. Since then, multiple additional sequencing studies have
been performed for SARS‐CoV‐2, including a landmark preprint, which
suggested renaming 2019‐nCoV to SARS‐CoV‐2 based on results simi-
lar to ours [14].
2.2. Text mining and database searches yield a list of 34 seed genes

In this step, we aimed to identify a list of human genes that are
involved in the COVID‐19 disease (Fig. 2A) and built a literature
searching‐engine‐based web tool which is freely accessed in http://lit-
erature.tasly.com/covid19. Considering SARS‐CoV as the closest virus
to SARS‐CoV‐2, we used SARS as the first keyword for text mining
against the database of NCBI PubMed. We searched for all human
genes co‐occurring with the keyword “SARS‐COV‐2” (abbreviations,
Fig. 2. The workflow of our network bioinformatics pipeline for SARS-CoV-2 dru
calculated to prioritize drugs based on proximity, see details in Methods.
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full names, or synonyms) within any sentence (a.k.a “sentence co‐
occurrence” in NLP methods). We then ranked all genes based on their
SARS co‐occurrences count.

To enrich our text mining results, we added four other terms:
“MERS”, “coronavirus”, “viral pneumonia”, and “HIV” (Human
Immunodeficiency Viruses). We chose MERS because of its close sim-
ilarity to SARS‐CoV‐2 (Fig. 1) and the fact that it has been studied for
long. “Coronavirus” and “viral pneumonia”were selected because they
are highly related to the nature and symptoms of SARS and COVID‐19,
to the point that China and other regions of Asia, the synonyms of
SARS and COVID‐19 often contains the words “viral pneumonia”.
Although HIV does not belong to coronaviruses, “HIV” was used as a
keyword because it was previously reported that HIV and SARS share
similar viral protein structures [15] and that HIV drugs can be effec-
tive against SARS [16]. In addition, there exists extensive research
and publication record on HIV, which can enrich our text mining anal-
ysis. For these four additional terms, the same co‐occurrence analysis
was performed, except that only the top 10% of each resulting list was
retained. Therefore, the final text‐mining‐based list was made from the
full SARS‐related gene output list combined to these four top‐10%‐
g repurposing. The equation shown in (D) represents how the distance was
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Fig. 3. Thirty-four genes related to SARS-CoV-2 identified by text mining and database searches. Each link represents at least one sentence co-occurrence in
PubMed abstracts or at least one relationship recorded in one of our searched databases.
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retained‐gene lists (See Data availability for sources of extracted texts
and papers).

In addition to our in‐house text mining analysis, to enrich our
search for SARS‐related genes, we also searched for the five keywords
aforementioned in reference databases including DisGeNET, Drug-
Bank, KEGG, MalaCards, eDGAR, and GWAS‐Catalog, because these
databases integrate text‐mining results with expert‐curated informa-
tion, from different aspects, including pathways, genetic factors, and
animal models (see Methods).

A final list of seed genes was built by overlapping text‐mining and
database results (see Methods). This list contains 34 genes (shown as a
network in Fig. 3, also see Data availability). Among them, 23 genes
are directly linked to SARS. Two genes, CRP and TNF, connect to all
keywords. Seven genes STAT1, CCL5, ACE2, IRF3, CXCL10, CTSL
and TMPRSS2 are linked to four keywords (including SARS).
Fig. 4. Symptoms and mechanisms related to SARS-CoV-2 and the corre-
sponding categories of our 30 suggested drugs.
2.3. Network bioinformatics approach helps to predict 30 repurposable
drugs

In order to contextualize and better understand, at a systems level,
the molecular and physiological role of the COVID‐19‐related genes
we found, we applied an in‐house developed algorithm to build a
molecular (i.e., protein) network taking these 34 genes as seeds. This
algorithm repeats subnetwork expanding, merging, and pruning in an
iterative manner, controlled by pathway enrichment analysis (see
Fig. 2B and Methods). In this way, we obtained a final protein network
of 1344 genes and 24 enriched pathways (see Data availability). The
Newman greedy heuristic module detection algorithm was applied
on the network, leading to five modules, representing the T cell recep-
tor signaling pathway, JAK‐STAT signaling pathway, C‐type lectin
receptor signaling pathway, Chemokine signaling pathway and Endo-
cytosis (Fig. 2C). At last, DrugBank’s drug‐target interactions were
added to the protein network, resulting a heterogeneous molecular
4

network, over which proximity‐based network analysis [13] identified
a list of 78 repurposable drugs (see Data availability).

Having obtained these 78 drugs, we looked for more information,
including clinical drug status, drug category, and adverse effect in
the Yaozh (https://data.yaozh.com/) and DrugBank [17] databases.
The former database provides increased China‐related information,

https://data.yaozh.com/
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including clinical trials in China, traditional Chinese medicine usage
and theory, approvals by NMPA (National Medical Products Adminis-
tration, formerly known as CFDA – China Food and Drug Administra-
tion) in China, and studies only published in Chinese, while the latter
reports approval process by the U.S. FDA (Food and Drug Administra-
tion), known targets, therapeutic effects as well as basic chemical
information [17].

Through a literature review, we identified a list of important symp-
toms and mechanisms linked to SARS‐CoV‐2, including fever, fatigue,
cough [18], breathing difficulty, septic shock, viral proliferation,
immunodeficiency and pulmonary fibrosis [19] (Fig. 4). We manually
removed a drug from our list if it did not have any reported effect on
any of these key symptoms and mechanisms. We also removed a drug
from our list if it had strong reported side effects. We also filtered out
Table 1
Thirty predicted drug candidates to repurpose against COVID-19. Type and Group we
drug prioritization algorithm. Categories were obtained from Yaozh (a drug databas
neither of these databases.

DrugBank
ID

Drug name Type Group

DB00852 Pseudoephedrine small
molecule

approved

DB05767 Andrographolide small
molecule

investigational

DB05513 Atiprimod small
molecule

investigational

DB05017 YSIL6 small
molecule

investigational

DB06083 Tapinarof small
molecule

investigational

DB00005 Etanercept biotech drug approved, investigational
DB00051 Adalimumab biotech drug approved
DB00065 Infliximab biotech drug approved
DB00608 Chloroquine small

molecule
approved; investigational;
vet_approved

DB00668 Epinephrine small
molecule

approved; vet_approved

DB01041 Thalidomide small
molecule

approved; investigational; with

DB01407 Clenbuterol small
molecule

approved; investigational;
vet_approved

DB01411 Pranlukast small
molecule

investigational

DB04956 Afelimomab biotech drug investigational
DB06674 Golimumab biotech drug approved
DB09036 Siltuximab biotech drug approved, investigational
DB01250 Olsalazine small

molecule
approved

DB12698 Ibalizumab biotech drug approved, investigational
DB01327 Cefazolin small

molecule
approved

DB01048 Abacavir small
molecule

approved; investigational

DB02375 Myricetin small
molecule

experimental

DB04464 N-Formylmethionine small
molecule

experimental

DB06475 Ruplizumab biotech drug Investigational
DB00452 Framycetin small

molecule
approved

DB01009 Ketoprofen small
molecule

approved; vet_approved

DB04835 Maraviroc small
molecule

approved; investigational

DB06652 Vicriviroc small
molecule

investigational

DB00172 Proline small
molecule

approved; nutraceutical

DB04216 Quercetin small
molecule

experimental; investigational

DB11638 Artenimol small
molecule

experimental; investigational
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drugs for which there is little scientific knowledge. After removing
these drugs deemed unfit for rapid repurposing, we obtained a list of
30 drugs (Table 1).

2.4. Results sharing and case analysis

In order to help fight COVID‐19 as fast as possible, we first publicly
shared our list of 78 drugs (see Data availability) and our list of 24
enriched pathways (see Data availability) and we briefly explained
our approach with healthcare professionals and hospitals, via GeneNet
company’s WeChat Chinese blog, on February 12, 2020. At the time,
we put forward pseudoephedrine, andrographolide, chloroquine,
abacavir, baricitinib, and quercetin as repurposing candidates from
our list, because there were other researches also suggesting or pre-
re obtained by querying DrugBank. Initial ranks came from our proximity-based
e in China), DrugBank and manual curation when the data was not available in

Initial
rank

Category

1 antipyretic or analgesic; antiasthmatic; anti-inflammatory

2 antipyretic or analgesic; antiviral; anti-bacterial; anti-
inflammatory

3 immunomodulator

8 immunomodulator

11 anti-inflammatory

12 antipyretic or analgesic; anti-inflammatory
13 antipyretic or analgesic; anti-inflammatory
14 anti-inflammatory
15 anti-bacterial; anti-inflammatory

16 antiasthmatic

drawn 17 anti-fibrosis; immunomodulator

18 antiasthmatic

19 antiasthmatic

21 immunomodulator
32 antipyretic or analgesic; anti-inflammatory
35 anti-viral
36 anti-inflammatory

39 anti-HIV
43 anti-bacterial

50 anti-HIV

51 anti-inflammatory

52 immunomodulator

54 immunomodulator
60 anti-bacterial

65 anti-inflammatory

66 anti-HIV

69 anti-HIV

75 nutrition

76 antiasthmatic

78 anti-bacterial
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dicting these drugs, mainly based on our Yaozh database search and
literature review.

Chloroquine has been considered as one of the most promising
repurposed drugs and is currently being tested against COVID‐19 by
more than ten clinical trials [6]. Abacavir was also predicted to treat
COVID‐19 by two separate studies [20]. Baricitinib was also suggested
by the BenevolentAI company using their knowledge graph technology
[21] and several clinical trials have been initiated (such as
NCT04321993 in Phase 2). Finally, quercetin was predicted by a vir-
tual screening studies of Chinese herbal medicines [22] and was later
tested in clinical trial (NCT04377789) against COVID‐19. The ongoing
clinical trials and experimental validation for our 6 highlighted drugs,
most of them beginning after our 1st result exchange, suggested that
our approach succeeded in producing repurposing candidates that
are worthy of further evaluation.

In a second exchange with partner experts from Chinese institu-
tions and care units, via a webinar organized on February 22, we also
put forward thalidomide as an interesting repurposing candidate as it
was well ranked by our algorithm, the sole drug with anti‐fibrosis
effect in our list, while it was neither predicted nor tested by another
research group. Later, successful use of thalidomide combined with
low‐dose glucocorticoid (methylprednisolone) was reported by a pre-
print for a 45‐year old Chinese woman who had unsuccessfully been
treated with ofloxacin (a fluoroquinolone antibiotic known to inhibit
the DNA topoisomerase 4 subunit A and DNA gyrase subunit A of Hae-
mophilus influenzae), oseltamivir (a.k.a Tamiflu, known to inhibit Neu-
raminidase of Influenza A virus) and lopinavir + ritonavir (a
combination of antiviral drugs used to treat HIV known to target the
HIV protein encoded by pol) (drug target information above from
DrugBank [17]). We remind that these drugs do not belong to our pro-
posed drugs as our method was repurposing drugs with human targets.
Before being treated with thalidomide + methylprednisolone, the
patient showed an increase in C‐reactive protein (CRP) and cytokine
levels, including interleukin 6 (IL‐6), interleukin 10 (IL‐10) and
interferon‐gamma (IFN‐gamma) together with reduced CD4+ and
CD8+ T cells counts. The authors reported that these abnormally high
interleukin levels and abnormally low T cell levels returned to normal
after three days of their combinatorial treatment.

It was previously shown that thalidomide enhances TCR (T cell
receptor)‐mediated T cells activation by by‐passing T cell need for
Fig. 5. Thalidomide’s potential Mechanism-of-Action on COVID-19. APC: antigen-
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co‐stimulation by accessory molecules, such as the B7 protein together
with the CD28 protein, and therefore can overcome T cell deficiency
[23]. In addition, previous work suggests that lenalidomide, a deriva-
tive of thalidomide, can restore T cells motility leading to their activa-
tion [24]. Finally, it was also reported that thalidomide prevents NF‐
kB from binding to the promoters of its target genes, including TNF‐
alpha and IFN‐Gamma thereby reducing excessive inflammatory
response [25,26]. Altogether, based on these previous studies, the
reported successful use of thalidomide by Chen et al. [27], and our
analysis, we hypothesize that thalidomide may be effective against
COVID‐19 by favorably modifying the immune response of the
infected patients against the virus (Fig. 5). At the time of the preprint
sharing (March 2020), thalidomide had been registered in two Phase 2
clinical trials: NCT04273529 and NCT04273581.
3. Discussion

We applied a network bioinformatics approach to prioritize poten-
tial drugs and their targets at the systems level based on pre‐COVID‐19
knowledge of related viruses. To our knowledge, until now, two other
studies have investigated the COVID‐19 disease using network‐based
repurposing. The first one took advantage of a knowledge graph (an-
other type of network comprising different entity types, such as gene,
protein, organism and disease, and relationship types, such as
interacting with, phosphating, belonging to, etc.) technology to sug-
gest baricitinib as potential treatment [21]. A second study used, in
part, similar network techniques than reported in this study, although
the main difference is that we relied on text‐mining and database
search for seed genes identification while they essentially relied on
the use of transcriptomic data for enrichment analysis [28].

We would like to highlight that our network bioinformatics analy-
sis relied not directly on the keyword COVID‐19, but indirectly via its
similar terms like SARS based on genome analysis and limited existing
knowledge about the disease. This is because our study was conducted
mainly in January and February 2020 when scientific knowledge of
COVID‐19 was seriously lacking. Now, almost one year after we first
shared the preprint of this study, 30 out of the 34 genes we identified
can now be found using the method of sentence cooccurrence with
presenting cell; MHC: major histocompatibility complex; TCR: T cell receptor.
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“Covid‐19” based on the CORD‐19 text dataset (version November
2020) [29] (see more proofs in Data Availability).

The purpose of this in silico work is not to yield repurposing candi-
dates which should be immediately given to patients, rather, it is to
shorten the immense list of candidates as to focus rigorous clinical
(sometimes and experimental) evaluation on a smaller number of can-
didates. In the context of an outbreak, the response must be swift but
must also satisfy the usual safety and quality standards of the medical
community. Deriving a list of candidates based on the available robust
in silico data and analysis allows the expert to concentrate scarce
resources on evaluating a smaller number of options but with the same
level of standards. We therefore designed our analyses hoping that our
results could be helpful in rapidly designing and implementing clinical
trials or preclinical experiments to treat COVID‐19 considering the
available preclinical, pharmacokinetic, pharmacodynamic, toxicity,
and clinical knowledge. Extreme caution is needed for drugs with
important side effects, even when they are already approved drugs,
because the interactions of the side effects with the new disease are
unknown. In such a situation, combinations are an interesting path,
as they can be more efficient at lower synergistic doses when used syn-
ergistically while suppressing their side effects [7]. As of now, 7 of the
30 proposed drugs have been tested in clinical trials according to clin-
icaltrials.gov database (search in February 2021, see more details in
Data Availability). To our knowledge, chloroquine (or hydroxychloro-
quine) is the only drug with published results on clinical trials, which
mostly suggest a lack of efficacy in COVID‐19 patients and safety con-
cerns at high doses [30]. We believe that drug repurposing, preferably
coupled with synergetic combinations at low doses, could help find
other therapies in addition to recent successful vaccine development
against COVID‐19.

4. Materials and methods

4.1. Genome sequence analysis

From NCBI GenBank, the complete genome of Wuhan‐Hu‐1
(NC_045512.2) was downloaded as the 2019‐nCoV sequence. This
genome sequence was used to search for closely related viruses,
against the whole database using BLASTn (default parameters except
that we obtained more results than 100 by default). Among the
BLASTn results, we extracted the following complete genome
sequences as representative to build a phylogenetic tree: SARS coron-
avirus (SARS‐CoV), MERS coronavirus (MERS‐CoV), Human coron-
aviruses OC43, NL63, HKU1 and 229E; Bat coronaviruses BM48‐31/
BGR/2008, CDPHE15/USA/2006, HKU8, HKU5‐1, 1A, HKU4‐1 and
HKU2; Rousettus bat coronaviruses HKU9 and HKU10; NL63‐related
bat coronavirus strain BtKYNL63‐9a; Scotophilus bat coronavirus
512; Porcine coronavirus HKU15 (see the full table with their genome
identifiers in Data Availability). Multiple sequence alignment was cal-
culated by EMBL‐EBI’s MSA (multiple sequence alignment) tool
(https://www.ebi.ac.uk/Tools/msa/) using default parameters. A tree
was built using the neighbor‐joining method with the MEGA‐X soft-
ware [31], using the maximum composite likelihood model and
1000 bootstraps. The resulting tree was represented using the phylo-
gram format (i.e., a tree branch lengths are proportional to the amount
of inferred evolutionary change) [32].

4.2. Related genes identification

PubMed (version 2019‐12) was downloaded from its FTP site. Note
that no article mentioning SARS‐CoV‐2 (or its previous name 2019‐
nCoV) had been published before that date, meaning that our text min-
ing analysis did not directly consider the COVID‐19 disease. Instead, it
aims at predicting the network base on closely related viruses and their
7

physiology. More than 29 million abstracts were processed for
sentence and word tokenization by the natural language processing
tool Spacy (v2). Inputted keywords of interest (SARS, MERS, coron-
avirus, viral pneumonia, and HIV) were extracted by exact matches
to detect abbreviations or regression expressions to detect full names
or synonyms. Entity recognition for genes was proceeded by mapping
gene names and unambiguous synonyms from the HGNC database. Co‐
occurrence numbers were counted by the number of papers where a
pair of gene and an input entity was in one sentence. A list of related
genes ranked by sentence co‐occurrence numbers was obtained for
each of the five input entities. The final text‐mining resulting list
(the network shown in Fig. 2) was built from the whole list for SARS
and the top 10% of each of the other four lists.

Database search for related genes was performed by a program
developed in‐house, AutoSeed, which can search for disease‐related
genes in the following databases: DisGeNET [33], DrugBank [17],
KEGG [34], Malacards [35], eDGAR [36], NHGRI‐EBI GWAS‐Catalog
[37]. Note that this program was developed for all types of diseases,
and not specifically for viral diseases. Its function is to interrogate
all of these databases automatically and to return a list of related genes
sorted by the number of times they occur in those databases. Although
the GWAS‐Catalog is one of the resources of AutoSeed, for SARS and
MERS, because there are no published GWAS, the findings in that cat-
egory are, as expected, null. The final database‐based list was com-
posed of the whole list for SARS and the top 10% of each of the
other four lists.
4.3. Network building

Network building was performed automatically by another of our
in‐house program “AutoNet”, implemented on our drug discovery
cloud platform (CloudPhar: http://cloud.tasly.com/#/portalHome).
This algorithm is explained by a schematic diagram in Fig. 2B.

Data for this step includes a local meta‐pathway database for path-
way enrichment analysis and a meta‐PPI (protein–protein interaction)
database to grow the network. The meta‐pathway database is made of
human pathways in KEGG [34] and Reactome (v70) [38] databases,
after removing small pathways (less than five genes) and pathways
which enrich too easily, such as hsa05200: Pathways in cancer. The
meta‐PPI database is composed of protein–protein interaction data-
bases HPRD [39], BioGrid [40] (excluding genetic interactions), and
STRING [41] (excluding PPIs with confidence score <0.7).

The building process repeats network expanding, merging, and
pruning in an iterative manner. At the initial state, all seed genes are
considered as positive nodes where each seed gene is a subnetwork
(i.e., connected component) composed of one node. A dynamic path-
way collection for network building is initiated by a pathway enrich-
ment analysis (hypergeometric test, False Discovery Rate correction,
threshold: adjusted p‐value <0.001) for all positive nodes against
our meta‐pathway database. Here, a subnetwork is used to denote
any growing network during the network building process and to be
distinguished from our final network; a pathway means any pathway
from meta‐pathway databases (KEGG and Reactome). In each expand-
ing step, protein interactors of any positive nodes are added as tempo-
rary nodes according to our meta‐PPI database. In each merging step,
only the pair of subnetworks that share the most positive nodes and
temporary nodes are merged, while the other subnetworks wait to
be merged in the next iterations. In the subnetwork pruning step, those
temporary nodes which are not in any of the pathway collection in the
current state are removed. Remaining nodes become positive nodes,
and the dynamic pathway collection is updated by using pathway
enrichment analysis for all positive nodes.

Sub‐networks are grown until they cannot be further merged. At
last, if more than one subnetwork remains, only the largest connected

https://www.ebi.ac.uk/Tools/msa/
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component and any other subnetwork whose size is greater than 5% of
largest connected component’s size, are kept. In this study, only the
largest component was kept because the others were too small.
4.4. Network-based drug repurposing

After the network was built, core modules were detected (Fig. 2C),
using the Newman greedy heuristic algorithm [42], implemented in
igraph package (v1.2.4.2) in the R language (version 3.5.3). Potential
drugs were then mapped to the COVID‐19 network through drug‐
target interactions (source from DrugBank). As shown in Fig. 2D, dif-
ferent drugs can be linked to one or more different modules (shown
as colored areas) in the network. In order to find the maximum effec-
tive coverage of the core functional modules for each drug, we used a
proximity method with each drug proximity distance calculated as the
mean value of the shortest distances between any drug and each of the
core modules in the space (equation shown in Fig. 2D) [13].
5. Conclusion

In this study, we applied a network bioinformatics approach to
repurpose drugs for COVID‐19. Our seed genes (i.e., disease‐related
genes) resulted from our AutoSeed program ‐‐ a systematic text mining
and database search, while our protein network was built by AutoNet,
mainly based on knowledge of pathways, protein–protein interaction
and graph theory. Combining these results with module detection
and proximity analysis algorithms allowed us to identify 78 old drugs
repurposable for COVID‐19 disease. Finally, drug database search and
manual curation helped shorten our first list to a final list of 30 rapidly
repurposable drugs to be tested clinically and experimentally, possibly
as combination therapies to treat COVID‐19 patients.
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