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Abstract: NODULE-INCEPTION-like proteins (NLPs) are conserved, plant-specific transcription
factors that play crucial roles in responses to nitrogen deficiency. However, the evolutionary
relationships and characteristics of NLP family genes in Brassica napus are unclear. In this study,
we identified 31 NLP genes in B. napus, including 16 genes located in the A subgenome and 15 in the
C subgenome. Subcellular localization predictions indicated that most BnaNLP proteins are localized
to the nucleus. Phylogenetic analysis suggested that the NLP gene family could be divided into three
groups and that at least three ancient copies of NLP genes existed in the ancestor of both monocots
and dicots prior to their divergence. The ancestor of group III NLP genes may have experienced
duplication more than once in the Brassicaceae species. Three-dimensional structural analysis
suggested that 14 amino acids in BnaNLP7-1 protein are involved in DNA binding, whereas no
binding sites were identified in the two RWP-RK and PB1 domains conserved in BnaNLP proteins.
Expression profile analysis indicated that BnaNLP genes are expressed in most organs but tend to
be highly expressed in a single organ. For example, BnaNLP6 subfamily members are primarily
expressed in roots, while the four BnaNLP7 subfamily members are highly expressed in leaves.
BnaNLP genes also showed different expression patterns in response to nitrogen-deficient conditions.
Under nitrogen deficiency, all members of the BnaNLP1/4/5/9 subfamilies were upregulated,
all BnaNLP2/6 subfamily members were downregulated, and BnaNLP7/8 subfamily members showed
various expression patterns in different organs. These results provide a comprehensive evolutionary
history of NLP genes in B. napus, and insight into the biological functions of BnaNLP genes in response
to nitrogen deficiency.
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1. Introduction

Nitrogen is a primary nutrient that is critical for the survival of all living organisms.
The absorption and utilization of nitrogen directly affects plant growth and development, as well as
crop yields. During their long evolutionary history, plants have established complex and delicate
regulatory mechanisms to adapt to changes in nitrogen conditions in the external environment.
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The main forms of nitrogen in soil include nitrate nitrogen, ammonium nitrogen, amino acids, proteins,
and other nitrogenous substances. Nitrate nitrogen, the major form of nitrogen in soil, plays important
physiological and nutritional roles in plant growth and development [1]. Nitrate nitrogen uptake
and translocation in plant roots are mainly accomplished by nitrate nitrogen transporters (NRT) [2].
The first transporter identified to sense nitrate was the NRT1.1 in Arabidopsis thaliana, and the CIPK23
(a protein kinase) and CIPK8 can phosphorylate NRT1.1 to regulate the high- or low-affinity nitrate
response [3,4]. Meanwhile, several proteins are involved in nitrogen assimilation in plants exposed
to changing nitrogen concentrations, such as ammonium transporters (AMTs) and nitrate reductases
(NRs) [5–7]. Genes and transcription factors (TFs) involved in nitrate-signaling pathways play key roles
in nitrate absorption and assimilation [8]. NIN (NODULE INCEPTION) genes were first discovered as
being defective in bacterial recognition, infection thread formation, and nodule primordia initiation in
the lotus (Lotus japonicus), and the formation of rhizobia in leguminous species was later confirmed to
be dependent on the presence of NIN genes [9,10]. NIN genes encode nuclear-targeted DNA binding
proteins with bZIP domains and the most obvious feature of the NIN proteins is a strongly conserved
60-amino acid (aa)-long sequence, known as the RWP-RK (also known as the RWPxRK motif) sequence.
Moreover, a few genes that possessed high degree homology with NIN were identified in legumes,
named NLP (NIN-like proteins) [10–12]. Subsequent studies found that NLP genes widely exist among
non-nitrogen fixating plants, such as rice (Oryza sativa) and A. thaliana [10], but the NIN proteins seem
to be unique in legumes.

The NLP family is a plant-specific TF family, their proteins presented a homology to NIN not
only in the RWP-RK domain but also in N-terminal regions [10,13]. NLP proteins contain two
major conserved domains, the RWP-RK and PB1 (Phox and Bem1) domains. The RWP-RK domain
functions in the DNA binding domain whose activity is unrelated to nitrate signaling, whereas the
N-terminal regions of NLPs function as a transcriptional activation domain that mediates this signaling,
and the PB1 domain is involved in protein–protein interactions [14,15]. A highly conserved GAF
domain (a ubiquitous signaling motif and a new class of cyclic GMP receptor, which ensures the
normal functioning of photosensitizing light reversals and optical signal transduction [3]) was also
identified in the nitrogen termini of some NLP proteins, and may be related to signal transduction
or dimerization [3,16,17]. A. thaliana contains nine NLP genes [8], whereas lotus contains four NLPs
with a single NIN [13,18,19]. A number of NLPs have also been identified in maize (Zea mays) (nine),
sorghum (Sorghum bicolor) (five), and rice (six) [10,14,20]. Functional studies have shown that AtNLPs
play key roles in orchestrating primary nitrogen responses by binding to the nitrogen responsive
cis-elements (NREs) in the promoters of target genes [9,21,22]. AtNLP7 functions in nitrate-and nitrogen
starvation responses by binding to key nitrogen pathway genes, including ANR1, NRT1.1, NRT2,
and LBD37/38, thus moderating nitrogen assimilation and metabolism by transcriptionally activating
or suppressing downstream genes [23,24]. AtNLP8 regulates nitrate-promoted seed germination and
directly binds to the promoter of an abscisic acid (ABA) catabolic enzyme gene to reduce ABA levels in
a nitrate-dependent manner [19]. AtNLP6 and AtNLP7 proteins interact with the key transcriptional
regulator TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 under
nitrogen starvation and continuous nitrate treatment; these interacting regulators play a central role in
controlling the expression of nitrate-responsive genes [25]. Nitrate triggers nitrate-CPK (Ca2+-sensor
protein kinases)-NLP signaling and nitrate-coupled CPK signaling to phosphorylate NLPs, which play
a crucial role in nutrient-growth networks [26].

Brassica napus is one of the most important oilseed crops in non-nitrogen fixating plants.
This species was formed by the hybridization of two progenitor species, Brassica rapa and Brassica
oleracea [27,28]. NLP genes play important roles in nitrogen uptake and utilization, which are critical
for plant growth and development [10,14,20,29]. However, few studies have focused on identifying
NLP genes in B. napus. In this study, we identified 31 BnaNLP genes using nine AtNLP proteins from
A. thaliana as query sequences. We investigated the evolutionary relationships among NLP members
from nine plant species and evaluated the predicted three-dimensional structures of a representative
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NLP protein (BnaNLP7-1) in B. napus. We also examined the spatio-temporal expression patterns of
BnaNLP genes, as well as their expression under nitrogen deficient conditions, to reveal the relationship
between BnaNLPs and nitrogen deficiency responses. Our study provides insight into the evolution of
NLP proteins in plants and lays the foundation for elucidating the roles of NLPs in regulating nitrogen
responses in B. napus.

2. Results

2.1. Identification of NLP Genes in B. napus

Using the nine AtNLP protein sequences in A. thaliana as queries, 31, 17, and 8 NLP genes were
identified from B. napus, B. rapa, and B. oleracea, respectively. All Brassica NLP proteins share two
conserved domains: The RWP-RK and PB1 domains. The nomenclature used for Brassica NLP genes
was based on the corresponding AtNLP orthologs (Table 1 and Table S2). The number of amino acid
residues in the BnaNLP proteins ranged from 681 (BnaNLP3-1) to 978 (BnaNLP7-3), with an average of
845. The relative molecular weights (MWs) ranged from 76.37 (BnaNLP3-1) to 108.05 kDa (BnaNLP7-3).
The isoelectric points (pIs) were predicted to range from 4.98 (BnaNLP1-2) to 7.31 (BnaNLP3-1),
and only two members had pI values > 7 (BnaNLP2-4 and BnaNLP3-1). No transmembrane helix or
signal peptide was found in any BnaNLP protein (Table 1). Most BnaNLP proteins were predicted
to localize in the nucleus, while BnaNLP2-4 was predicted to localize on the chloroplast. In addition,
BnaNLP2-2 was predicted to be localized to the chloroplast and nucleus (Table 1), which is consistent
with the general nuclear localization of TFs.

2.2. Phylogenetic Analysis of BnaNLP Proteins

To clarify the evolutionary relationships between NLP proteins from A. thaliana and B. napus,
we aligned the sequences of 40 NLP proteins using AtANR1 as an outgroup. Based on previous
studies [8,10], NLP proteins were divided into three groups (Figure 1A), including the NLP1/2/3/4/5
clade (group I), the NLP6/7 clade (group II), and the NLP8/9 clade (group III). Group I contained
17 BnaNLPs, while groups II and III contained six and eight BnaNLPs, respectively. Both the BnaNLP4
and BnaNLP8 subfamilies contained six members, with more members compared to the other
BnaNLP subfamilies.

To further investigate the evolutionary relationships of NLP proteins in plants, we constructed
a larger neighbor-joining (NJ) tree based on the 99 NLP protein sequences from A. thaliana, B. napus,
B. rapa, B. oleracea, Amborella trichopoda, rice, grape (Vitis vinifera), maize, and sorghum (Figure 2).
The 99 plant NLP proteins were also classified into three groups. Group I was the largest clade,
containing 49 NLP members, including 36 NLPs in Brassicaceae. Group II was the smallest clade,
containing 23 NLP members, including 12 NLPs in Brassicaceae. Group III contained 26 NLP members,
including 16 NLPs in Brassicaceae. BnaNLP members first clustered with NLPs from two progenitors of
B. napus, followed by AtNLPs, forming a small Brassicaceae clade, and subsequently further clustered
with NLP members in V. vinifera to form a dicot clade. Finally, a large clade could be observed by
joining NLP proteins in dicot and monocot plants (Figure 2). In group I, the dicot clade was formed by
two subclades, the NLP1/2/3 and NLP4/5 subclades. In the NLP1/2/3 subclade, NLP1/2 members
in Brassicaceae first formed a small subclade clustered with VvNLP1 and then clustered with NLP3
members specifically in Brassicaceae. Plant NLP members were divided into three groups, with at
least one NLP member present in A. trichopoda, suggesting that at least three ancient NLP copies were
present in the ancestor before the monocot and dicot divergence.
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Table 1. List of BnaNLP genes identified in B. napus.

Gene Name
in B. napus

Gene ID in
B. napus

Gene ID in
A. thaliana Chromosome Position (bp) Number of

Introns
Protein

Length (aa)
Protein Molecular

Weight (kDa)
Protein Isoelectric

Point (pI)
Protein Subcellular

Localization

BnaNLP1-1 BnaC03g47510D AT2G17150 C03 32,561,336~32,565,236 3 870 95.78 5.1 Nucleus
BnaNLP1-2 BnaA07g03130D AT2G17150 A07 2,770,119~2,774,330 3 895 99.32 4.98 Nucleus
BnaNLP1-3 BnaA06g25930D AT2G17150 A06 17,936,012~17,942,485 3 872 96.02 5.18 Nucleus
BnaNLP1-4 BnaC07g06170D AT2G17150 C07 9,960,829~9,965,297 3 896 99.33 4.98 Nucleus
BnaNLP2-1 BnaA01g02150D AT4G35270 A01 1,061,127~1,065,935 4 889 98.91 6.87 Nucleus
BnaNLP2-2 BnaA03g53210D AT4G35270 A03 27,917,856~27,921,412 3 897 100.07 6.67 Nucleus
BnaNLP2-3 BnaC01g03280D AT4G35270 C01 1,694,787~1,699,810 3 966 107.19 5.92 Nucleus
BnaNLP2-4 BnaC07g45500D AT4G35270 C07 43,543,401~43,546,699 3 901 100.71 7.04 Chloroplast
BnaNLP3-1 BnaA06g40940D AT4G38340 A06 2,255,358~2,256,385 3 681 76.37 7.31 Nucleus
BnaNLP4-1 BnaA06g14540D AT1G20640 A06 7,867,109~7,871,401 3 814 91.05 5.59 Nucleus
BnaNLP4-2 BnaA07g11340D AT1G20640 A07 10,591,730~10,594,794 3 775 86.88 5.36 Nucleus
BnaNLP4-3 BnaA08g21720D AT1G20640 A08 15,991,108~15,994,588 4 764 85.19 5.61 Nucleus
BnaNLP4-4 BnaC05g16000D AT1G20640 C05 9,745,808~9,749,062 3 703 77.85 5.84 Nucleus
BnaNLP4-5 BnaC07g15260D AT1G20640 C07 21,212,376~21,215,440 3 769 86.07 5.47 Nucleus
BnaNLP4-6 BnaC08g19370D AT1G20640 C08 22,293,545~22,296,521 4 761 85.02 5.75 Nucleus
BnaNLP5-1 BnaA07g32630D AT1G76350 A07 22,548,833~22,552,146 3 802 89.64 5.89 Nucleus
BnaNLP5-2 BnaC06g37080D AT1G76350 C06 35,298,227~35,301,829 3 802 89.61 5.94 Nucleus
BnaNLP6-1 BnaA09g12180D AT1G64530 A09 6,394,926~6,398,454 5 822 91.48 5.56 Nucleus
BnaNLP6-2 BnaCnng38990D AT1G64530 Unknown 5 822 91.56 5.74 Nucleus
BnaNLP7-1 BnaA01g35090D AT4G24020 A01 386,973~387,241 5 934 102.95 5.5 Nucleus
BnaNLP7-2 BnaA03g46410D AT4G24020 A03 23,822,691~23,826,304 5 934 102.68 5.6 Nucleus
BnaNLP7-3 BnaC01g15850D AT4G24020 C01 10,891,090~10,895,162 5 978 108.05 5.96 Nucleus
BnaNLP7-4 BnaC07g38670D AT4G24020 C07 39,940,917~39,945,105 5 937 103.06 5.61 Nucleus
BnaNLP8-1 BnaA03g20260D AT2G43500 A03 9,638,886~9,642,606 5 895 98.71 5.41 Nucleus
BnaNLP8-2 BnaA04g25110D AT2G43500 A04 18,201,925~18,205,255 5 798 88.35 5.94 Nucleus
BnaNLP8-3 BnaA05g03380D AT2G43500 A05 1,878,196~1,880,941 4 809 89.36 5.94 Nucleus
BnaNLP8-4 BnaC03g24230D AT2G43500 C03 13,588,155~13,591,741 5 897 99.00 5.42 Nucleus
BnaNLP8-5 BnaC04g02980D AT2G43500 C04 2,115,457~2,118,921 5 799 88.08 5.92 Nucleus
BnaNLP8-6 BnaC04g48980D AT2G43500 C04 47,362,522~47,365,605 6 811 90.07 5.94 Nucleus
BnaNLP9-1 BnaA07g18430D AT3G59580 A07 15,037,510~15,041,748 6 852 94.09 5.47 Nucleus
BnaNLP9-2 BnaC06g17440D AT3G59580 C06 20,075,721~20,079,938 6 851 94.15 5.58 Nucleus
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Figure 1. Phylogenetic relationships, gene structures, and conserved motifs of NLP proteins in A. 
thaliana and B. napus. The amino acid sequences of AtNLPs and BnaNLPs were aligned using 
ClustalW2. (A) The phylogenetic tree was constructed using MEGA 7.0 with the neighbor-joining 
method (1000 bootstrap replicates) and displayed using FigTree v1.4.0. The 40 NLP proteins in A. 
thaliana and B. rapa are clustered into three distinct groups. The scale bar represents 0.05 kb. At: A. 
thaliana; Bna: B. napus; (B) gene structures generated using the Gene Structure Display Server. Exons 
(CDS) and introns are shown with yellow wedges and black lines, respectively. Numbers 0, 1, and 2 
represent introns in phases 0, 1, and 2, respectively; (C) conserved motifs of BnaNLP proteins 
identified by MEME. The motifs are indicated by colored boxes and their numbers are shown in the 
scale below the diagram; (D) sequences of the 15 conserved motifs in BnaNLPs identified in this study. 

Figure 1. Phylogenetic relationships, gene structures, and conserved motifs of NLP proteins in
A. thaliana and B. napus. The amino acid sequences of AtNLPs and BnaNLPs were aligned using
ClustalW2. (A) The phylogenetic tree was constructed using MEGA 7.0 with the neighbor-joining
method (1000 bootstrap replicates) and displayed using FigTree v1.4.0. The 40 NLP proteins in
A. thaliana and B. rapa are clustered into three distinct groups. The scale bar represents 0.05 kb.
At: A. thaliana; Bna: B. napus; (B) gene structures generated using the Gene Structure Display Server.
Exons (CDS) and introns are shown with yellow wedges and black lines, respectively. Numbers 0, 1,
and 2 represent introns in phases 0, 1, and 2, respectively; (C) conserved motifs of BnaNLP proteins
identified by MEME. The motifs are indicated by colored boxes and their numbers are shown in the
scale below the diagram; (D) sequences of the 15 conserved motifs in BnaNLPs identified in this study.
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Figure 2. Phylogenetic relationships between BnaNLPs and other plant NLP proteins. The 
phylogenetic tree was constructed using MEGA 7.0 with the neighbor-joining method (1000 bootstrap 
replicates) and displayed using FigTree v1.4.0. NLP proteins in the phylogenetic tree are clustered 
into three distinct groups. At: A. thaliana (marked in red), Bra: B. rapa, Bol: B. oleracea, Bna: B. napus 
(marked in blue), AmTr: A. trichopoda, Os: O. sativa, Vv: V. vinifera, Zm: Z. mays, Sb: S. bicolor. Groups 
I, II and III are indicated by a blue, red, and yellow background, respectively. 
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Chromosome location analysis revealed that 31 BnaNLP genes are located on 16 chromosomes 
in B. napus, with 16 genes in the A subgenome and 15 in the C subgenome (Figure 3, Table S2). Four 
BnaNLP genes were identified on chromosomes A06 and A07, and three were found on chromosomes 
A03 and C07. Two BnaNLP genes each were found on chromosomes A01, C01, C03, C04 and C06, and 
only one BnaNLP gene was found on chromosomes A04, A05, A08, A09, C05 and C08. No BnaNLP 
genes were found on chromosomes A01, A010, C01 and C09. In addition, all BnaNLP genes share 
syntenic relationships with NLP members in A. thaliana, B. rapa, and B. oleracea (Figure 4), and no 
tandemly duplicated BnaNLP family genes were identified. 

To explore the selective pressure on BnaNLP genes, we calculated the non-
synonymous/synonymous mutation ratio (Ka/Ks); Ka/Ks > 1 indicates positive selection, Ka/Ks = 1 
indicates neutral selection, and Ka/Ks < 1 indicates purifying selection [30]. The Ka/Ks ratio for all 
BnaNLP genes was <1, ranging from 0.0842 (BnaNLP4-1) to 0.5926 (BnaNLP8-4), indicating that these 
genes are functionally conserved (Table 2). A comparison of the Ka/Ks ratios of BnaNLP genes 
between the A and C subgenomes showed that the average Ka/Ks ratio was higher in the C 
subgenome (0.1901) than in the A subgenome (0.1728), suggesting that BnaNLP genes in the C 
subgenome experienced higher selection pressure during the evolutionary history of B. napus. A 
comparison of Ka/Ks ratios among the three groups indicated that the average Ka/Ks ratio in group 

Figure 2. Phylogenetic relationships between BnaNLPs and other plant NLP proteins. The phylogenetic
tree was constructed using MEGA 7.0 with the neighbor-joining method (1000 bootstrap replicates) and
displayed using FigTree v1.4.0. NLP proteins in the phylogenetic tree are clustered into three distinct
groups. At: A. thaliana (marked in red), Bra: B. rapa, Bol: B. oleracea, Bna: B. napus (marked in blue),
AmTr: A. trichopoda, Os: O. sativa, Vv: V. vinifera, Zm: Z. mays, Sb: S. bicolor. Groups I, II and III are
indicated by a blue, red, and yellow background, respectively.

2.3. Chromosome Location and Ka/Ks Ratio Calculation

Chromosome location analysis revealed that 31 BnaNLP genes are located on 16 chromosomes
in B. napus, with 16 genes in the A subgenome and 15 in the C subgenome (Figure 3, Table S2).
Four BnaNLP genes were identified on chromosomes A06 and A07, and three were found on
chromosomes A03 and C07. Two BnaNLP genes each were found on chromosomes A01, C01, C03,
C04 and C06, and only one BnaNLP gene was found on chromosomes A04, A05, A08, A09, C05 and
C08. No BnaNLP genes were found on chromosomes A01, A010, C01 and C09. In addition, all BnaNLP
genes share syntenic relationships with NLP members in A. thaliana, B. rapa, and B. oleracea (Figure 4),
and no tandemly duplicated BnaNLP family genes were identified.

To explore the selective pressure on BnaNLP genes, we calculated the
non-synonymous/synonymous mutation ratio (Ka/Ks); Ka/Ks > 1 indicates positive selection,
Ka/Ks = 1 indicates neutral selection, and Ka/Ks < 1 indicates purifying selection [30]. The Ka/Ks
ratio for all BnaNLP genes was <1, ranging from 0.0842 (BnaNLP4-1) to 0.5926 (BnaNLP8-4), indicating
that these genes are functionally conserved (Table 2). A comparison of the Ka/Ks ratios of BnaNLP
genes between the A and C subgenomes showed that the average Ka/Ks ratio was higher in the
C subgenome (0.1901) than in the A subgenome (0.1728), suggesting that BnaNLP genes in the
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C subgenome experienced higher selection pressure during the evolutionary history of B. napus.
A comparison of Ka/Ks ratios among the three groups indicated that the average Ka/Ks ratio in group
III was higher than that in groups I and II and that BnaNLP genes in group II had the lowest average
Ka/Ks ratio among the three groups (Table 2). Unlike the BnaNLP8 subfamily, most homologous
members in the remaining subfamilies possessed similar Ka/Ks ratios, suggesting that the homologous
genes in the BnaNLP8 subfamily might have been subjected to different evolutionary pressures after
the whole genome triplication (WGT) event in B. napus.

Table 2. Non-synonymous and synonymous nucleotide substitution rates between AtNLPs and the
corresponding orthologs in B. napus.

Group Gene ID in
A. thaliana

Gene ID in
B. napus Model Ka Ks Ka/Ks Average Ka/Ks

Group I

AT2G17150 BnaNLP1-1 NG 0.095573 0.381817 0.250311

0.169549

AT2G17150 BnaNLP1-2 NG 0.084925 0.375565 0.226126
AT2G17150 BnaNLP1-3 NG 0.094742 0.382276 0.247837
AT2G17150 BnaNLP1-4 NG 0.089774 0.376577 0.238395
AT4G35270 BnaNLP2-1 NG 0.064136 0.464096 0.138196
AT4G35270 BnaNLP2-2 NG 0.068387 0.409203 0.167123
AT4G35270 BnaNLP2-3 NG 0.063939 0.470639 0.135856
AT4G35270 BnaNLP2-4 NG 0.070692 0.431699 0.163754
AT4G38340 BnaNLP3-1 NG 0.123420 0.365014 0.338126
AT1G20640 BnaNLP4-1 NG 0.044027 0.522956 0.084189
AT1G20640 BnaNLP4-2 NG 0.057461 0.430702 0.133413
AT1G20640 BnaNLP4-3 NG 0.063875 0.37724 0.169322
AT1G20640 BnaNLP4-4 NG 0.056956 0.602642 0.094510
AT1G20640 BnaNLP4-5 NG 0.056344 0.418456 0.134646
AT1G20640 BnaNLP4-6 NG 0.063963 0.361807 0.176786
AT1G76350 BnaNLP5-1 NG 0.055669 0.60493 0.092026
AT1G76350 BnaNLP5-2 NG 0.057236 0.62409 0.091711

Group II

AT1G64530 BnaNLP6-1 NG 0.069587 0.545178 0.127642

0.103387

AT1G64530 BnaNLP6-2 NG 0.070799 0.519949 0.136166
AT4G24020 BnaNLP7-1 NG 0.027387 0.347158 0.07889
AT4G24020 BnaNLP7-2 NG 0.034582 0.363912 0.095029
AT4G24020 BnaNLP7-3 NG 0.029575 0.345875 0.085507
AT4G24020 BnaNLP7-4 NG 0.035223 0.3628 0.097086

Group III

AT2G43500 BnaNLP8-1 NG 0.083688 0.393217 0.212829

0.264202

AT2G43500 BnaNLP8-2 NG 0.105273 0.419328 0.251052
AT2G43500 BnaNLP8-3 NG 0.096503 0.434656 0.222021
AT2G43500 BnaNLP8-4 NG 2.395310 4.04226 0.592566
AT2G43500 BnaNLP8-5 NG 0.093713 0.471195 0.198883
AT2G43500 BnaNLP8-6 NG 0.107375 0.405135 0.265035
AT3G59580 BnaNLP9-1 NG 0.084630 0.469167 0.180383
AT3G59580 BnaNLP9-2 NG 0.089617 0.469558 0.190854
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Figure 3. Chromosomal distribution of BnaNLP genes in the B. napus genome. Chromosomal information
for BnaNLP genes was obtained from the B. napus genome annotation results and mapped to the
corresponding chromosomes. The scale bar indicates the genome size of B. napus.
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2.4. Gene Structure and Conserved Motif Analyses

To compare the exon/intron structures of AtNLPs and BnaNLP genes, we aligned the coding
sequences with their corresponding genomic sequences. Similar gene structures were not only observed
in homologous genes in B. napus, but they were also found within NLP homologs in B. napus and
A. thaliana (Figure 1B). Most BnaNLP members in groups I and II contain four exons and three introns,
while BnaNLP2-1/4-6/4-2 genes contain five exons and four introns. Most members in group III contain
at least six exons and five introns, except for BnaNLP8-3 (five exons and four introns) and BnaNLP8-6
and BnaNLP9 (seven exons and six introns each). The similar gene structures observed in the same
BnaNLP subfamilies are consistent with their phylogenetic relationships.

To better understand the structural diversity of BnaNLP proteins, we identified 15 putative motifs
in the proteins using the MEME/MAST program (Figure 1C,D). Motifs 1/2/3/4/5/7/9 were observed
in all 31 BnaNLP proteins, while motifs 6/10/12 were absent in BnaNLP4-4 protein, and motifs 8/11
were not detected in BnaNLP3-1 protein. While motifs 14/15 were detected in most BnaNLP proteins,
motif 14 was absent from the BnaNLP8 and BnaNLP9 subfamilies and motif 15 was absent from
BnaNLP4-3/4-6 proteins. Motif 13 was only detected in the BnaNLP7 subfamily.
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Sequence alignment showed that motif 1 is the conserved GAF domain. InterProScan annotation
showed that motif 2 is the RWP-RK domain, which plays a key role in N-mediated control
of development. Motif 6 is the PB1 domain, comprising approximately 80 amino acid residues.
BnaNLP proteins in the same group share similar motifs, suggesting that similar BnaNLP members
share conserved biological functions.

2.5. Prediction of TF Binding Sites in the BnaNLP Promoters

TF binding sites (TFBSs) are short, specific DNA sequences that bind with TFs to regulate
the transcription of genes. TFBS identification is a key step in understanding transcriptional
regulation mechanisms and establishing transcriptional regulatory networks. To further understand
the transcriptional regulation and potential functions of BnaNLPs genes, we screened for TFBSs in
the 2000-bp upstream promoter sequences of these genes using PlantPan2.0 [31]. Sixty-three types of
TFBSs were detected in the promoters of BnaNLP genes, involving 43 TF families (Table S3). TFBSs for
29 TF families were observed in all of the BnaNLP promoters, such as binding sites for AP2, GATA,
NAC, and MADS-box TFs. In addition, BnaNLP9-2 might be associated with physiological processes,
such as plant resistance and aging, and thus its promoter contained more binding sites for the WRKY
TFs compared with other family members (Table S3).

2.6. Three-Dimensional Structure Prediction

We predicted the three-dimensional structure of BnaNLP7-1 protein, a representative BnaNLP
proteins, using I-TASSER [32]. The best template used for the 3-D structure prediction was the
RNA-dependent RNA polymerases of transcribing cypoviruses [33]. The sequence identity between
BnaNLP7-1 and the 3JA4 template was 0.18 across the whole template. The coverage of the threading
alignment (equal to the number of aligned residues divided by the length of the query protein) was 0.96.
Alignment with a normalized Z-score > 1 indicates good alignment and vice versa. The normalized
Z-score of the threading alignments was 2.83, suggesting that good alignment was obtained in our
prediction. The modeled structure for BnaNLP7-1 has 31 α-helices and five β-strands (Figure 5A).
The RWP-RK domain contains two α-helices (α18 and α19), while the PB1 domain contains five α-helices
(α27, α28, α29, α30, and α31). The two conserved domains also possess many loops and lack β-strands.

NLP proteins are plant-specific TFs that play key roles in regulating Nitrogen responses. To gain
deeper insight into their biological function, COFACTOR and COACH [33] were used to predict the
binding activities of the BnaNLP proteins with the promoters of downstream genes. The 2r7rA ligand
(PBD: 2r7rA) [34] was used to bind BnaNLP7-1 protein as the nucleic acid substrate. The docking results
showed that Gln320, Ala322, Leu323, Gln343, Thr344, Trp345, Gly369, Asp381, Ala383, Ala499, Ser500,
Gly501, Phe767, and Pro768 are involved in ligand binding (Figure 5C). Interestingly, the binding
of BnaNLP7-1 and a nitrogen deficiency-responsive cis-element form a ring that associates with
polymerase II transcription (Figure 5D). No binding ability was detected for two conserved domains
(RWP-RK and PB1) due to the lack of a binding site in their sequences, suggesting that those two
conserved domains not function in ligand binding.
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Figure 5. Predicted 3D structures of BnaNLP7-1 protein. The models were obtained using I-TASSER.
tRNA-dependent RNA polymerases of transcribing cypoviruses (PDB ID: 3JA4) were used as the
template for 3D structure predication. (A) 3D structure of BnaNLP7-1 protein; (B) template model
of 3JA4 and 3D structure of BnaNLP7-1 protein; (C,D) binding between the BnaNLP7-1 dock and its
nucleic acid substrate (PBD: 2r7rA); (C) the conserved PWP-PK domain and PB1 motifs are shown
on the 3D structure in red and blue, respectively. The surface of the nucleic acid substrate is shown
in purple. (D) The conserved PWP-PK domain and PB1 motifs are shown in red on the 3D structure.
α-helices, β-strands, and random coils are indicated in green, yellow, and navy blue, respectively.
All images were generated using Chimera 1.2.

2.7. Organ-Specific Expression Patterns of BnaNLP Genes

To investigate the organ-specific expression profiles of the BnaNLP genes, we subjected 17 types
of organ to RNA-seq. Calculation of the expression levels of the BnaNLP genes revealed diverse
expression patterns in different subfamilies (Figure 6). Four BnaNLP1 subfamily members were
highly expressed in silique pericarps (SP) at 30 days after flowering (DAF), especially BnaNLP1-1 and
BnaNLP1-3. Four BnaNLP2 subfamily members and BnaNLP3 were expressed at extremely low levels
in all organs examined. BnaNLP4-1, BnaNLP4-4, BnaNLP8-1, BnaNLP8-4, BnaNLP9-1 and BnaNLP9-2
were expressed at high levels in seeds at 40 and 3 DAF. Two BnaNLP5 genes were strongly expressed
only in seeds at 46 DAF. Unlike the abovementioned subfamilies, two BnaNLP6 subfamily members
were mainly expressed in roots, and four BnaNLP7 subfamily members were highly expressed in
leaves. These results indicate that most BnaNLP genes were expressed at different levels in different
organs and were preferentially expressed in specific organs.
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Figure 6. Organ-specific expression profiles of BnaNLP genes. Organ-specific expression patterns of
BnaNLP genes were obtained based on the RNA-seq data. The color bar at the upper right side of
the figure represents Log2 (FPKM + 1), with blue representing little or no expression. Ro_48h: Roots
collected at 48 h after germination; Hy_48: Hypocotyls harvested at 48 h after germination; Co_48h:
cotyledons collected at 48 h after germination; Ro, St, Le, Bu and Fl: Roots, stems, leaves, buds and
flowers harvested at the initial blooming stage; Se_10d, Se_20d, Se_40d and Se_46d: Seeds harvested at
10, 20, 40, and 46 days after flowering; SP_10d, SP_20d, SP_30d, SP_40d, and SP_46d: Silique pericarps
harvested at 10, 20, 30, 40, and 46 days after flowering.

2.8. Expression Patterns of BnaNLP Genes under Nitrogen Deficiency

To investigate the expression patterns of BnaNLP genes under nitrogen deficiency, seedling leaves
(SLs) and (seedling roots) SRs were harvested at various time points (0 to 72 h) after culturing in
Hoagland nutrient solution with or without Nitrogen. In SLs, BnaNLP8-3, BnaNLP8-4, BnaNLP8-5,
BnaNLP9-1, BnaNLP1, BnaNLP4, and BnaNLP5 subfamily members were upregulated under nitrogen
deficiency treatment, while other members were downregulated (Figure 7). Most BnaNLPs were
significantly upregulated or downregulated after 48–72 h of nitrogen deficient treatment, except for
BnaNLP1-1 and BnaNLP8-4. In addition, a few genes were upregulated immediately after treatment
and subsequently downregulated after 6 to 18 h, such as BnaNLP6-1 and BnaNLP8-1.

Interestingly, the responses of most BnaNLP genes in SRs to nitrogen deficiency treatment were
highly similar to those in SLs (Figures 7 and 8). BnaNLP1-3 and BnaNLP1-4 were the most sensitive
genes to nitrogen deficiency treatment in SLs, whereas BnaNLP4-3 was most sensitive to this treatment
in SRs (Figures 7 and 8). Among the four BnaNLP7 subfamily members, three (BnaNLP7-1, BnaNLP7-3,
and BnaNLP7-4) were downregulated after treatment in SLs, while BnaNLP7-2 was upregulated
(Figure 7). BnaNLP7-1/3 were downregulated and BnaNLP7-2/4 were upregulated after treatment in
SRs. In general, members of the same subfamily often shared similar expression patterns, except for
members of the BnaNLP7/8 subfamilies, consistent with their phylogenetic relationships.
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Figure 7. Expression profiles of BnaNLP genes in SRs under normal and nitrogen deficient conditions.
Relative expression levels of BnaNLP genes were determined by RT-qPCR. SRs were collected under
normal growth and nitrogen deficient conditions at 0, 6, 12, 24, 48, and 72 h after treatment. * represents
the significant level, ** represents the extremely significant level.
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Figure 8. Expression profiles of BnaNLP genes in SLs under normal and nitrogen deficient conditions.
Relative expression levels of BnaNLP genes were determined by RT-qPCR. SRs were collected under
normal growth and nitrogen deficient conditions at 0, 6, 12, 24, 48 and 72 h after treatments. * represents
the significant level, ** represents the extremely significant level.
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3. Discussion

3.1. Characterization of the NLP Gene Family in B. napus

Previous studies have revealed nine NLP family genes in Arabidopsis [8] and maize [17], six in
rice [14], and five in sorghum [10]. In this study, we identified 31 BnaNLP family genes in B. napus.
The BnaNLP gene family is larger than the NLP gene family in other plant species, because B. napus
experienced an extra WGT and merging events [35]. Interestingly, NLP family genes have showed
long protein residues and slightly lower pI values in several species [10,14,20,29]. Similar results
were also detected in BnaNLP genes (Table 1), which illustrated that this TFs prefer to be active in
acidic conditions. In maize, most ZmNLP genes possessed four to six exons, with the exception of
ZmNLP1 which contained seven exons [20]. Similarly, for NLP genes in Populus trichocarpa, most NLP
also contained four to six exons, except for PtrNLP1 (two exons) and PtrNLP4 (seven exons) [29].
In this study, different gene structures were found among BnaNLP family members, and group I
and II members had fewer exons (four to five) than group III members (five to six, BnaNLP8-6 and
BnaNLP9 possessed seven exons), implying structural diversification among the BnaNLP subfamilies.
NLP proteins contain two conserved domains, RWP-RK and PB1. All BnaNLP proteins identified in
this study contain two domains, except for BnaNLP4-4, which contains only the RWP-RK domain.
Sequence analysis of BnaNLP4-4 indicated that more than 50 amino acids (including the PB1 domain)
are absent in its C-terminus, which was caused by sequence fragmentation in the evolution or
sequencing error in the B. napus genome. The RWP-RK domain contains a helix-turn-helix motif
and an amphipathic leucine zipper, which might be involved in DNA binding [10,11]; further studies
showed that its activity is unrelated to nitrate signaling, whereas the N-terminal regions of NLPs
function as a transcriptional activation domain to mediate this signaling [22]. However, our docking
results suggested that this domain may not be involved in the binding of NLP protein with nucleic
acids. The PB1 domain contains two α-helices and a mixed five-stranded β-sheet, which might play a
key role in its protein-binding ability [15]. We found that the PB1 domain acts like a switch, which may
involve controlling the initiation or stopping the binding process. Hence, the biological function of the
PB1 domain in the protein binding process deserved further elucidation.

Previous studies suggested that the structurally characterized GAF domains bind with
low-molecular-weight ligands, including cGMP, 2-oxoglutarate, nitric oxide and nitrate, or serve
as homodimerization modules associated with gene regulation in organisms ranging from bacteria to
higher plants [3,36,37]. Due to the limitation of sequence identity between BnaNLP7-1 and the template,
the binding site for GAF domain was not identified in our docking results. But we found the conserved
sensing and signaling GAF domain in all BnaNLP proteins. Although legumes have specifically
evolved as the NIN gene with functional responsibility for symbiotic nitrogen fixation, the presence of
these three domains (GAF, RWP-RK, PB1) allows the NLPs to function in various aspects of nitrogen
responses in non-nitrogen fixating plants, including nitrogen sensing, transcriptional modulation,
and signal transduction [20]. In this study, all BnaNLP proteins possessed the three domains (besides
BnaNLP4-4), reflecting the pivotal roles of BnaNLP proteins in rapid response and adaptation to
nitrogen deficiency in B. napus.

3.2. Phylogenetic Relationship and Duplication Analysis of BnaNLPs

At least three ancient copies of NLP genes are thought to have existed in the ancestor of monocots
and dicots [10], and two NLP genes have experienced one round of duplication in Arabidopsis,
whereas the third gene has undergone several rounds of duplication since the divergence of eudicots
and monocots. Our phylogenetic analysis of NLP genes in nine plant species provided evidence for the
hypothesis that the ancestor of monocots and dicots contained at least three NLP gene family members
(Figure 2), since there is at least one NLP gene in each of three NLP groups in A. trichopoda. Our results
suggest that the ancestor of NLPs in most plant species has experienced one round of duplication,
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while the ancestor of NLPs in group III may have been duplicated more than once in the Brassicaceae
lineages, perhaps due to the WGT event that have occurred in Brassicaceae species.

In general, B. rapa and B. oleracea contain three syntenic copies of each A. thaliana gene [28,29] and
B. napus contains six, since it was generated from B. rapa and B. oleracea [35]. In this study, 0–2 copies
of each NLP gene were identified in B. rapa and B. oleracea and 1–6 copies were identified in B. napus,
perhaps due to genome shrinkage or gene loss after WGT. We detected 31 syntenic copies of BnaNLP
genes and 16 syntenic copies of BraNLP genes in ancient WGT blocks, suggesting that the NLP gene
family in the A subgenome of Brassica crops is highly conserved. However, 14 syntenic gene copies
were found in ancient WGT blocks in B. oleracea, only eight of which contained both the RWP-RK and
PBl domains, perhaps due to assembly errors of B. oleracea genome.

3.3. Expression Profiling and Response of Genes to Nitrogen Deficient Conditions

The expression patterns of NLP genes in different organs have been investigated in several plants.
In rice and Arabidopsis, NLPs are expressed in almost all organs [14]. AtNLP8 and AtNLP9 are
preferentially expressed in senescent leaves and seeds and are expressed at moderate or very low levels
in other organs [14]. In rice, OsNLP1 and OsNLP3 are highly expressed in source organs, representing
the most abundant OsNLP transcripts [14]. NLPs in P. trichocarpa are highly expressed in leaves, roots,
male catkins, xylem, seeds, and female catkins [29]. In this study, we found that most BnaNLP genes
were expressed in leaves, while only the four BnaNLP7 subfamily members were highly expressed in
leaves (Figure 6). Similar to previous reports, the accumulations of BnaNLP genes in leaves might also
be used for storing nitrogen to coordinate leaf expansion and photosynthetic capacity, and nitrogen
supply can improve their storage to promote leaf growth and biomass [38]. BnaNLP1 genes were
highly expressed in silique pericarps, the main source organ during the podding stage in B. napus,
suggesting that BnaNLP1 subfamily members may be involved in nitrogen storage or supply mainly in
silique pericarps. In addition, six NLPs (BnaNLP4-1, BnaNLP4-4, BnaNLP8-1, BnaNLP8-4, BnaNLP9-1,
and BnaNLP9-2) were strongly expressed in seeds at 40 and 46 DAF, suggesting that these genes
may function in nitrogen assimilation during seed maturation. BnaNLP6 subfamily members were
primarily expressed in roots, which is similar to the expression patterns of NLP genes in maize [20].
Different from nitrogen-fixing plants, the sources of nitrogen in Brassica species are mainly based on the
absorption of nitrate nitrogen in soil though roots [2,39]; the strong expression of BnaNLP6 subfamily
in root may reflect the important roles of BnaNLP6 in nitrogen absorption in roots of B. napus. We found
that members of the same subfamily share similar expression profiles, including BnaNLP1, BnaNLP2,
BnaNLP5, BnaNLP6, BnaNLP7 and BnaNLP9 subfamilies, suggesting basic functional conservation
within each subfamily [14]. However, members of the BnaNLP4 or BnaNLP8 subfamily showed
less similar expression profiles and some of them are not expressed at any organs, illustrating that
nonfunctionalization or subfunctionalization occurred in the two BnaNLP subfamilies.

Nitrogen deficiency treatment can trigger rapid, extensive transcriptional changes of genes
involved in a wide range of cellular and physiological processes [40,41]. In the current study,
most BnaNLP genes were up- or down-regulated under nitrogen deficiency treatment in both SLs
and SRs, due to the specific functions in nitrogen remobilization during nitrogen deficiency [42].
These upregulated BnaNLP genes may play key roles in the distribution and remobilization of
nitrogen in response to the short-time demand for nitrogen during nitrogen deficiency. Interestingly,
the induction of BnaNLP genes was slower than that observed for the homologs in maize, which were
up/downregulated within 2 h of nitrate treatment [20], pointing to different nitrogen utilization
mechanisms between B. napus and maize.

In Arabidopsis, AtNLP7 regulates nitrate and nitrogen starvation responses [9] and was identified
in a genetic screen for regulators of the primary nitrate response [2]. AtNLP7 binds to the promoters of
851 genes in response to nitrate signals, binding preferentially to the transcriptional start sites of target
genes. Moreover, the accumulation of AtNLP7 in the nucleus occurs independently of transcriptional
regulation, and inhibiting nuclear export mimics the nitrate signal [24]. In this study, we identified
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four BnaNLP7 subfamily members. Of these, three (BnaNLP7-1/7-3/P7-4) were downregulated
and only the BnaNLP7-2 expression was upregulated in SLs after nitrogen deficiency treatment
(Figure 7). However, BnaNLP7-1/7-3 were downregulated and BnaNLP7-2/7-4 were upregulated in SRs
after nitrogen deficiency treatment, suggesting that BnaNLP7 subfamily members have experienced
subfunctionalization during the polyploidy evolution of B. napus. The three different expression
patterns in BnaNLP7 subfamily (upregulated in both SLs and SRs (BnaNLP7-2), downregulated in
both SLs and SRs (BnaNLP7-1/7-3) and the exhibition of opposite regulated patterns in SLs vs. SRs
(BnaNLP7-4)) point to the presence of at least three types of molecular mechanisms that function in
response to nitrogen deficiency. Based on functional studies of AtNLP7, it could be speculated that there
might be at least three groups of genes which are regulated by different BnaNLP7 subfamily members.
Under the condition of nitrogen deficiency, upstream nitrogen signaling pathway genes activate
different BnaNLP7 subfamily members in different organs, then the post-translationally activated
BnaNLP7 regulate the expression of nitrate-inducible assimilation and downstream regulatory genes
through interaction with NREs to improve the nitrogen absorption in roots and nitrogen assimilation
in whole B. napus plants.

In summary, we found that BnaNLP genes have various expression patterns and most of them
are extremely sensitive to nitrogen deficiency. This provides insights into the biological functions of
BnaNLP genes in response to nitrogen deficiency.

4. Materials and Methods

4.1. Plant Materials and Treatments

Seeds of Brassica napus cultivar ZS11 were germinated in plant growth chambers (under a 16 h
photoperiod at 25/18 ◦C day/night, 60% humidity, 250 µmoles/m2/s; PGC Flex, Conviron, MB,
Canada) and transplanted into a field in Chongqing, China. To detect the expression patterns of
BnaNLP family members in different organs, root (Ro), hypocotyl (Hy), and cotyledon (Co) organs
were collected at 48 h after seed germination. Ro, stem (St), mature leaf (Le), bud (Bu), and flower
(Fl) organs were harvested at the initial blooming stage, while seeds (Se) were harvested at 10, 20,
40, and 46 DAF, and silique pericarps (SP) were harvested at 10, 21, 30, 40, and 46 DAF in the field.
Two biological replicates per sample were collected for RNA sequencing (RNA-seq) analysis.

To investigate the expression patterns of BnaNLP genes under nitrogen deficiency, B. napus
seedlings were cultivated in pots in full-strength Hoagland solution without sand as a substrate in a
plant growth chamber with a thermo-photoperiod of 25 ◦C for 16 h/18 ◦C for 8 h (light/dark) [43].
One-month-old seedlings were transferred into new full-strength Hoagland solution or modified
N-deficient Hoagland nutrient solution for treatment. All nutrition solutions were renewed every
3 days. Three biological replicates of SLs and SRs were harvested after 0, 6, 18, 24, 48, and 72 h of
treatment. All samples were immediately frozen in liquid nitrogen and stored at −80 ◦C.

4.2. Identification of NLP Family Genes in Plants

Genomic, coding sequences, and protein sequences from A. thaliana, B. napus, B. rapa, and B. oleracea
were downloaded from the Arabidopsis Information Resource (TAIR, http://www.arabidopsis.org) and
the Brassica Database (BRAD, http://brassicadb.org/brad). Sequences from A. trichopoda, rice, maize,
sorghum, and grape were obtained from Phytozome 12.0 (www.phytozome.net).

To identify NLP genes in these species, nine NLP protein sequences from Arabidopsis were used as
queries in a reciprocal Basic Local Alignment Search Tool Protein (BLASTP) analysis [44,45] using the
threshold and minimum alignment coverage parameters described previously [46]. All NLP protein
sequences were further analyzed using PfamScan (http://www.ebi.ac.uk/Tools/pfa/pfamscan/) to
confirm the presence of two NLP-related domains, RWP-RK (PF02042) and PBl (PF00564), with an
e-value cut-off of 1 × 10−5.
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4.3. Phylogenetic Analysis of the NLP Family in B. napus

Multiple sequence alignments of NLP coding sequences between B. napus and A. thaliana and of
protein sequences in the nine plant species (A. thaliana, B. napus, B. rapa, B. oleracea, rice, maize, sorghum,
grape and A. trichopoda) mentioned above were conducted using ClustalW2 with default parameters
(http://www.genome.jp/tools-bin/clustalw). The phylogenetic trees were generated using the
Molecular Evolutionary Genetics Analysis (MEGA) 7 program (Tokyo Metropolitan University, Tokyo,
Japan) [47] with the NJ method, the p-distance + G substitution model, 1000 bootstrap replications,
and conserved sequences with a coverage of 70%. The phylogenetic trees were visualized using FigTree
v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). The coding sequence alignments were imported
into KaKs_calculator2.0 (Chinese Academy of Sciences, Beijing, China) to calculate the synonymous
mutation rate (Ks) and non-synonymous mutation rate (Ka) using the NG method [22].

4.4. Chromosomal Locations and Protein Property Analysis

Chromosomal locations of the BnaNLP genes and the orthologous relationships between A. thaliana
and Brassica species were determined based on the results of reciprocal BLASTP analysis and the
general feature format (GFF) files downloaded from the Brassica database (http://brassicadb.org/
brad). The chromosome distribution was plotted with MapChart2.0 (https://mapchart.net/) [48].

The molecular weight (MW) and isoelectric point (pI) of each BnaNLP protein were predicted
using the ExPASy server (http://expasy.org). The transmembrane transport peptides were predicted
using Tmpred [49], and signal peptides were predicted using SignalP4.1 (http://www.cbs.dtu.
dk/services/SignalP/) [50]. Subcellular localization of BnaNLP was predicted using an extensive
high-performance subcellular protein localization prediction system MultiLoc2.0 server (http://abi.inf.
uni-tuebingen.de/Services/MultiLoc2/) by incorporating phylogenetic profiles and Gene Ontology
terms [51], with the predictive method MultiLoc2-HighRes (Plant), 10 Localization. Gene Structure
Display Server (GSDS 2.0, http://gsds.cbi.pku.edu.cn) was used to display the exon/intron structures
of BnaNLP genes.

4.5. Motif Identification and TF Binding Site Analysis

Conserved motifs in the proteins were identified using the Expectation Maximization for Motif
Elucidation program (MEME v4.12.0, http://meme-suite.org) with the following parameter settings:
The maximum number of motifs was 15, and the optimum width was set from 6 to 200. Only motifs
with an e-value of 1e-10 were retained for further analysis. The promoter sequences (2-kb upstream
region) of the BnaNLP genes were obtained from the B. napus genome (http://www.genoscope.cns.fr/
brassicanapus). PlantPAN2.0 (http://plantpan2.itps.ncku.edu.tw) was used to analyze TF binding
sites (TFBSs).

4.6. Three-Dimensional Structure Prediction of BnaNLP7-1

The three-dimensional (3D) structure of BnaNLP7-1 protein was predicted using the I-TASSER
program (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) [32]. To identify the best structural
template for BnaNLP7-1 in the Protein Data Bank (PDB) database [52], the query sequence was
subjected to multiple rounds of threading using LOMETS [53]. RNA-dependent RNA polymerases
of transcribing cypoviruses (PDB ID: 3JA4) [33] were the best structural template for our queried
protein. The newly generated 3D model was aligned to the template using TM-align, and COFACTOR
was used to predict the binding sites of ligands to the protein structure [54,55]. Chimera 1.2 (https:
//www.cgl.ucsf.edu/chimera/) was used to examine and visualize the newly generated 3D model
of BnaNLP7-1.
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4.7. RNA Isolation, RNA-Sequencing, and Quantitative Reverse-Transcription PCR

Total RNA was extracted from the organ using an RNA Extraction Kit (Tiangen, Beijing, China),
and cDNA was synthesized from 1 µg of total RNA using M-MLV transcriptase (TaKaRa Biotechnology,
Dalian, China) according to the manufacturer’s instructions.

To determine the organ-specific expression profiles of BnaNLP genes, publicly available B. napus
RNA-seq data (BioProject ID PRJNA358784) were used to quantify the expression levels of the B. napus
genes in different organs as fragments per kilobase of exon per million reads mapped (FPKM) values
using Cufflinks with default parameters. Two independent biological replicates were analyzed per
sample. The expression values of the 31 BnaNLP genes were extracted from the RNA-seq results and
normalized by Log2 (FPKM + 1).

Reverse transcription quantitative PCR (RT-qPCR) was performed on a Bio-Rad CFX96 Real Time
System (USA) according to a previously described method [20]. Gene-specific primer sequences for the
BnaNLP genes were obtained from the qPrimerDB database [56]. (Table S1). Each reaction was carried
out in biological triplicate in a reaction volume of 20 µL containing 1.6 µL of gene-specific primers
(1.0 µM), 2.0 µL of cDNA, 10 µL of SYBR green, 0.2 µL of ROX Reference Dye II, and 6 µL of sterile
distilled water. The PCR program was as follows: 95 ◦C for 3 min; 45 cycles of 10 s at 95 ◦C and 30 s at
60 ◦C; and then melt curve 65 ◦C to 95 ◦C, increment 0.5 ◦C for 5 s. Melting curves were generated to
estimate the specificity of these reactions. Relative expression levels were calculated using the 2−∆∆Ct

method, with BnaACT7 and BnaUBC21 used as internal controls [57].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/8/
2270/s1.
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