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A key goal in human-robot interaction (HRI) is to design scenarios between humanoid

robots and humans such that the interaction is perceived as collaborative and natural,

yet safe and comfortable for the human. Human skills like verbal and non-verbal

communication are essential elements as humans tend to attribute social behaviors to

robots. However, aspects like the uncanny valley and different technical affinity levels can

impede the success of HRI scenarios, which has consequences on the establishment of

long-term interaction qualities like trust and rapport. In the present study, we investigate

the impact of a humanoid robot on human emotional responses during the performance

of a cognitively demanding task. We set up three different conditions for the robot with

increasing levels of social cue expressions in a between-group study design. For the

analysis of emotions, we consider the eye gaze behavior, arousal-valence for affective

states, and the detection of action units. Our analysis reveals that the participants display

a high tendency toward positive emotions in presence of a robot with clear social skills

compared to other conditions, where we show how emotions occur only at task onset.

Our study also shows how different expression levels influence the analysis of the robots’

role in HRI. Finally, we critically discuss the current trend of automatized emotion or

affective state recognition in HRI and demonstrate issues that have direct consequences

on the interpretation and, therefore, claims about human emotions in HRI studies.

Keywords: human-robot interaction, social robots, cognitive load, affective states, action units

1. MOTIVATION AND RELATED WORK

The field of human-robot interaction (HRI) has manifold facets from robotic design to safe
and intuitive collaborations between the robot and the human. The ultimate goal of HRI is to
embed robotic agents naturally in the human environment to facilitate everyday life in domestic
environments, health care, and education. Fundamental questions of how to implement important
insights from psychology, social, and cognitive sciences for positively perceived interactions
culminated in the research area of social robotics. In this area, a robot is not only assumed
to perform monotone tasks as seen in industry applications but elicits so-called social cues or
social signals (Poggi and D’Errico, 2012) and is physically embodied in the interaction with a
human (Wainer et al., 2006). Important cues are the eye gaze (Admoni and Scassellati, 2017) or
joint attention (Tan et al., 2020; Stephenson et al., 2021), and verbal communication to initiate
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task engagement (Castellano et al., 2012). Other significant
behaviors include gestures (Barros et al., 2014), head movements
(e.g., nodding) (McGinn, 2020; a recent survey on nonverbal
communication in HRI; Clark and Ahmad, 2021) and facial
expressions such as smiling. A robot displaying social cues has
a fundamental impact on its anthropomorphic design and its
humane appearance. Studies have shown that a “human-like”
robot increases its acceptance as a valid HRI partner (Fink,
2012) correlated with a higher agreement concerning perceived
intelligence and likability (Salem et al., 2013; Hoffmann et al.,
2020). Furthermore, the anthropomorphism and display of social
cues positively influence a human’s trust in a robot (Gaudiello
et al., 2016; Natarajan and Gombolay, 2020; Babel et al., 2021;
a recent survey by Naneva et al., 2020). Moreover, socially-
behaving robots can boost task performance in collaboration
with Vasalya et al. (2018) or cognitive tasks like the Stroop test
(Spatola et al., 2019) or the Eriksen flanker test (Spatola et al.,
2020)1 (recent meta-analysis is provided by Roesler et al., 2021).
However, experimental settings between a human and a socially-
behaving, human-like robot in HRI are prone to fall into the
uncanny valley (Mori, 1970; Laakasuo et al., 2021). Humans also
tend to project expectations on a social robot (Ghiglino et al.,
2020) tied with an overestimation of their actual skills. Failure
e.g., natural dialogue negatively affects prospect interactions
(Schramm et al., 2020). Moreover, HRI research showed that the
attribution of personality traits like extroversion or dominance
to the robot can serve as predictors of their social acceptance
(Woods et al., 2005; Mileounis et al., 2015; Dou et al., 2019;
Tanevska et al., 2019; Mou et al., 2020). Based on the similarity-
complementary hypothesis, it remains inconclusive whether
humans do prefer robots with similar personality characteristics
or not (Esterwood et al., 2021) and whether the personality
preference is task-dependent (Joosse et al., 2013).

Human behaviors, when exposed to robot platforms in
everyday life situation, has been usually evaluated using standard
statistical tools and questionnaires as well as human behaviors
such as eye gaze patterns, blink frequency, and reaction times.
Also, multimodal approaches which include physiological signals
like changes in the electrodermal activity and heart rates are
applied. Although these tools allow the identification of affective-
related responses such as stress, e.g., increased blinking, the usage
of external sensor devices for eye tracking or skin conductance
can impede a clean analysis. Additionally, statistical assumptions
like normally distributed data or linear relationships as in
regression models may not hold. Therefore, it is desirable
to extract critical human affective features automatically from
intuitive interfaces like cameras. In the last years, the release of
publicly open huge face databases (Guo et al., 2016) together with
the facilitated usage of deep learning architectures thanks to GPU
computing has laid the foundation to a new research are called
“Affective Computing”. Researchers in this field work at the
interdisciplinary border of social and developmental psychology,
neuro, and computer science and develop computational models

1The two tests used in cognitive psychology present congruent and incongruent
stimuli; for instance, the word “blue” is written in green color (Stroop). The goal is
to test for cognitive skills like selective attention.

capturing human affective states and emotional responses. For
HRI, the analysis of human affective states allows further insight
into the level of anthropomorphism in humanoid robots to
avoid the uncanny valley effect. It helps to shape interaction
scenarios where negative emotional states like frustration or
stress can be detected online, giving a robot the possibility
to intervene immediately by displaying a smile or increasing
the distance to the human to create a better comfort zone.
Affective state and emotional facial expression recognition
are also vital to foster HRI toward trust (Gaudiello et al.,
2016), engagement (Kompatsiari et al., 2017; Babel et al.,
2021), and rapport (Hoffmann et al., 2020), targeting long-term
relationships between a human and a robot. The most prominent
features in HRI for detecting affective states or emotions in facial
expressions are arousal and valence (McColl et al., 2016), and so-
called action units (Liu and Kappas, 2018; van Eijndhoven et al.,
2020).

Our study extends a recent study by Aoki et al. (2022), which
explored the effects on humans performance given a cognitively
demanding task (MATB) in two conditions, i.e., in presence of
a social vs. a non-social robot. As a robotic platform, we chose
the humanoid icub robot, whose appearance resembles a child of
around 3 years. The icub robot is equipped with a full body and
has sensors such as a camera, and microphone/speaker, and can
display facial expressions via LEDs installed into the icub head.
A full overview of the icub robot platform is provided in Metta
et al. (2008) and references therein. The behaviors shown by the
icub robot during the experiments featured gestures and body
movement, either with or withoutmeaning (e.g., pointing gesture
vs. random armmovement), speech parts at the start and the end
(additionally after a task onset in the social condition) and display
of emotions in the icub robot face. We found evidence that the
presence of a social robot positively affects task performance
supported by a reduced completion time and mental workload.
Additionally, the participants attributed higher intelligence to
the socially-behaving robot and reported to have enjoyed the
interaction more (Aoki et al., 2022).

In this study, we build on our recent study and evaluate
the progress of affective states and emotions elicited by
facial expressions of humans performing the MATB task in
three different conditions: the baseline which is called “no-
robot,” a “non-social” condition where the robot expresses
only behaviors that do not have social meaning, and a
“social” condition, where the robot elicits some social attitude
through very specific communicative social behavior typical
of human-human interaction. Our analysis is based on multi-
modal features such as the arousal-valence, gaze patterns,
and detection of action units (AU). We hypothesize that the
human participants show higher levels of positive affective
states (arousal-valence) and emotions (action units) as well
as least stress (gaze, eye blinking) in the presence of a
social robot compared to the other two conditions. Also, we
consider humans in the no-robot condition to display the least
emotional responses, yielding a rather monotone pattern of
facial signals. Given the increased usage of publicly available
feature extraction tools, we also discuss the limitations of current
automatic facial expression and emotion recognition as their

Frontiers in Neurorobotics | www.frontiersin.org 2 August 2022 | Volume 16 | Article 882483

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jirak et al. Affective State Recognition in a Cognitive Task

vulnerability to environmental or technical factors has a huge
impact on the interpretation of affective states and emotions
in HRI.

2. EXPERIMENTAL TASKS AND
CONDITIONS

Our research aims at exploring the affective states of the human
partner when performing a demanding cognitive task when in
presence of an assisting robot. Therefore, we selected the Multi-
Attribute Task Battery (MATB), initially developed by NASA
(Santiago-Espada et al., 2011). In brief, the task consists of three
events that demand the participants’ response and has a total
length of 5 min:

1. A system monitoring task: the participant is asked to correct
the changing colors of six different lights presented on the
computer monitor by pressing a key (F1–F6 on the computer
keyboard). The colors change sequentially, i.e., there is only
one key-pressing event per time.

2. A tracking task: tracking occurs throughout the course of
the experiment and demands the participant to correct via
a joystick a moving object into its predefined, square area
displayed on the monitor.

3. A communications task: the participant receives a voice
command asking to change a specific radio frequency. The
task is accomplished by pressing the arrow-keys on the
computer keyboard.

Figure 1 shows the entire experimental set up, which was
approved by the Liguria Regions’ local ethical committee in
Italy (n. 222REG2015). For all three conditions, we recruited 15
participants who were assigned to only one of the conditions
(between-subject design). All participants gave their informed
consent including the recording of their face and upper body.
Before the experiment, each participant received instructions and
explanations from the experimenter. Moreover, each experiment
started with a calibration phase for the joystick. Also shown in
Figure 1 is the humanoid robot “icub” (Metta et al., 2008, 2010;
Parmiggiani et al., 2012; Fischer et al., 2018). Its design resembles
human face attributes and it features speech andmotor behaviors,
which is why the icub robot has been employed in numerous HRI
and social robotics studies (Anzalone et al., 2015; Li, 2015).

We defined three different conditions with varying interaction
levels of the icub robot and the expression of social cues.

• The no-robot condition consists of the execution of the MATB
exercise by the participant without the presence of the iCub
robot (baseline condition).

• In the non-social condition, the icub robot is present
during the whole experiment and interacts at predefined
time instances with the human. The interaction includes
verbal output from the icub robot that does not carry
social meaning (social neutral behavior), e.g., “Press key
F1.” For the body movement of the robot, we aimed at a
rather mechanistic behavior that does not communicate any
social intention. As an example, an arm movement does
not represent a pointing gesture but rather a movement

without communicative meaning. For the communicative
vocal behavior, neither modulation of the voice was used
nor additional words following an etiquette like “please” or
emotional facial expressions like smiling.

• The integration of socially-accepted norms2 was implemented
in the social condition. Similar to the non-social condition,
we defined specific interaction timing and created the
verbal output as well as the facial expressions and motor
behavior adding very specific social cues studied in human-
human interaction. For instance, the icub robot greeted each
participant similar to an experimenter. Moreover, the robot
displayed emotional facial expressions like smiling and added
words like “please” and “thank you” to the commands. After
the task completion, the icub robot says goodbye.

The iCub robot was positioned in order to stimulate the
peripheral sight of the participant. Furthermore, the number of
body movements involved in the pointing (affecting participant’s
visual attention) and verbal communication involved in task
support (affecting participant‘s auditory attention) on the robot
are designed to limit the attentional drawing from the MATB
task. Both the time onsets of events and the interaction timing of
the icub robot were predefined. We put markers for the concrete
time stamps in the analysis charts provided in later sections.

3. ANALYSIS TOOLS AND THEIR
APPLICATION

During the postprocessing of our video recordings, we removed
two participants from the no-robot condition (13 persons), one
participant from the non social condition (14 persons), and one
participant from the social condition (14 persons) due to severe
image corruption.

3.1. The Arousal-Valence Dimension
The measure of affective states in terms of arousal and valence
extracted from facial expressions has become an important tool
in descriptions of facial expressions. The term valence is usually
described as the degree of pleasantness, while arousal signifies
the amplitude. Their values vary continuously between [−1; 1]
signifying e.g., “excitement” (arousal/valence both positive) or
“boredom” (arousal/valence both negative). The neutral state is
represented by (0, 0).

For the extraction of arousal and valence, we employed the
“FaceChannel” deep neural network architecture introduced by
Barros et al. (2020). In the FaceChannel network, each image or
video frame is passed through a cascade of convolutional and
pooling layers including an inhibition mechanism before passing
to the classification stage. Although the architecture resembles
the classic VGG16 network (Simonyan and Zisserman, 2014),
the FaceChannel needs fewer numbers of network parameters to
train to achieve similar performance. Therefore, we can extract
the arousal-valence profile from the participants in real time.

2We refer to Western European social standards.
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FIGURE 1 | The experimental set up: a participant is seated in front of a computer monitor which displays the different subtasks included in MATB. The participant

executes the different duties via keyboard or joystick and their face and upper body are recorded using a web camera. Depending on the condition, the icub robot is

present throughout the course of the experiment. The robot’s face expressions are controlled via LEDs, other body movements are predefined (Adapted from Aoki

et al., 2022).

3.2. Gaze Behavior
In addition to arousal and valence, we are also interested in
the gaze behavior of participants to detect possible distractions
induced by the robots’ presence. The OpenFace software was
developed by Baltrusaitis et al. (2018) which offers a rich set
of pre-trained models for the detection of the face (respectively
facial landmarks), eyes, and the calibration to obtain the gaze
direction and head movements. Therefore, the output provides
a large feature set from which we selected the eye gaze
behavior in the {x, y} direction, averaged over the two eyes
(Baltruvsaitis et al., 2015; Wood et al., 2015). To obtain the
rate of change in the {x, y} direction, we first converted the
output from radians (rad) to degrees (◦) and then calculated the
frame-wise differences.

3.3. Facial Action Units
The “Facial Action Coding System” was first introduced by
Paul Ekman (Ekman, 1970) and represents facial muscle activity
involved in emotion expressions, the individual action units
(AU). Table 1 summarizes the AU labels for specific facial muscle
parts and Table 2 shows the involvement of particular AUs when
emotions are expressed3.

Similarly for the gaze, we used the OpenFace software for the
extraction of the AUs for each participant which allows us also
to correlate the activity of affective-specific face muscles with the
output of arousal-valence from the FaceChannel. For instance,
we can analyze whether positive arousal-valence like “excited”
correlates with the activity of AUs involved in expressing
“happiness.” This way, we can verify the robustness of both
tools and ensure proper interpretation of our results. In total,
17 AUs are extracted with their intensity levels in a continuous
range [0; 5]. All action units are also available as binary features
(presence/not presence) but the intensity level of an AU does
not necessarily align with its presence due to different datasets

3For visualization of AUs, see e.g., https://imotions.com/blog/facial-action-
coding-system/.

TABLE 1 | Action unit code for specific face muscle activity.

AU1 Inner brow raiser

AU2 Outer brow raiser

AU4 Brow lowerer

AU5 Upper lid raiser

AU6 Cheek raiser

AU7 Lid tightener

AU9 Nose wrinkler

AU10 Upper lip raiser

AU12 Lip corner puller

AU14 Dimpler

AU15 Lip corner depressor

AU17 Chin raiser

AU20 Lip stretched

AU23 Lip tightener

AU25 Lips part

AU26 Jaw drop

AU28 Lip suck

AU45 Blink

TABLE 2 | Action units involved to express basic emotions.

Emotion Action units active

Anger AU 2, 4, 7, 9, 10, 20, 26

Disgust AU 2, 4, 7, 9, 15, 17

Fear AU 1, 2, 4, 5, 15, 20, 26

Happiness AU 1, 6, 12, 14

Sadness AU 1, 4, 15, 23

Surprise AU 1, 2, 5, 15 16, 20, 26

used for training. Therefore, we skip using the binary features
except for AU28 (“lip suck”) which is only available in this form.
Finally, we also extracted the so-called “confidence” in [0; 1],
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which denotes the success of face tracking. A reliable tracking
result is achieved for confidence ≥ 0.74.

4. RESULTS OF AFFECTIVE STATE
INDICATORS

In this section, we present an evaluation of significant facial
features obtained from the tools described. Here, we focus on
the behavior over the whole experiment, while in the next
section, we concentrate on the temporal analysis and event-based
correlations.

4.1. Eye Gaze Patterns
We computed the eye gaze behavior as the rate of change of
gaze angles during the experiment. In general, gaze values close
to 0 denote no change in the gaze. A change on the x-axis
from positive to negative assigns a gaze movement from left to
right; and if a person looks from up to down yields a change of
the y-axis from negative to positive (Baltruvsaitis et al., 2015).
However, we do not use this information as we are not interested
in the concrete gaze pattern to evaluate eye trajectories. Our
aim is to detect possible sudden changes of the gaze during
task performance and especially in cases when the robot displays
behaviors as in the non social and social conditions.

Figure 2 demonstrates the average rate of changes in the x, y
(pitch; yaw) direction denoted by 1X (first column) and 1Y
(second column), in degrees, over all participants for all three
conditions. The green vertical bars denote the time onset for a
new task from the MATB protocol. For a better visualization,
we provide exemplary insets which show the filtered mean signal
and the SD. We observe only small fluctuations of the changes
in the gaze behavior along the x-axis for the no-robot and social
condition mostly around the task onset, i.e., when a new task
starts. The participants in the non-social condition elicit more eye
movements in general and specifically at the start and end of the
experiment. Along the y-axis, we see an increase of gaze changes
from the no-robot to social condition, the latter showing a peak at
the onsets of task 5 and high activity at the end of the experiment.
However, overall the participants elicit only small fluctuations
in contrast to the non-social condition, where the gaze changes
occurmore continuously. Overall, it should be noted that the gaze
changes remain in a relatively small range of ±10◦ and mostly
after task onsets.

4.2. Analysis of the Arousal-Valence
Dimension
We first present the distribution of arousal and valence for
the three conditions over the whole experiment. The evaluation
follows the characteristics of the arousal-valence dimension as
described in Section 3.1.

4.2.1. No-Robot Condition
Overall, the arousal and valence for around half of the
participants in this condition are distributed mostly around the
neutral state (0, 0) with diffusion toward negative arousal (vertical

4https://github.com/TadasBaltrusaitis/OpenFace/issues/270

axis). For some participants, we observe a rather horizontal
scatter profile, which means that their valence values change
between positive and negative. We detect a clear trend toward
negative arousal for three participants. The results show that
humans in this condition do not elicit strong negative or positive
affective states but rather routinely perform the task. Figure 3
shows the scatter plots of all participants.

4.2.2. Non-social Condition
We can find similar arousal and valence distributions among the
participants for the non-social condition, especially demonstrated
by the vertical trends, i.e., low arousal. However, the scatter
profile show more variance, i.e., the clusters are bigger than for
the no-robot condition and cover both negatively associated parts
of the arousal-valence scheme as well as areas that are identified
to code for positive affects. Our interpretation of this evaluation
is that the presence of the robot does have an influence on the
participants but that the rather mechanistic behavior triggers
both negative and positive affective responses in humans.We will
elaborate on this aspect in more detail in a later section. Figure 4
shows the scatter plots of all participants.

4.2.3. Social Condition
The distributions for arousal and valence in this condition show
predominantly compact clusters, which means that the majority
of participants are in a calm state and, based on the positive
trends on the valence axis, display a higher level of pleasantness
than in the previous two conditions. Due to the low variance
of clusters on the arousal-valence axes in contrast to the mixed
profile for the non social condition, we are encouraged to identify
the social behavior as the specific impact on humans during task
performance. This is further supported by the absence of signs
of monotonicity, sleepiness, or even boredom as shown for the
no-robot condition (significant distribution along the vertical axis
toward low arousal and low valence) nor trends toward high
negative arousal as detected for the non-social condition. Figure 5
shows the scatter plots of all participants.

4.2.4. Individual and Group Analysis
We are interested in the affective states of the participants both
within each condition and between the conditions. We first
compute the statistical significance for each group using the
kruskalwallis function from Matlab (MathWorks). For all
three conditions and a significance level of α = 0.01, our
results do not support the null hypothesis, i.e., the arousal and
valence profiles differ significantly between the participants and
per condition (p = 0). We use the paired sample t-test ttest2
(α = 0.01) to compare the arousal and valence distribution for
the three conditions. Our results reveal statistically significant
differences (p = 0) between the conditions, which supports that
the presence of a robot and the interaction style impact the
affective states.

4.3. Analysis of Action Units
While arousal and valence are continuous values characterizing
a certain affective state, using action units (AU) corresponds to
discrete emotion classification using the Facial Action Coding
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FIGURE 2 | Rate of change of the gaze angles in ◦ in {x} and {y} direction (pitch; yaw), averaged over all participants for the three conditions. The inset shows the

filtered signal with the mean curve (red) and the standard deviation. The green vertical bars denote the task onsets (frame level).

System (FACS). FACS has the advantage that particular facial
muscles can be identified which are active during a certain
emotional facial expression. For instance, the eyebrows contract
when expressing “anger” or the lip corners are pulled up
when we are happy and smile. Although the FACS is based
on Ekman’s notion of cultural-independent basic emotions
(Ekman, 1970), the composition of different muscles to express
facial emotions as well as their intensity remains individual
and can vary across cultures. For this study, we extract 17
action units (AU) from the Openface software with their
corresponding intensity values in the continuous range [0; 5]
(Baltruvsaitis et al., 2015). Additionally, we consider AU28

coding for “lip suck,” which is only available in binary format
(presence/absence) (Baltrusaitis et al., 2018). We follow the
abbreviation scheme as shown in Table 1. First, we created heat
maps for the action units over all participants in each condition
to display their overall occurrences during the experiment.
First, we binarized the intensity-level AU data as the AU
detection module of the OpenFace software has been trained
on different datasets, thus the outputs may differ. We then
simply summed up the occurrences of each action unit over
all frames and divided the results by the maximum frame
length (4,801 = 300 s*16 fps) to normalize the value range
into (0; 1).
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FIGURE 3 | In the no-robot condition, the participants’ affective states are mostly clustered around the neutral state and evolve around the horizontal axis (valence).

4.3.1. No-Robot Condition
Figure 6A shows the normalized number of occurrences for all
action units (AU, x-axis), which follow the FACS coding from
Table 1, over the 13 participants (y-axis). The value 1 signifies
that an AU always appears. We observe the lowest participation
for AU2 (outer brow raiser), AU5 (upper lid raiser), AU6 (cheek
raiser), AU7 (lid tightener), AU9 (nose wrinkler), and AU23
(lip tightener). Except for the latter, these action units belong
to muscles in the eye region which are an integral part of the
composition of emotional expressions as summarized in Table 2.
Similarly, AU4 (brow lowerer), AU10 (upper lip raiser), AU12 (lip
corner puller), and AU14 (dimpler) are mostly absent (with some
exceptions for a few participants). These action units are involved
in the emotion categories “anger” and “happiness”, where for the
latter the activation of AU12 and AU14 is exclusively relevant.
The absence of these action units let us rule out the “happiness”
state of participants for this condition. Analyzing the active
action units, we observe a medium activation (≈ 0.4 − 0.6) of
AU1 (inner brow raiser), AU15 (lip corner puller), AU20 (lip
stretched), and AU45 (blink). The former three action units are
involved in the expression of “fear,” “sad,” and “surprise.” Given
that the task is not anxiety-inducing nor do the participants have

to fear a negative reward, we tend to interpret this result in favor
of the “sad” or “surprise” category. This is further underpinned
by the presence of AU4 (brow lowerer) for the participants 5, 7, 8,
and 9, which refers to the “sad” emotion and strong involvement
of AU26 (jaw drop) in expressing “surprise.” We understand the
rather average participation for the blink behavior expressed in
AU45 as a common pattern in experiments. Counter-examples
would be the lack of blinking, i.e., low intensity level which can
occur in phases of high concentration or high blinking frequency,
i.e., high intensity level, when humans are exposed to stress
(Haak et al., 2009). Finally, we see high occurrences for the
action units AU17, AU25, and AU26. Surprisingly, the “chin
raiser” activation, AU17, engages in the expression of “disgust.”
However, this emotion class comprises other facial muscles which
we find mostly absent in our analysis. Therefore, we would object
to the interpretation of this class. In addition, AU25 (lip part)
is not represented in any of the emotion categories. After a
post-hoc video analysis, we conclude that AU17 and AU25 are
rather involved in the expression of “surprise,” although these
action units do not appear in the emotion listed in Table 2. The
major activation of AU26 “jaw drop” is an essential unit for the
“sad” and the “surprise” category and its occurrence underlines
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FIGURE 4 | The arousal and valence patterns in the non-social condition are very diverse, covering a huge space of the arousal-valence dimension.

the cognitive load induced by performing the MATB task. To
quantify also the AU detection, we analyze their intensity levels
which are in the range [0; 5]. We observe that for all action
units, their activity dampens after the experiment starts and rises
again after experiment termination. During the time course of the
actual experiment, most of the action units display only temporal
activation or spike-like patterns, with the exception of AU17,
AU25, and AU26. However, all action units’ activation falls within
a small range of intensity up to only∼2.

In general, our results for the no-robot condition adjust with
our analysis of the arousal-valence distribution: the participants
are predominantly in a neutral state demonstrated by rather
low activations of the action units, which is shown in a vertical
spread of arousal-valence in the corresponding scatter chart 3.
Some of the participants show clear activation of facial muscles
involved in “surprise” or sad, which aligns with a trend to
the left of the arousal-valence values, respectively, downward
shift to low arousal and negative valence. Finally, we detect
no “happiness” emotion, which is also underpinned by the

absence of trends toward the positive division of the arousal-
valence chart.

4.3.2. Non-social Condition
Overall, both the participation of action units as well as the
distribution of their intensity is more diverse than for the no-
robot condition. Similar properties shared between the two
conditions are the low activation of action units related to the eye
region, namely AU2 (outer brow raiser), AU5 (upper lid raiser),
AU6 (cheek raiser), and AU9 (nose wrinkler). Similarly, we
observe medium intensity for AU15 (lip corner depressor), AU20
(lip stretched), and AU45 (blink) as well as the highest activation
over all participants for AU17 (chin raiser), AU25 (lip part), and
AU26 (jaw drop). However, in contrast to the no-robot condition,
the action units AU1 (inner brow raiser), AU4 (brow lowerer),
AU7 (lid tightener), and AU10 (upper lip raiser) display higher
intensity levels, which are represented mainly by the emotions
“anger” and “sad.” However, it should be noted that individual
action units appear in multiple emotion classes. Especially AU1
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FIGURE 5 | Distribution of arousal and valence over all participants in the social condition. The affective states are mostly clustered toward positive values and are

more compact compared to the non-social condition.

(inner brow raiser), AU15 (lip corner depressor), and AU20
(lip stretch) are involved in four, respectively, three out of the
six categories. Hence, we also include the category “surprise”
into our interpretation, while ruling out “disgust” (absence of
AU9) and “fear,” the latter based on the same argument as
explained above. Another critical difference observed in this
condition compared to the no-robot condition is the increased
participation of AU12 (lip corner puller) and AU14 (dimpler),
both expressing “happy.” In addition to the AU detection, we
also analyze the concrete intensity-levels per AU.We observe that
similarly to the no-robot condition, the intensities spike around
or evolve continuously over the experiment time not more than
a value of 2.

4.3.3. Social Condition
In the social condition, we observe that participants display low
expressions of AU2 (outer brow raiser), AU5 (upper lid raiser),
AU9 (nose wrinkler), and AU23 (lip tightener). Interestingly,
the detection of action unit AU4 (“brow lowerer”) is separated
into two groups, either with low or high participation. Similar
to the non-social condition, we observe also increased values for
AU1 (inner brow raiser) and AU10 (upper lid raiser), as well
as moderate levels for AU15 (lip corner depressor), AU20 (lip
stretched), and AU45 (blink) comparable to both conditions.

Furthermore, we observe higher expressions for action units AU6
(cheek raiser), AU12 (lip corner puller), and AU14 (dimpler),
which, in conjunction, represent the “happy” emotion category.
Strikingly, AU17 (“chin raiser”), AU25 (“lip part), and AU26
(“jaw drop”) are also the predominant action unit in this
condition. While the major occurrence of AU26 can be explained
by its involvement in the expression of “anger” and “surprise,”
we do not find evidence of “disgusted” participants although
AU17 is the unique action unit for this class. Also, we cannot
answer why AU25 is central but absent in the emotion list shown
in Table 2. From our analysis, we would, therefore, conclude
that both action units are either part of the “surprise” class or
involuntary facial expressions due to the cognitive load induced
in the MATB task. The quantification of the AU participation
by their intensity levels shows increased activation of AU1,
AU2, AU6, AU12, and AU25, which are involved mainly in the
expression of “surprise” and “happy.” However, the intensity of
the expression of the other action units is comparable to the other
two conditions.

Overall, the participation of action units is more pronounced
in the social condition compared to the no-robot condition, yet
less diverse than in the non-social condition. Again, this result
aligns well with our qualitative analysis of the arousal-valence
distributions, which show more clusters around the 1st quadrant
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FIGURE 6 | Normalized heat maps of action unit intensity levels over all participants for all experimental conditions.
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of the dimension chart that represents positive affective states.
While Figure 6 also demonstrates the participation of facial
muscles involved in “anger” and “sad,” it is important to reveal
the time context, i.e., whether the action units appear together.
We will clarify the temporal progress of the affective states and
the occurrences of action units in the next section.

5. TEMPORAL CORRELATIONS BETWEEN
TASK ONSET AND AFFECTIVE STATES

In this section, we present a temporal analysis of the time context
for both arousal-valence and action units. Specifically, we study
whether significant changes in the intensity of the affective states,
respectively, facial expressions are displayed concurrently to the
task onset (events) or whether we can find evidence of the robots’
impact on changing the humans’ behavior. Due to the image-
wise processing of the employed software, the time component
in our analysis is on the frame-level. In our graphics, the label
“start” corresponds to the experiment starting at frame 0; after
15 s, the first event begins which corresponds to frame number
240 (15 s * 16 fps frame rate), and the second event starts at 25 s
which corresponds to frame number 400 and so on, after the 5
min per experiments have been reached (marked with “end” in
the figures).

For the analysis of arousal-valence, we first filtered both
individually with a moving average of window size 16 to account
for the 16 fps recordings. From this filter step, we select four
exemplary profiles from participants for each of the conditions
whose evaluations are representative of their group, shown
in Figures 7, 8, 9A–D. The red vertical bars represent the
task onsets.

We observe that the arousal dimension has a low activity for
the no-robot and social conditions while participants in the non-
social condition display a more diverse pattern. In connection
with the valence dimension, we see that participants in the no-
robot condition tend to bemore neutral or show higher activation
at the onsets of events. In contrast, participants in the social
condition show more stable positive valence with one exception
where the participants’ valence fluctuates strongly between
positive and negative. The results from the non-social condition
vary in intensity amplitude from the very low activity for both
arousal and valence (neutral or calm state) to high intensities
which is usually interpreted as an “angry” or “annoyed” state.
The latter is less pronounced in the other two conditions.
Additionally, we observe a negative trend in Figure 8C from high
to low valence with a relatively stable arousal pattern. A similar
pattern is detected for the 4th participant, where high peaks occur
at the early experimental stages and reduce continuously over the
time course. We interpret this result that either the participants
adapted to the experiment and the environment feeling more
confident or comfortable or become calm or even bored.

In general, the different coverage of affective states in the
arousal-valence dimension underpin our results from Section 4.2;
similarly, we observe a narrow distribution around the neutral to
calm or bored affective states in the no-robot condition compared
to the social condition, which comprises mostly positively

connoted affective states over the time course of the experiment.
The diversity of affective state expressions in the non-social
condition is also represented in the temporal process. However,
the graphs also demonstrate that low or high activity profiles
occur in all three conditions, independent of the robots’ presence
or behavior. These observations need to be taken into account to
disentangle the real role of the robot in the experiment.

As the figures only allow qualitative analysis of the
temporal behavior, we also implemented a simple change point
detection scheme. First, we compute the difference between two
consecutive frames which is high when either a peak or a sudden
drop appears in the signal, i.e., the intensity level of action
units. Then, we extract the frame index and its associated value
from such a change point. We sort the maximum values in
descending order and extract only the first 20 indices as we have
20 events (start/end included). We do this for all participants
over all conditions so that we can compare those indices with the
event onsets. Specifically, we can check whether or not the most
significant changes in AU activation align with the task onsets,
respectively, and how much the detected changes diverge. A high
divergence from the predefined experiment timing may allow
us to find links to the robotic behavior for the non-social and
social behavior. Due to the combinatorial nature of the evaluation
(#conditions × #participants × #AU), we select representative
samples from the temporal analysis and concentrate on the
evaluation of the most active action units as described in the
previous section. The criterion for the representative selection
is to demonstrate the whole spectrum of participant responses
per condition. This way, we want to avoid the selection bias of
our analysis (e.g., showing only selective responses that show a
specific affective state).

5.1. No-Robot Condition
Most facial expressions shown by the participants emerge from
the lip part (AU15, AU23, AU25) and often relate to the task
onsets during the experiment, i.e., their activity is characterized
by a spiky pattern. Using our point detection scheme, Figure 10
shows that the blinking behavior (AU45) is in agreement with
the task timings, and we do not observe hints of stress (high
blink frequency). However, the appearance of some blink gaps
may indicate that the participants concentrate on the task
performance.

To see any agreement between the results obtained for
arousal-valence, which was revealed to be mostly neutral in the
affective dimension, we also compare the concurrent activation
of the emotion class “happiness” (AU1+AU6+AU12+AU14) and
the class “anger” (AU2+AU4+AU7+AU9+AU10+AU20+AU26).
We analyzed the AU synchrony both qualitatively by plotting
the AU intensity charts in relation to the task onsets. Also, we
compute the cross-correlation between the different AU signals
as a function of some time lag k. In brief, the cross-correlation
measures the pairwise similarity between signals and is highest,
i.e., 1, if both signals are equal. For “happiness,” we observe
the following: the overall intensity levels of the corresponding
AUs are rather low. Almost no participants show concurrently
activated action units, leaving sparse intensity patterns with
mostly AU1 (inner brow raiser) activated. AU6 (cheek raiser)
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FIGURE 7 | Representative temporal profiles of the arousal-valence progress in the no-robot condition. While the arousal state remains stable (A–D, upper plot), the

valence dimension fluctuates for some of the participants, mostly in agreement with task onsets (B–D).

shows the least participation. In the case of co-activations, they
mostly occurred right after a task onset, i.e., the presumable
expression of “happiness” relates to a successful performance of
the human. The cross-correlation at lag k = task onset underpins
the observations; the correlation values comparing the action
units range maximum up to ≈ 0.2. The frequency of AU14
(dimpler) for some participants occurred either related to an
event or continuously over the whole experiment. Although these
patterns are exceptions in the facial expressions compared to
the majority of participants, we find this result in agreement
with some positive expressions revealed by the arousal-valence
evaluation. Therefore, we interpret the occurrence of AU14 as
an expression of either an involuntary externalization of the
thinking process, a reaction to a possible mistake made by the
human, or, in the case of positive response, the personality style
of the person. We can detect no signs for concurrent action
unit activations involved in expressing “anger” but discover most
activations for AU2 (outer brow raiser), AU20 (lip stretched), and

AU26 (jaw drop) which are comprised in the “surprise” class.
This observation is further underpinned by the absence of AU10
(upper lid raiser), a unique action unit in the “anger” class.

5.2. Non-social Condition
The diversity in the different amplitudes revealed by arousal-
valence is also mirrored in the evaluation of the “happiness”
emotion. Again, we first analyze the AU signal co-occurrences
which compose a “happy” emotion and observe both high
synchrony of the action units as well as very sparse AU activations
which, moreover, do not align. The cross-correlation coefficients
which range from low to high values related to task onset and
beyond underpin the impressions. The synchrony analysis of
AU expression for the “anger” emotion shows that action units
are co-activated either around the task onset (mostly delayed
over some frames) or occur also between the tasks. Also, we
detect rather sparse patterns, which means that some of the
participants show no signs of “anger.” In some cases, there are

Frontiers in Neurorobotics | www.frontiersin.org 12 August 2022 | Volume 16 | Article 882483

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jirak et al. Affective State Recognition in a Cognitive Task

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000 7000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000 7000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

start end

0 1000 2000 3000 4000 5000 6000

-1

-0.5

0

0.5

1

start end

A B

C D

FIGURE 8 | The non-social condition reveals higher fluctuations in both dimensions. While in chart (A) both arousal-valence seem stable, there are higher amplitudes

for (B–D). In (C), we observe even an downwards trend in the valence dimension over the time course of the experiment.

no concurrent intensity spikes from the action units but the
main activation of AU7 (lid tightener) and/or AU10 (upper
lip raiser). However, the two action units only appear for the
“anger” class, thus we might observe cases where the software
fails to detect reliably well all AU activations. Finally, we see
an inverse relationship between AU7 and AU10 with AU26
(jaw drop). We can this result by either mentioned failure of
the OpenFace software due to face position issues or those
participants rather elicit “surprise” reactions than being angry.
The latter aspect would align with our observation from the
heatmap demonstrating the number of activated action units over
the experiments.

5.3. Social Condition
For change points in AU17 and AU26, we see most changes at
the beginning of the experiment, which can be explained by the
surprise effect of both the robot behavior and the adaption to

the first tasks. We observe normal blinking behavior expressed
in the activation of AU45, i.e., most changes in the blink
behavior align with the event onsets. Our analysis of arousal-
valence revealed a stronger trend toward positive affective states
shown by the compact scatter plot clusters. Additionally, the
temporal charts from selected participants reveal that the positive
attitude endures throughout the time course of the experiment.
For the emotion expression by action units, we opt for an
agreement between them and our results obtained for arousal-
valence. Therefore, we analyze when the action units representing
“happiness” occur concurrently and whether this is synchronous
across the time line of the experiment. In fact, we find that
the action units co-occur for most of the participants as shown
in Figure 11. In most cases, the participants elicit a “happy”
expression short after an event and stay within this expression
beyond the onset. As the robot behaves socially including talking
to the participants, which induces some temporal delay, we
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FIGURE 9 | The participants in the social condition show stable arousal-valence patterns with positive trends (A–D). The result aligns with the positive clusters shown

in the scatter plots.

conclude that the small decline of the intensity curves is linked
to a positive experience for the human with the robot. For four
participants, we identified a sparse intensity pattern with most
activation from AU1 (inner brow raise) and AU6 (cheek raiser)
after task onset. Interestingly, however, is that in between the
task the participants also show some activation of AU12+AU14
(lip corner puller + dimpler), indicating that there might be
some positive impact from the robot. In the analysis of the
“anger” class, we detect mostly activations for AU2 (outer brow
raiser), AU20 (lip stretched), and AU26 (jaw drop), and, over
all participants, least occurrences of AU7 (lid tightener) and
AU10 (upper lid raiser). Therefore, the participants rather show
expressions related to “surprise” than “anger.” Overall, we could
not see concurrent activation of all the seven action units.
The patterns for facial expressions involved in “anger” like
co-occurrences of AU4 (brow lowerer), AU7 (lid tightener), AU9
(nose wrinkler), and AU10 (upper lip raiser) for some of the
participants are spike-like around the task onset and decrease
quickly. As the humans seem to recover from this emotion and

do not seem to carry it over to the behavior of the social robot, we
can conclude that either the participants solely concentrate on the
task or that the robot has a positive impact on their emotional
response. The latter aspect can be confirmed by the temporal
profiles of the arousal dimension, where we observe only small
arousal levels in some of the participants. Correspondingly, those
participants might find the social presence of the robot pleasant
but do not necessarily express it.

6. INTERPRETATION OF RESULTS

Our analysis revealed interesting behaviors that we are going
to discuss in light of the interplay between the experimental
conditions and the actual cognitive task.

6.1. Eye Gaze Pattern
We interpret our results obtained from the eye gaze analysis from
two sides: first, we can expect a rather stable gaze pattern across
participants and conditions as we constrained the gaze radius
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in the tracking task. Furthermore, the role of the robot was to
accompany the participant through the experiment, while the
participant concentrated on the task itself. This design differs
from HRI experiments with mutual interaction involving, e.g.,
dialogues where participants have a proactive role toward the
robot (Kompatsiari et al., 2017; Pereira et al., 2020). On the
other hand, the icub robot shows some nonverbal and verbal
behavior in the non social and social conditions. Participants
less experienced or exposed to robots may be affected by these
behaviors. As a result, one might consider a stronger trend
toward changes from left to right (the direction from the

FIGURE 10 | Typical blink pattern (AU45) for participants during the

experiment. Our change point detection scheme reveals most activity related

to the task onset.

participants’ view) during the whole experiment to confirm or
observe what the robot is actually doing. However, our results
do not confirm this thought, so we conclude that the robots’
behaviors during both conditions do not negatively impact the
human performing a cognitively demanding task. This result
is particularly interesting for the social condition as it gives us
hints to believe that the participants attributed the robot to be a
companion-like partner.

6.2. Arousal-Valence and Action Units
For the no-robot condition, our analysis revealed arousal patterns
mostly along the horizontal axis (valence), which means that the
participants mostly change their level of perceived pleasantness.
However, for some participants, we also observe changes in the
arousal level, mostly in the negative direction. In connection
with the temporal arousal-valence profile, which shows regular
peaks at the task onset, we conclude that the participants
focused strongly on the task but either do not elicit strong
affective responses or show some level of annoyance during task
performance. Interestingly, the temporal profile also how that the
affective behavior attenuates quickly. This behavior is expected
as the participants cannot share their affective experience neither
with another human nor with the robot. However, especially the
scatter plots demonstrate that even in a rather short experiment
(5 min) and without interactions, humans tend to differ in the
amplitudes of their affective emotional expression levels. The
analysis of the action units let us conclude that the activations
of action units 17 and 25 (chin raiser, lip part) are rather
involved in the expression of “surprise,” although AU17 has been
identified merely in the “disgust” class. This is confirmed by high
activations of AU26 (jaw drop) among all participants.

In contrast to the baseline condition, the arousal-valence
distributions shown in Figure 4 show higher diffusion of affective
values, which make up a bigger set of affective states than
for the baseline condition. Overall, there are trends toward

FIGURE 11 | Concurrent activation of action units representing the “happiness” class. While most of the co-activation appears at task onset, the activation decays

slowly in between two tasks. This pattern might display a positive relation between the human and the socially-behaving robot.
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positive and negative arousal (vertical axis) for the majority of
participants. Similarly, the temporal profiles vary significantly
among the participants with the most activity at the task
onset. Again, the amplitudes in the expression levels differ
but conversely to the no-robot condition; here, only a few
participants are rather calm. Our results may indicate that
the humans in this experiment are confused by a humanoid
looking robot, awakening some expectations like interactions
or following the social etiquette, which the robot due to its
condition fails to deliver. The discrepancy in appearance and
behavior in conjunction with a cognitively demanding task may
elicit stronger affective responses than in absence of a robot.
The participants in the non-social condition exhibit more facial
expressions which reveal a diverse emotion pattern extended
by the presence of muscle activity involved in the expression
of happiness. The observation for the action units aligns with
the results obtained from the arousal-valence analysis and
supports our previous interpretation. Given that the robot has
anthropomorphic features but shows no social behavior, it can
trigger different responses in the humans based on a possible
mismatch between the appearance and behavior of the robot,
thus the people may tend to show “anger” or “sadness” as shown
by the activation of corresponding action units. On the other
hand, participants attributing the mere presence of the robot as
a companion may feel encouraged to share also positive feelings,
e.g., in case, the task has been performed correctly, in contrast to
participants in the no-robot condition. We also observed higher
values of action units around the task onset and between two
tasks, i.e., the action units analysis confirms our interpretation
that there is a separation between the participants into a group
that concentrates on the tasks (similar to the no-robot condition)
and another group that recognizes the robots’ presence, which
may positively or negatively impact the emotion expressions.

Our results obtained for the social condition both from
the arousal-valence and the action unit detection confirm
high involvement of positively connoted emotions but with
varying amplitudes in the expression level. More interesting
is the fact that our analysis of the temporal profiles reveals
mostly stable and positive arousal patterns over the whole
time course of the experiment and an increase of positive
valence after and beyond the task onset. Similarly, we observed
mostly activation of positively connoted action units, which are
also persistent over the experiment time, in contrast to the
other two conditions where the peak pattern of expressions
often coincides with a task onset. We believe that this result
shows that the socially-behaving robot positively impacts the
experiment, as we have shown signs of frustration or anger
for the non-social condition. Here, we might see the positive
impact of a match between a humanoid appearance of the
robot with its social behaviors which the participants can
more easily attribute the role of a social companion to. The
presence can also create a more social environment where
the participants may also feel more comfortable and do not
only focus on the task and on possible mistakes in their
task performance. We also think that the results show a
separation of participants into introvert and extrovert humans.
Additionally, and more interesting, is that our inter-subject

analysis reveals differences in amplitudes both for arousal-
valence and AU facial expressions in all three conditions.
As this result is obtained independent of the specific robot
condition, it confirms the significance of the human personality
in HRI studies.

7. DISCUSSION AND LIMITATIONS OF
AFFECTIVE STATE RECOGNITION

In this study, we were interested to identify how affective
behavior changes when humans are exposed to a humanoid
shaped robot with or without socially convenient behaviors
while performing a sequence of cognitively demanding tasks. We
selected the eye gaze, arousal-valence, and activation of action
units coding for discrete emotion classes (FACS) as descriptors
of the human behaviors because they have been shown to elicit
the most information. Additionally, the combined analysis of
arousal-valence with action units allowed us to reveal both
the emotional responses from the participants’ faces and the
corresponding amplitudes. This way, we can soften the hard
boundaries given by discrete classes like “happy” to more realistic
descriptions such as “delightful.” For all three conditions, our
results obtained from the arousal-valence distributions aligned
well with the detection of facial action units. For our baseline,
the no-robot condition, we observed a rather flat distribution
of emotional expressions toward the neutral or calm state
with less pronounced facial activity, especially for action units
involved in smiling. In contrast, the social condition showed
compact clusters toward the positive arousal-valence dimension
and higher activations of action units involved in the expression
of “happy” states and smiling. The most diversity in the affective
state expressions is detected for the non-social conditions,
covering a wider spectrum of positive and negative arousal-
valence responses. Moreover, our analysis demonstrated that
more action units were activated and within a wider range
of intensity levels. Finally, our temporal analysis showed that
participants either concentrate on the task, i.e., peak activations at
task onset, or are influenced by the robot during the task, both in
positive and negative direction. Due to the delay effects given by
the robot talking, we believe that the results confirm a confusion
between perceiving a humanoid shaped robot engaging in the
task but without social signs. Although the results confirm the
influence of an embodied robot on human affective states, we
also presented examples of persons displaying affects or facial
expressions with low or high amplitudes. Although the no-
robot condition revealed affective behaviors mostly connected
to monotonous human behavior, we could also determine
expressive persons. Vice versa, the participants in the social
condition could also be clustered into persons who exhibit,
e.g., high arousal and those who were rather calm. Therefore,
the mere presence of a socially-behaving robot is not the only
essential component in the interaction but also the ability of a
robot to adapt to individual human personalities. Our analyses
in this study fit squarely into recent research on interaction
with social robots which can adapt to a human’s personality
(de Graaf and Allouch, 2014; Tanevska et al., 2019) and we
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opt for a better understanding of a robots’ personality in the
future as suggested by Churamani et al. (2020) in everyday life
such as in assistive tasks in domestic environments, driving
or tutoring.

In our research, we also target the question of how machine
learning is a reliable tool for the automatic extraction of affective
states. In the last decade, many approaches primarily based on
deep learning rely on pretraining facial images and emotion
expressions on large datasets (Baltrusaitis et al., 2018; Barros
et al., 2020). The available software seems promising for HRI
tasks as it potentially enables researchers from other than
ML areas to use those tools to explain higher-level human
phenomena. While this approach facilitates HRI research and
progress in social robotics, it is a well-known problem that
pretrained ML models are heavily biased toward gender, ethnics,
and age. Moreover, models of emotions classified into discrete
categories as is the case for the action units are trained on
scripted, often exaggerated images. However, in HRI experiments
it is inevitably important to study the human “in the wild” and to
consider the context. Finally, also simple environmental changes
like lighting conditions, differences in sensors, or experimental
set up can change the output of ML models, which can mislead
the interpretation of human emotional behavior. As we are
interested in the robustness of the models employed in this study,
we also analyzed the software regarding their vulnerability.

7.1. Software Limitations Impact the
Interpretation of Affective States and
Emotions
We want to conclude the article with some critical remarks using
automatized affective state recognition and their interpretation
to sensitize other researchers novel to this field. The diversity of
facial expressions and body behaviors such as head movements
or gaze put a challenge to every automatic recognition system.
Deep learning and access to massive data have revolutionized
the way we compute critical features from human behaviors.
However, software systems are not trained in a uniform way,
i.e., the underlying datasets as well as techniques applied to
track a face or to extract action units differ. As a consequence,
researchers new to the machine learning field must not treat
existing software as a black-box but rather as an additional tool to
identify and explain human factors in social robotic applications.
We want to underpin some of the important aspects with
examples observed in our study. First, we observed face tracking
failures revealed by loss or mismatch of the face bounding box
as demonstrated in Figure 12. To quantify the impact of such
tracking failures over the whole video sequence, we computed:
(#confidence ≤ 0.7)/lengthseq, which is the ratio between face
tracking failure expressed in a confidence5 value below 0.7 and
the total length of the video. Figure 13 shows the distribution
of such tracking errors over all participants. Although the
head movements were reduced during our experiment, the
tracking issues can potentially introduce confound effects and
thus be misinterpreted as interesting eye gaze or head movement

5Confidence assigns a value between [0;1], where 0 means loss of the tracked face
and 1 notifies successful face tracking.

behaviors. The problem may potentiate if more than one person
is on the scene.

Second, we address the robustness of the action unit detection.
Our analysis demonstrated that overall the intensity levels
of action units are on average around 0.5–2 although some
participants showed clear expressions of, e.g., “brow lowerer”
(AU4, anger). As we combined our analysis with the detection
of arousal-valence, we were able to find the separation between
people being more introverted vs. the ones showing more
extroverted behaviors. However, it was difficult to conclude the
co-activation for action units representing the discrete emotion
classes. The appearance of single action units in multiple emotion
classes (e.g., AU2 is involved in four out of six categories) further
hinders a clear interpretation of human emotions. The reasons
for intensities on small scales can be a direct consequence of
a mismatch between the face data the software was trained
and the faces obtained during the experiment. Usually, popular
face databases used for training comprise frontal images with
persons looking straight into the camera and who are exposed
to similar lighting conditions. Different backgrounds and even
diversity in gender, age, and ethnics are often not accounted
for. Therefore, deriving data from experiments diverging from
specific settings can lead to weak AU detections and even
incorrect emotion labeling. The failure for the extraction of
the action unit AU28 “lip suck” in our data shows the most
severe case of AU detection failure. Across all participants and
conditions, AU28 was 0 (absent). However, in a post-hoc video
analysis, we observed some participants showing activity of
AU28 during the experiment, especially after an event. AU28 is
a relevant feature involved in the characterization of affective
states and its omission is critical for the interpretation and
claims derived from experiments. Finally, we described the high
activation of action unit AU17 (“chin raiser”), which uniquely
occurs in the “disgust” class. As we could not find co-activation
with other action units from this class, we conclude that AU17,
interpreted in isolation, could also be a sign of sadness or surprise.
Alternatively, it could have also been potentially confused by
the software. Similarly, we observed strong activation of AU25
(“lips part”) which does not appear in any of the emotion
classes. From the mouth movement, we conclude that the activity
relates to “surprise,” being in accordance with our evaluation of
action units.

We also want to point to the absence of other action
units like AU46 (“wink”). Although we did not need the
whole set of action units, it might be necessary to retrain
existent software on data more suitably related to the HRI
scenario or consider other variables such as gender and cultural
background. The latter aspect is especially important in cross-
cultural research as the display of emotions is often guided by
social norms.

Finally, we observe a negative influence of lighting condition
variations on the classification of arousal and valence as extracted
by the FaceChannel (Barros et al., 2020). We changed the image
brightness to a darker level to simulate scenarios such as cloudy
days, driving in the early evening, or a person moving. We
observe a drastic change in the arousal-valence values compared
to the original profile, where the valence is more affected than

Frontiers in Neurorobotics | www.frontiersin.org 17 August 2022 | Volume 16 | Article 882483

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Jirak et al. Affective State Recognition in a Cognitive Task

FIGURE 12 | Demonstration of tracking failures due to head movements or insufficient extrapolation of the face or loss of the face template when participants look

down. Consequently, an automatized analysis and interpretation of behaviors can be misguided by those outliers.

FIGURE 13 | Percentage of incorrectly tracked face (confidence < 0.7) considering all experimental phases (instructions, post-experiment phase). Although we only

analyse the concrete experiment start and end phase, the general point here is that tracking failures can occur for more motion-intensive HRI scenarios.

the arousal dimension and shows higher values than for the
original images. In the context of the present study, this result
shows how small changes in environmental conditions can
lead to misinterpretations and false claims derived from the
analysis. Although we highlight the limitations perceived during
the analysis of this particular experiment, we believe that our
discussion generalizes to other scenarios and experimental data,
too. While deep learning advances the field of affective state
or emotion recognition, the usage of automatization tools in
HRI is still in its infancy. For future applications of affective
state and emotion recognition systems, it is desirable to establish
datasets with a wider diversity of faces from different age ranges
and ethnics. Recent research centers around the question of
how to reduce known biases, e.g., a recent study by Kara et al.
(2021). Also, the cultural context is essential in the correct
estimation of affective states and becomes vital in real-world
applications: a positive arousal-valence value or detection of

the “happy” class due to the high intensity of corresponding
action units can indeed signify a real positive state. On the other
hand, there are multiple scenarios where humans smile, e.g.,
to cover an embarrassment or even in tragic situations. The
inference “smiling→ happy” is the simplest inference, neglecting
the vast spectrum of positive emotions. Based on the analysis
in this study, we will further analyze the state-of-the-art facial
expressions or emotion recognition models (like deep neural
networks) evaluated on HRI scenarios for a better understanding
of the model requirements in this field and to approach a more
realistic classification of human emotions (Barrett et al., 2019).

8. CONCLUSION

In our research, we aim to understand the affective behavior
of humans when exposed to cognitively demanding tasks and
in presence of a socially-behaving robot. Our analysis of the
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most crucial features involved in affect expression contrasted
between three conditions showed a positive impact on arousal-
valence and gaze patterns when humans perform the MATB
task with a social robot. In contrast, the presence of a robot
with less social skills (non-social condition) yielded the most
diverse set of affective states and emotional responses with
higher amplitudes in the arousal dimension. We believe that the
mismatch between the humanoid robot shape with the absence
of social cues created the most confusion among the participants
and could have potentially elicited stronger emotional responses.
Our temporal analysis demonstrated positive or negative affective
states also beyond the tasks onsets, which means that the
humans get emotionally involved with the robot during the task.
However, we can not rule out the role of the humans’ personality
on certain affective expressions for the three conditions, as
we have shown patterns that hint at introvert or extrovert
persons. Consequently, we opt to integrate personality traits into
affective computing for HRI for a better disentanglement of a
persons’ natural affective behavior, the human performance of a
cognitively demanding task, and the impact of a robot. We also
highlight some issues using established software for automatized
recognition of affective states and emotion recognition which
contributes to a better understanding of to what extent those
frameworks can be used for the automatized analysis of human
emotional behaviors. The limitations may be considered by
other researchers in the field. This way, we hope to inspire

future, interdisciplinary work on machine learning for affective
state recognition.
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