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Abstract 

Background:  After years of efforts on the control of malaria, it remains as a most deadly infectious disease. A major 
problem for the available anti-malarial drugs is the occurrence of drug resistance in Plasmodium. Developing of new 
compounds or modification of existing anti-malarial drugs is an effective approach to face this challenge. Quantitative 
structure activity relationship (QSAR) modelling plays an important role in design and modification of anti-malarial 
compounds by estimation of the activity of the compounds.

Methods:  In this research, the QSAR study was done on anti-malarial activity of 33 imidazolopiperazine compounds 
based on artificial neural networks (ANN). The structural descriptors of imidazolopiperazine molecules was used as 
the independents variables and their activity against 3D7 and W2 strains was used as the dependent variables. Dur-
ing modelling process, 70% of compound was used as the training and two 15% of imidazolopiperazines were used 
as the validation and external test sets. In this work, stepwise multiple linear regression was applied as the valuable 
selection and ANN with Levenberg–Marquardt algorithm was utilized as an efficient non-linear approach to correlate 
between structural information of molecules and their anti-malarial activity.

Results:  The sufficiency of the suggested method to estimate the anti-malarial activity of imidazolopiperazine com-
pounds at two 3D7 and W2 strains was demonstrated using statistical parameters, such as correlation coefficient (R2), 
mean square error (MSE). For instance R2

train = 0.947, R2
val = 0.959, R2

test = 0.920 shows the potential of the suggested 
model for the prediction of 3D7 activity. Different statistical approaches such as and applicability domain (AD) and 
y-scrambling was also showed the validity of models.

Conclusion:  QSAR can be an efficient way to virtual screening the molecules to design more efficient compounds 
with activity against malaria (3D7 and W2 strains). Imidazolopiperazines can be good candidates and change in the 
structure and functional groups can be done intelligently using QSAR approach to rich more efficient compounds 
with decreasing trial–error runs during synthesis.
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Background
After years of efforts to fight and control of malaria, it is 
still a prevalent and deadly infectious disease, especially 
in the third-world countries in Africa, Asia, and South 
America [1, 2]. The estimated deaths because of malaria 
in 2015 were 429,000 (range 235,000–639,000), which 
were mainly distributed in the Africa (92%), Southwest 
Asia (6%) and the Eastern Mediterranean (2%) [3]. The 
pregnant women and children below 5  years of age are 
the more vulnerable groups, and about 85% of deaths 
occurring in children with this age range [4].

The disease is caused by a parasite of the genus Plasmo-
dium. The main species of Plasmodium are Plasmodium 
falciparum, Plasmodium vivax, Plasmodium ovale, Plas-
modium knowlesi and Plasmodium malariae, with P. fal-
ciparum responsible for most of the mortality [1, 4].

Many compounds with anti-malarial activity have been 
described, including quinine, chloroquine, proguanil, 
pyrimethamine, artemisinin, mefloquine, atovaquone 
[5]. The major problem in the treatment of malaria is that 
Plasmodium parasites become resistant to anti-malar-
ial drugs. The most commonly used anti-malarial drug, 
chloroquine, became ineffective due to rapidly spreading 
resistance of P. falciparum to this compound; the newer 
anti-malarial drugs, such as mefloquine or artemisinins 
also face to resistance problem. The other problem in 
control of malaria is the lack of an effective vaccine for 
this disease. Therefore, developing new anti-malarial 
agents is a necessity and chemical modification of exist-
ing compounds is one of the strategies available [1].

In silico methods, such as quantitative structure activ-
ity relationship (QSAR), molecular docking and phar-
macophore modelling by decreasing the time and cost of 
drug discovery play a significant role in the field of drug 
design and development [6]. QSAR can provide a math-
ematical relationship of the physicochemical proper-
ties and structural features that is required for a specific 
activity for a set of similar compounds. In this way, syn-
thesis of potential candidate molecules can be performed 
by focusing on the chemical characteristics which have 
influenced on a specific activity [7].

QSAR methods have previously been used to investi-
gate anti-malarial compounds. In 2001, Agrawal et  al. 
studied the anti-malarial activity of a series of sulfona-
mide derivatives (2,4-diamino-6-quinazoline sulfona-
mides) [8]. In 2002, 3D-QSAR studies on the artemisinin 
analogues were performed by Cheng et al., a study done 
on the basis of the docking models employing compara-
tive molecular force fields analysis (CoMFA) and com-
parative molecular similarity indices analysis (CoMSIA) 
[9]. Katritzky et al. investigated two various set of com-
pounds for each of two strains D6 and NF54 of Plasmo-
dium falciparum using QSAR modelling with CODESSA 

PRO software in 2006 [10]. A study on anti-malarial 
artemisinin derivatives was done by Cardoso et  al. in 
2008 using molecular electrostatic potential (MEP) maps 
and multivariate QSAR [11]. In 2015, Ojha and Roy 
reported the status of anti-malarial drug research from 
the year 2011 to 2014 with special reference to applica-
tion of QSAR models. In their report, aminoquinolines 
as a group of anti-malarial compounds were analysed by 
various research groups using QSAR models; the other 
groups of compounds were endochin analogs, arte-
misinin analogs, aurone chalcone, prodiginines, acridine, 
hydroxypyridinones and cycloguanil derivatives, which 
their QSAR modelling reported [7]. In 2018, Cheoy-
mang and Na-Bangchang in a systematic review article 
reported about application of in silico models for anti-
malarial drug discovery in the years between 2008 and 
2015. In this article 2D- or 3D-QSAR is mentioned as one 
of the commonly applied in silico methods for investigat-
ing on anti-malarial compounds [12].

Imidazolopiperazine is a class of anti-malarial com-
pounds, including KAF156 (also known as GNF156) 
which is active against a wide range of Plasmodium spe-
cies and in phase 2 trials have shown better or analo-
gous parasite killing rates compared to the effective 
artemisinin-based combination therapy (ACT) [13, 14]. 
In this article, the anti-malarial activity of a set of imi-
dazolopiperazines was investigated using quantitative 
structure activity relationship. Artificial neural networks 
were used for modelling the activity of 33 imidazolopip-
erazines derivatives.

Methods
Data set
A data set consisting of imidazolopiperazines reported by 
Wu et al. and Nagle et al. [15, 16] was used for this study. 
A set of 33 compounds was selected which their struc-
tural skeleton and the name of compounds are displayed 
in Table 1.

Descriptor generation and pretreatment
After drawing the 2D structures of the 33 imidazolo-
piperazine derivatives using HyperChem software (Ver. 
8.0.3, Hypercube Inc., Gainesville, USA), the geometries 
of the molecules were fully optimized using the semi-
empirical AM1 method. The optimization was done until 
the root mean square gradient achieves 0.001 kcal mol−1 
or 1000 cycles for all the molecular structures.

The resulting optimized geometries were transferred 
to the DRAGON software [17, 18], and the descriptors 
were calculated. Then, the same descriptors for all the 
structures were kept and others were removed. At the 
first step for pretreatment of the descriptors, the con-
stant or near-constant variables among the remained 
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Table 1  Structures of imidazolopiperazine derivatives and their biological activities (IC50, nM) for 3D7 and W2

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2

1

N

N

N

NH2

O

NH

O
O

2-Amino-1-(3-
(benzo[d][1,3]dioxol-5-

ylamino)-2-phenyl-5,6-
dihydroimidazo[1,2-α] 

pyrazin-7(8H)-yl)-

ethanone

63 97

2

N

N

N

NH2

O

NH

O
O

Ph

2-Amino-1-(3-
(benzo[d][1,3]dioxol-5-

ylamino)-2-phenyl-5,6-
dihydroimidazo[1,2-α] 

pyrazin-7(8H)-yl)-

3-phenylpropan-1-one

235 271

3

N

N

N

NH2

O

NH

O
O

2-Amino-1-(3-
(benzo[d][1,3]dioxol-5-

ylamino)-2-phenyl-5,6-
dihydroimidazo[1,2-α] 

pyrazin-7(8H)-yl)-

4-methylpentan-1-one

116 119

4

N

N

N

NH

F

F

N,2-Bis(4-
fluorophenyl)imidazo[1,2

-α] pyrazin-

3-amine

>10 5520

5

N

N

HN

NH

F

F

N,2-Bis(4-fluorophenyl)-
5,6,7,8-

tetrahydroimidazo[

1,2-α] pyrazin-3-amine

200 175
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Table 1  (continued)

6

N

N

N

NH

F

F

H2N

O

2-Amino-1-(2-(4-
fluorophenyl)-3-(4-
fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-

Ethanone

20 23

7

N

N

N

NH

F

F

O

H2N
3-Amino-1-(2-(4-

fluorophenyl)-3-(4-
fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-

propan-1-one

70 75

8 (S)-2-Amino-1-(2-(4-
fluorophenyl)-3-(4-

90 64

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2

N

N

N

NH

F

F

O

H2N fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α]pyrazin-7(8H)-yl)-

propan-1-one

9

N

N

N

NH

F

F

H2N

O

(S)

(S)-2-Amino-1-(2-(4-
fluorophenyl)-3-(4-

fluorophenylamino)-5,6-
dihydroimidazo[1,2-

α]pyrazin-7(8H)-

yl)-3-methylbutan-1-one

30 24
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Table 1  (continued)

10

N

N

N

NH

F

F

H2N

O 2-Amino-1-(2-(4-
fluorophenyl)-3-(4-
fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-

2-methylpropan-1-one

20 25

11

N

N

N

NH

F

F

H2N

Ph

O

(S)

(S)-2-Amino-1-(2-(4-
fluorophenyl)-3-(4-

fluorophenylamino)-5,6-
dihydroimidazo[1,2-α] 

pyrazin-7(8H)-

yl)-3-phenylpropan-1-one

110 121

12
(R)-2-Amino-1-(2-(4-
fluorophenyl)-3-(4- 70 59

N

N

N

NH

F

F

H2N

Ph

O

(R)

fluorophenylamino)-5,6-
dihydroimidazo[1,2-α] 

pyrazin-7(8H)-

yl)-3-phenylpropan-1-one

13

N

N

N

NH

F

H2N

O
2-Amino-1-(3-((4-

fluorophenyl)amino)-2-

phenyl-5,6-
dihydroimidazo[1,2-α] 
pyrazin-7(8H)-yl)-2-

methylpropan-

1-one

200 168

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2
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Table 1  (continued)

14

N

N

N

NH

F

H2N

O

Cl

2-Amino-1-(2-(4-
chlorophenyl)-3-((4-

fluorophenyl)

amino)-5,6-
dihydroimidazo[1,2-α] 

pyrazin-7(8H)-yl)-

ethanone

660 437

15

N

N

N

NH

F

H2N

O

OMe

2-Amino-1-(3-((4-
fluorophenyl)amino)-

2-(4-methoxyphenyl)-
5,6-dihydroimidazo[1,2-

α] pyrazin-7(8H)-

yl)ethanone

2270 1702

16

N

N

N

NH

F

H2N

O
2-Amino-1-(3-((4-

fluorophenyl)amino)-2-
(p-tolyl)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-

yl)ethanone

3140 3360

17

N

N

N

NH

F

H2N

O

F

2-Amino-1-(3-((4-
fluorophenyl)amino)-2-

(3-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-yl)-

ethanone

10 30

18

N

N

N

NH

F

O F

H2N

2-Amino-1-(2-(2-
fluorophenyl)-3-((4-

fluorophenyl)

amino)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-yl)-

2-methylpropan-1-one

1390 1284

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2
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Table 1  (continued)

19

N

N

N

NH

O

H2N
F

F 2-Amino-1-(2-(3,4-
difluorophenyl)-3-(p-

tolylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-2-

methylpropan-1-one

60 50

20

N

N

N

NH

O

H2N
F

2-Amino-1-(3-
(cyclohexylamino)-2-(4-

fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-yl)-2-

methylpropan-1-one

9610 5980

21

N

N

N

NH

N

H2N

O

F

2-Amino-1-(2-(4-
fluorophenyl)-3-(pyridin-

3-ylamino)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-yl)-2-

methylpropan-1-one

1413 3320

22
N

N

N

NH

F
O

H2N

F

2-Amino-1-(2-(4-
fluorophenyl)-3-(3-

fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-

ethanone

50 34

23

N

N

N

NH

H2N

O

F

F

2-Amino-1-(2-(3-
fluorophenyl)-3-(4-

fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-2-

methylpropan-1-one

50 71

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2
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Table 1  (continued)

24

N

N

N

NH

H2N

O

F

2-Amino-1-(2-(4-
fluorophenyl)-3-(p-

tolylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazine-7(8H)-yl)-

ethanone

10 13

25

N

N

N

NH

F
O

H2N 2-Amino-1-(2-(4-
fluorophenyl)-3-(p-

tolylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazine-7(8H)-yl)-2-

methylpropan-

1-one

20 24

26

N

N

N

NH

H2N

O

Cl

F

2-Amino-1-(3-(4-
chlorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-

yl)ethanone

10 9

27

N

N

N

NH

F

Cl

O

H2N 2-Amino-1-(3-(4-
chlorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-

yl)-2-methylpropan-1-
one

30 24

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2

28

N

N

N

NH

F

F

O

H2N

F

3-Amino-1-(2-(4-
fluorophenyl)-3-(4-
fluorophenylamino)-

5,6-dihydroimidazo[1,2-
α] pyrazin-7(8H)-yl)-

propan-1-one

30 23
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Table 1  (continued)

30

N

N

N

NH

H2N

O

Cl

F

F

2-Amino-1-(3-(4-chloro-
3-fluorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-

7(8H)-yl)ethanone

3 4

31

N

N

N

NH

F

Cl

O

H2N

F

2-Amino-1-(3-(4-chloro-
3-fluorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydro imidazo[1,2- α] 

pyrazin-

7(8H)-yl)-2-
methylpropan-1-one

40 52

32

N

N

N

NH

F

F

O

H2N

F

2-Amino-1-(3-(2,4-
difluorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-yl)-

2-methylpropan-1-one

110 90

33

N

N

N

NH

F
O

H2N

F

F

2-Amino-1-(3-(3,5-
difluorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-yl)-

2-methylpropan-1-one

220 244

No. Name and structure of the compounds

P. falciparum
strain IC50

(nM)

3D7 W2

29

N

N

N

NH

F

F

O

H2N

F

2-Amino-1-(3-(3,4-
difluorophenylamino)-

2-(4-fluorophenyl)-5,6-
dihydroimidazo[1,2- α] 

pyrazin-7(8H)-

yl)-2-methylpropan-1-
one

44 36
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descriptors were removed. At the second step, for 
decreasing the redundancy existing in the descrip-
tors, the correlation of descriptors with each other and 
with the biological activities (pIC50) against 3D7 and 
W2 was examined and among the collinear ones (r > 0. 
95), the descriptors that had the highest correlation 
with pIC50 for 3D7 and W2 were retained. After these 
steps, the number of remaining descriptors for all the 
33 compounds in each mode (against 3D7 and W2) was 
about 555 which were collected in an n × m data matrix 
(D), where n and m are the number of imidazolopip-
erazine derivatives (= 33) and the number of descrip-
tors (= 555), respectively. The data set was randomly 
divided to training set with 23 compounds, test and 
validation set, each of them include 5 compounds.

It should be noted that the variable selection was done 
by stepwise multiple linear regression (SMLR) on the 
training set using SPSS (version 19.0, SPSS Inc., http://
www.spss.com). Artificial neural networks were done 
using MATLAB (version 7.6, Math work, Inc., http://
www.mathw​orks.com). All other statistical calculations 
and evaluations were also conducted in MATLAB. In 
ANN modeling, a two-layer feed-forward network with 
sigmoid hidden neurons and linear output neurons was 
used with only two hidden neurons. The mean square 
error was also used as the performance criteria of the 
network.

Results
In the first step, due to the preference of using the linear 
models to the non-linear ones [19], the QSAR modelling 
of the mentioned imidazolopiperazine derivatives with 
anti-malarial activities was investigated using the linear 
models. This effort did not have good results, by using 

multiple linear regression (MLR) and partial least square 
(PLS) models, and forced the authors to test the nonlin-
ear models.

At the next step for evaluation the randomized distri-
bution of the molecules belong to the three data set (the 
training, validation and test sets) in the space of descrip-
tors, principal component analysis (PCA) was applied. 
The two-dimensional (2D) PCA plot (PC1 vs. PC2) of 
imidazolopiperazine derivative molecules for the data of 
two models (3D7 and W2) is displayed in Fig. 1.

Variable selection
Variable selection was done using SMLR on the 23 × 555 
data matrix. The statistic parameters like Fisherʼs F value 
(F) and correlation coefficient (R2) were employed for 
evaluation the goodness of the selected variables and as 
fitting criteria. In this way, variables with the most sig-
nificant values of F and highest correlation coefficient 
were selected by inserting into/removing from the model 
respectively and 12 variables were selected by using this 
approach. In the next step, the models with 1 to 12 vari-
ables were checked using ANN method for training and 
validation sets [20] and it was found that in the models 
with more than 6 variables despite of improvement in the 
training set results, the prediction ability of the valida-
tion set reduced because of overfitting [21]. The results of 
SMLR for the selected variables are summarized in Addi-
tional file 1: Tables S1–S3 for the 3D7 model and in Addi-
tional file 1: Table S4–S6 for the W2 model.

So the number of 6 variables was selected for both 
3D7 and W2 models. The 6 selected descriptors for 
modelling the biological activities (pIC50) against 3D7 
and W2 are represented in Additional file  1: Tables S7, 

Fig. 1  Random distribution of the training, validation, and test sets at two-dimensional PCA plot (PC1 vs. PC2) related to a 3D7 and b W2

http://www.spss.com
http://www.spss.com
http://www.mathworks.com
http://www.mathworks.com
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S8, respectively. It should be mentioned that the results 
of test set were not considered during selection of the 
optimum model. The definition of the used molecular 
descriptors for modelling the biological activities (pIC50) 
for the 3D7 and W2 strain are presented in Table 2.

After the selection of the descriptors, the evaluation of 
correlation was done using the pair-correlation matrix 
for 23 training compounds and the total of training and 
test sets (28 compounds). The related data are shown 
in Tables 3 and 4 for six descriptors of the 3D7 and W2 
models respectively.

Model development
At the model development and validation steps, the 
training set with 23 compounds (70% of the imidazolo-
piperazine derivative molecules) was used for artificial 
neural networks modelling. Feed forward artificial neu-
ral networks with Levenberg–Marquardt algorithm were 
used for this purpose. The validation and test sets (each 
of them with 5 compounds containing 15% of the imida-
zolopiperazine derivative molecules) were used to vali-
date the prediction ability of the proposed anti-malarial 

Table 2  The definition of the used molecular descriptors for modelling of two kinds of activities (3D7 and W2)

Molecular 
descriptors

Definition Descriptor category Strain

GATS4m Geary autocorrelation of lag 4 weighted by mass 2D autocorrelations 3D7

GATS7m Geary autocorrelation of lag 7 weighted by mass 2D autocorrelations 3D7

Mor06u Signal 06/unweighted 3D-MoRSE descriptors 3D7

Mor31u 3D-MoRSE, signal 31/unweighted 3D-MoRSE descriptors 3D7

+R3e R maximal autocorrelation of lag 3/weighted by Sanderson electronegativity GETAWAY descriptors 3D7

+R2p R maximal autocorrelation of lag 2/weighted by polarizability GETAWAY descriptors 3D7

BEHm3 Highest eigenvalue n.3 of Burden matrix/weighted by atomic masses Burden eigenvalues W2

MATS7m Moran autocorrelation of lag 7 weighted by mass 2D autocorrelations W2

RDF020m Radial distribution function-020/weighted by mass RDF descriptors W2

Mor23u 3D-MoRSE signal 23/unweighted 3D-MoRSE descriptors W2

Mor20p 3D-Morse signal 23/weighted by polarizability 3D-MoRSE descriptors W2

MLOGP Moriguchi octanol–water partition coefficient Molecular properties W2

Table 3  The pair correlation coefficient (R2) and  the  variance inflation factor (VIF) for  the  6 descriptors at  the  training 
and total set for 3D7 model

a  Total set: total of training, validation and test sets

GATS7m Mor31u Mor06u R2p+ GATS4m R3e+ VIF

GATS7
Trainng set 1.00 2.21

Total seta 1.00 2.85

Mor31u
Trainng set 0.38 1.00 2.86

Total seta 0.37 1.00 1.43

Mor06u
Trainng set 0.00 0.15 1.00 1.44

Total seta 0.01 0.12 1.00 1.44

R2p+
Trainng set 0.1 0.25 0.11 1.00 1.47

Total seta 0.08 0.21 0.12 1.00 1.46

GATS4m
Trainng set 0.03 0.19 0.12 0.18 1.00 1.49

Total seta 0.05 0.26 0.10 0.19 1.00 2.57

R3e+
Trainng set 0.03 0.06 0.00 0.01 0.10 1.00 1.44

Total seta 0.11 0.02 0.04 0.01 0.06 1.00 1.52
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models. The statistical parameters of the used ANN 
models is represented in Table 5.

The actual and predicted amounts of pIC50 of the 
used imidazolopiperazine derivatives as anti-malarial 
structures against 3D7 and W2 strain are represented 
in Table  6. There is good agreement between predicted 
and actual values of pIC50 in the proposed anti-malarial 
model for 3D7 activity and can be seen visually in Fig. 2. 
About model constructed for activity against W2 how-
ever the training and validation was acceptable but the 
prediction ability in the external test set was not as good 
as 3D7.

Despite the good agreement between actual and 
predicted values in the two 3D7 and W2 models and 

specifically in the first one, but because the high num-
ber of descriptors (about 555 descriptors) which were 
selected in the variable selection step, there was the 
possibility of obtaining chancy models [22]. For evalua-
tion of chance correlation, y-scrambling test was done. 
The dependent variable of the two 3D7 and W2 models 
(the experimental pIC50 of the selected derivatives) was 
randomly shuffled 30 times and ANN was run on them 
each time. The maximum correlation coefficient of the 
test set (R2

MP) for these scrambled 3D7 and W2 models 
were 0.09 and 0.13 respectively. These low values of the 
correlation coefficients of the scrambled models (R2

MP) 
in comparison to the original 3D7 and W2 models imply 
the absence of chance correlation.

Table 4  The pair correlation coefficient (R2) and  the  variance inflation factor (VIF) for  the  6 descriptors at  the  training 
and total set for W2 model

a  Total set: total of training, validation and test sets

Mor20p MATS7m RDF020m MLOGP BEHm3 Mor23u VIF

Mor20p

 Training set 1.00 1.63

 Total seta 1.00 2.67

MATS7m

 Training set 0.00 1.00 1.62

 Total seta 0.00 1.00 1.64

RDF020m

 Training 0.02 0.01 1.00 1.56

 Total seta 0.011 0.00 1.00 1.41

MLOGP

 Training set 0.15 0.18 0.07 1.00 1.91

 Total seta 0.04 0.20 0.01 1.00 1.55

BEHm3

 Training set 0.01 0.08 0.19 0.00 1.00 1.34

 Total seta 0.38 0.00 0.01 0.14 1.00 2.24

Mor23u

 Training set 0.14 0.13 0.00 0.00 0.01 1.00 1.38

 Total seta 0.39 0.19 0.07 0.00 0.15 1.00 2.21

Table 5  Statistical parameters of the artificial neural networks models used for prediction of anti-malarial activity at 3D7 
and W2

a  Average absolute deviation (AAD) for 3D7 model = 0.168
b  Percentage average absolute relative error (AARE%) for 3D7 model = 2.98%
c  Average absolute deviation (AAD) for W2 model = 0.257
d  Percentage average absolute relative error (AARE%) for W2 model = 4.20%

Number of compounds 3D7a,b W2c,d

R R2 MSE R R2 MSE

Training set 23 0.973 0.947 0.036 0.964 0.929 0.030

Validation set 5 0.979 0.959 0.051 0.892 0.797 0.290

Test set 5 0.959 0.920 0.254 0.901 0.813 0.740
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Applicability domain
Applicability domain (AD) of a QSAR model is an impor-
tant point, because it defines the model limitations. 
Actually “the applicability domain of a (Q)SAR model is 
the response and chemical structure space in which the 
model makes predictions with a given reliability” [23].

Different methods have been suggested for calcula-
tion of AD [24]. One of the recommended approaches to 
define AD is the method based on leverage and standard 
residual. The Williams plot that displays the standardized 

residuals versus leverage (hat diagonal) values is a way 
to verify the AD of a QSAR model [25, 26]. Leverage is 
proportional to the Mahalanobis distance of a query 
chemical from the centroid of the training set. For a given 
descriptor dataset X, the leverages are calculated with the 
(H = X (XʹX)−1Xʹ) equation, where Xʹ is the transpose of 
X matrix [24, 27]. The diagonal value (hi) represents the 
leverage value for ith point in the X dataset from the 
centre of the set of X observations. The higher lever-
age values represent the far compounds from the centre 

Table 6  Experimental and predicted activities (pIC50) of the imidazolopiperazine derivatives as anti-malarial structures 
against 3D7 and W2

a  The selected molecules as the validation data set
b  The selected molecules as the test data set

Compound number 3D7 Compound number W2

pIC50
(exp)

pIC50
(pred)

Residual pIC50
(exp)

pIC50
(pred)

Residual

1 6.201 6.309 − 0.108 1 6.013 5.959 0.054

2 5.629 6.269 − 0.640 2 5.567 5.527 0.040

3 5.936 5.990 − 0.054 3 5.924 5.890 0.034

4 7 6.996 0.004 4a 4.258 3.901 0.357

5 5.699 5.711 − 0.012 5 5.757 5.620 0.137

6 6.699 6.695 0.004 6 6.638 6.624 0.014

7 6.155 6.269 − 0.114 7a 6.125 6.629 − 0.504

8 6.046 6.035 0.011 8 6.194 6.413 − 0.219

9 6.523 6.269 0.254 9 6.62 6.519 0.101

10 6.699 6.269 0.430 10b 6.602 6.389 0.213

11b 5.959 6.269 − 0.310 11 5.917 5.885 0.032

12b 6.155 6.269 − 0.114 12 6.229 6.164 0.065

13 5.699 5.677 0.022 13 5.775 5.709 0.066

14 5.18 5.192 − 0.012 14 5.36 5.369 − 0.009

15a 4.644 4.252 0.392 15b 4.769 4.600 0.169

16 4.503 4.252 0.251 16b 4.474 3.809 0.665

17a 7 6.965 0.035 17 6.523 6.550 − 0.027

18b 4.857 4.387 0.470 18 4.891 4.946 − 0.055

19 6.222 6.296 − 0.074 19 6.301 5.910 0.391

20 4.017 4.252 − 0.235 20 4.223 4.251 − 0.028

21 4.85 4.858 − 0.008 21 4.479 4.451 0.028

22 6.301 6.270 0.031 22a 6.469 6.369 0.100

23 6.301 6.269 0.032 23 6.149 6.091 0.058

24 7 6.971 0.029 24a 6.886 5.950 0.936

25 6.699 6.698 0.001 25b 6.62 5.130 1.490

26 7 6.987 0.013 26a 7.046 6.614 0.432

27b 6.523 7.278 − 0.755 27 6.62 6.485 0.135

28a 6.523 6.528 − 0.005 28 6.638 6.357 0.281

29a 6.357 6.269 0.088 29 6.444 6.240 0.204

30 7.523 7.526 − 0.003 30b 7.398 6.414 0.984

31 6.398 6.269 0.129 31 6.284 6.251 0.033

32a 5.959 6.268 − 0.309 32 6.046 6.095 − 0.049

33b 5.658 6.269 − 0.611 33 5.613 6.176 − 0.563
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and they are more influential in model building [24]. It 
should be mentioned that a warning value for leverage 
is defined; so that if a query chemical has higher lever-
age than the warning value, it can be as unreliable pre-
diction [24]. This warning leverage generally is equal to 
3p/n where p is the number of model descriptors plus 
one (here p = 7), and n is the number of compounds used 
for the training model [24, 28]. It should be noted if the 
leverage of a query chemical was less than the warning 

value, there is not necessarily to be stayed on the range of 
the applicability domain of the model, and may be it has 
high standardized residuals. So in the Williams plot both 
of the two parameters (leverage values and standardized 
residuals) for surveying the AD of model has been con-
sidered. The Williams plots of 33 compounds of the mod-
els with 6 descriptors for 3D7 and W2 are displayed in 
Fig. 3.

a b

Fig. 2  Plot of the pIC50 predicted (using artificial neural networks model) versus the experimental pIC50 for a 3D7 and b W2
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Discussion
In this research an artificial neural network was employed 
to gain a set of descriptors and to build a QSAR model 
for antimalarial activity. The controversial topic is how 
each step for QSAR model building such as data collec-
tion, model validation and prediction is performed.

The randomized selection of prediction and test sub-
sets is a good method for external evaluation of the final 
model [29]. For each 3D7 and W2 model, As seen in 
Fig. 1, the two-dimensional PCA plot (PC1 vs. PC2) show 
that the molecules belongs to the three training, valida-
tion and test data sets are randomly distributed in the 
space of descriptors.

The other important step in any QSAR study is variable 
selection, because the method which is used for descrip-
tor choosing has a great impact on all subsequent steps in 
drug design. The ideal path for variable selection is exten-
sively search to all possible combinations of the initial 
descriptors, which is impossible except with small data 
set which have small number of descriptors [30].

For this purpose after using stepwise MLR (SMLR), 
the variables with the most significant Fisherʼs value (F) 
and with the highest correlation coefficient (R2) were 
selected. In this way variables with the most significant 
Fisherʼs value and the highest correlation coefficient were 
selected by inserting into/removing from the model. The 
number of 12 variables were checked using ANN method 
for training and validation sets. At the end it was found 
that the prediction ability of the models with 6 variables 
(reported in Table 2) are the best.

The next step was the evaluation of correlation in the 
selected descriptors. In the case of correlation between 
descriptors, the efficiency of the QSAR models are 
reduced and leads to biased estimation [31]. The pair cor-
relation matrix was evaluated for the six descriptors of 

the two 3D7 and W2 models (Tables 3 and 4).It is clear 
from the Tables 3 and 4, no serious dependency is found 
in both descriptor set.

In addition to pair correlation, another kind of lin-
ear dependency can limit the accuracy of model which 
is known as multicollinearity which is shown the linear 
dependency of a variable (predictor) to all others [31]. 
Variance inflation factor (VIF), which is given in the fol-
lowing equation, is a popular diagnostic index for appear-
ing multicollinearity [32].

where R
2
i
 is the R2-value obtained by regressing 

the ith predictor on the other predictors [32].
As it is shown in the last column of Tables 3 and 4, all 

the calculated VIF are less than 3, and as regards to the 
proposed critical value for VIF that is equal to 5.0, the 
information of none of the six used descriptors for both 
3D7 and W2 models has multicollinearity with the other 
descriptors and the resulting models are acceptable.

Looking at the results of model development and 
validation (Table  5), we find that the values of R2 and 
MSE of the training set for both of 3D7 and W2 mod-
els are good and express the good fitness of the models. 
Nevertheless it is necessary to use validation and test 
set to check the prediction ability of the anti-malarial 
models. As can be seen in Table 5, the statistics of vali-
dation and test sets of the model suggested for inhibi-
tory against 3D7 strain were excellent (R2

val = 0.959, 
R2

test = 0.920) and the values of MSE for the two vali-
dation and test data sets were also good (0.051 and 
0.254, respectively). The model generated for inhibitory 
against W2 strain with R2

val = 0.797 and R2
test = 0.813 

was acceptable and the MSE values of its validation and 

VIFi =
1

1− R
2
i
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Fig. 3  The Williams plots of the 33 compounds obtained by 6 descriptors used in artificial neural network models for a 3D7 and b W2
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test data sets (0.290 and 0.740, respectively) were not 
good in case of test set. It is clear from the results that 
the anti-3D7 activity model with the excellent statistics 
values for training, validation, and test (R2

train = 0.947, 
R2

val = 0.959, R2
test = 0.920) was better from the anti-

W2 activity model and the latter was not very good but 
has acceptable performance which can be used for a 
brief estimation of activity against W2.

Also from the Williams plots (Fig. 3), it is clear that all 
the 33 compounds, except molecule No. 7 in W2 model 
have leverage values lower than the warning leverage. 
Also all the compounds were in the acceptable range 
of standardized residual (± 3σ). These results confirm 
that the prediction using six descriptors (which were 
selected by SMLR) in ANN models can be acceptable.

Also from the Williams plots (Fig. 3), it is clear that all 
the 33 compounds, except molecule No. 7 in W2 model 
have leverage values lower than the warning leverage. 
Also all the compounds were in the acceptable range 
of standardized residual (± 3σ). These results confirm 
that the prediction using six descriptors (which were 
selected by SMLR) in ANN models can be acceptable.

Conclusion
Malaria is a deadly infectious disease, which is prevalent 
especially in the tropical developing countries. Resist-
ance to existing anti-malarial drugs is a factor forcing 
researchers to develop or modify the anti-malarial com-
pounds. The QSAR study with highlighting the structure 
activity relationships which correlate the compounds’ 
structural features with the observed anti-malarial activi-
ties could be a suitable way to design and to modify 
anti-malarial compounds. Actually in silico drug design 
methods, such as QSAR, play an important role in the 
drug design process due to saving money and time.

In this research, the anti-malarial activity of 33 imida-
zolopiperazine derivatives was investigated at 3D7 and 
W2 strain, using QSAR method. The linear methods, 
such as MLR and PLS models was not suitable but non-
linear ANN showed good performance. The statistical 
parameters were used to evaluate the results. The results 
of R2, MSE and leverage value showed that the prediction 
ability of ANN method for estimation of the anti-malarial 
activity in imidazolopiperazine compounds is good and 
can be used as a virtual tool for synthesis of analogous 
compounds.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1293​6-019-2941-5.

 Additional file 1.Additional tables.

Abbreviations
AD: applicability domain; ANN: artificial neural network; MLR: multiple linear 
regression; MSE: mean square error; PC: principal component; PCA: principal 
component analysis; PLS: partial least square; QSAR: quantitative structure 
activity relationship; SMLR: stepwise multiple linear regression; VIF: variance 
inflation factor.

Acknowledgements
Support of Shiraz University of Medical Sciences (98-01-42-20527) is gratefully 
acknowledged.

Research involving human participants and/or animals
This article does not contain any studies with human participants or animals 
performed by any of the authors.

Authors’ contributions
SY was the supervisor of team in all research steps including data gathering, 
data analysis, and manuscript preparation/revision. RE had contribution in the 
data analysis and preparation of results and revision of this manuscript. MM 
had contributed to the development of this analysis and the writing and revis-
ing of this manuscript. All authors read and approved the final manuscript.

 Availability of data and materials
All the information about datasets during and/or analysed during the current 
research are included in the manuscript, additional file and other required 
data is available from the corresponding author on reasonable request.

Ethics approval and consent to participate
This article does not contain any studies involving human participants or clini-
cal trial to require their consent for publication. Thus no ethical limitation was 
involved. The references of all data used in this research were also noted in the 
manuscript completely.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Research Center for Health Sciences, Institute of Health, Department 
of Occupational Health Engineering, School of Health, Shiraz University 
of Medical Sciences, Shiraz, Iran. 2 Medicinal and Natural Products Chemistry 
Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. 3 Depart-
ment of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran. 

Received: 30 May 2019   Accepted: 27 August 2019

References
	1.	 Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive 

review on various strategies for antimalarial drug discovery. Eur J Med 
Chem. 2017;125:1300–20.

	2.	 Biamonte MA, Wanner J, Le Roch KG. Recent advances in malaria drug 
discovery. Bioorg Med Chem Lett. 2013;23:2829–43.

	3.	 Marson BM, Vilhena R de O, Fachi MM, Pontes FLD, de Almeida BMM, Pon-
tarolo R. Challenges and perspectives in malaria treatment. In: Malaria. 
Avid Science Publ; 2019. http://www.avids​cienc​e.com/book/malar​ia/.

	4.	 Flannery EL, Chatterjee AK, Winzeler EA. Antimalarial drug discovery—
approaches and progress towards new medicines. Nat Rev Microbiol. 
2013;11:849–62.

	5.	 Calderón F, Wilson DM, Gamo F-J. Antimalarial drug discovery: recent 
progress and future directions. Prog Med Chem. 2013;52:97–151.

	6.	 Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: 
applications to targets and beyond. Br J Pharmacol. 2007;152:21–37.

	7.	 Kumar Ojha P, Roy K. The current status of antimalarial drug research 
with special reference to application of QSAR models. Comb Chem High 
Throughput Screen. 2015;18:91–128.

	8.	 Agrawal VK, Srivastava R, Khadikar PV. QSAR Studies on some antimalarial 
sulfonamides. Bioorg Med Chem. 2001;9:3287–93.

https://doi.org/10.1186/s12936-019-2941-5
https://doi.org/10.1186/s12936-019-2941-5
http://www.avidscience.com/book/malaria/


Page 17 of 17Yousefinejad et al. Malar J          (2019) 18:310 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ?  Choose BMC and benefit from: 

	9.	 Cheng F, Shen J, Luo X, Zhu W, Gu J, Ji R, et al. Molecular docking and 
3-D-QSAR studies on the possible antimalarial mechanism of artemisinin 
analogues. Bioorg Med Chem. 2002;10:2883–91.

	10.	 Katritzky AR, Kulshyn OV, Stoyanova-Slavova I, Dobchev DA, Kuanar M, 
Fara DC, et al. Antimalarial activity: a QSAR modeling using CODESSA PRO 
software. Bioorg Med Chem. 2006;14:2333–57.

	11.	 Cardoso FJB, de Figueiredo AF, da Silva Lobato M, de Miranda RM, de 
Almeida RCO, Pinheiro JC. A study on antimalarial artemisinin derivatives 
using MEP maps and multivariate QSAR. J Mol Model. 2008;14:39–48.

	12.	 Cheoymang A, Na-Bangchang K. A systematic review: application of 
in silico models for antimalarial drug discovery. Afr J Pharm Pharmacol. 
2018;12:159–67.

	13.	 Leong FJ, Zhao R, Zeng S, Magnusson B, Diagana TT, Pertel P. A first-
in-human randomized, double-blind, placebo-controlled, single- and 
multiple-ascending oral dose study of novel imidazolopiperazine KAF156 
to assess its safety, tolerability, and pharmacokinetics in healthy adult 
volunteers. Antimicrob Agents Chemother. 2014;58:6437–43.

	14.	 Chia PY, Hsu LY, Yeo TW. Malaria in 2018: looking to the past and moving 
into the future. Ann Acad Med. 2018;47:4.

	15.	 Nagle A, Wu T, Kuhen K, Gagaring K, Borboa R, Francek C, et al. Imida-
zolopiperazines: lead optimization of the second-generation antimalarial 
agents. J Med Chem. 2012;55:4244–73.

	16.	 Wu T, Nagle A, Kuhen K, Gagaring K, Borboa R, Francek C, et al. Imidazolo-
piperazines: hit to lead optimization of new antimalarial agents. J Med 
Chem. 2011;54:5116–30.

	17.	 Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. 
2nd ed. Weinheim: WILEY-VCH; 2009.

	18.	 Mauri A, Consonni V, Pavan M, Todeschini R. Dragon software: an easy 
approach to molecular descriptor calculations. MATCH Commun Math 
Comput Chem. 2006;56:237–48.

	19.	 Yousefinejad S, Hemmateenejad B. Chemometrics tools in QSAR/
QSPR studies: a historical perspective. Chemom Intell Lab Syst. 
2015;149:177–204.

	20.	 Yousefinejad S, Mahboubifar M, Rasekh S. Prediction of different antibac-
terial activity in a new set of formyl hydroxyamino derivatives with potent 
action on peptide deformylase using structural information. Struct Chem. 
2019;30:925–36.

	21.	 Hawkins DM. The problem of overfitting. J Chem Inf Comput Sci. 
2004;44:1–12.

	22.	 Gramatica P. External evaluation of QSAR models, in addition to cross-
validation: verification of predictive capability on totally new chemicals. 
Mol Inform. 2014;33:311–4.

	23.	 Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MD, Gramatica P, 
et al. Current status of methods for defining the applicability domain 
of (quantitative) structure–activity relationships. Altern Lab Anim. 
2005;33:155–73.

	24.	 Sahigara F, Mansouri K, Ballabio D, Mauri A, Consonni V, Todeschini R. 
Comparison of different approaches to define the applicability domain of 
QSAR models. Molecules. 2012;17:4791–810.

	25.	 Gramatica P. Principles of QSAR models validation: internal and external. 
QSAR Comb Sci. 2007;26:694–701.

	26.	 Yousefinejad S, Honarasa F, Montaseri H. Linear solvent structure-polymer 
solubility and solvation energy relationships to study conductive poly-
mer/carbon nanotube composite solutions. RSC Adv. 2015;5:42266–75.

	27.	 Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, 
et al. A stepwise approach for defining the applicability domain of SAR 
and QSAR models. J Chem Inf Model. 2005;45:839–49.

	28.	 Honarasa F, Yousefinejad S, Nasr S, Nekoeina M. Structure–electrochem-
istry relationship in non-aqueous solutions: predicting the reduction 
potential of anthraquinones derivatives in some organic solvents. J Mol 
Liq. 2015;212:52–7.

	29.	 Yousefinejad S, Eftekhari R, Honarasa F, Zamanian Z, Sedaghati F. Com-
parison between the gas–liquid solubility of methanol and ethanol in 
different organic phases using structural properties of solvents. J Mol Liq. 
2017;241:861–9.

	30.	 Yasri A, Hartsough D. Toward an optimal procedure for variable selection 
and QSAR model building. J Chem Inf Comput Sci. 2001;41:1218–27.

	31.	 Yoo W, Mayberry R, Bae S, Singh K, He QP, Lillard JW Jr. A study of effects 
of multicollinearity in the multivariable analysis. Int J Appl Sci Technol. 
2014;4:9.

	32.	 Alin A. Multicollinearity. Wiley Interdiscip Rev Comput Stat. 2010;2:370–4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Quantitative structure–activity relationship to predict the anti-malarial activity in a set of new imidazolopiperazines based on artificial neural networks
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Methods
	Data set
	Descriptor generation and pretreatment

	Results
	Variable selection
	Model development
	Applicability domain

	Discussion
	Conclusion
	Acknowledgements
	References




