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Abstract: Artificial olfactory systems are needed in various fields that require real-time monitoring,
such as healthcare. This review introduces cases of detection of specific volatile organic compounds
(VOCs) in a patient’s exhaled breath and discusses trends in disease diagnosis technology develop-
ment using artificial olfactory technology that analyzes exhaled human breath. We briefly introduce
algorithms that classify patterns of odors (VOC profiles) and describe artificial olfactory systems
based on nanosensors. On the basis of recently published research results, we describe the develop-
ment trend of artificial olfactory systems based on the pattern-recognition gas sensor array technology
and the prospects of application of this technology to disease diagnostic devices. Medical technolo-
gies that enable early monitoring of health conditions and early diagnosis of diseases are crucial in
modern healthcare. By regularly monitoring health status, diseases can be prevented or treated at an
early stage, thus increasing the human survival rate and reducing the overall treatment costs. This
review introduces several promising technical fields with the aim of developing technologies that
can monitor health conditions and diagnose diseases early by analyzing exhaled human breath in
real time.

Keywords: artificial olfactory system; health monitoring; exhaled breath diagnosis; volatile organic
compounds; gas sensor; electronic nose

1. Introduction

The olfactory sense is the oldest human sense. Therefore, humans tend to analyze the
environment by sniffing [1]. Various studies have been conducted to mimic the sensory
cognitive mechanism, and research on sensor systems focusing on olfactory cognitive
models has attracted significant attention [2]. Sniffing is a complicated process as there
are over 400 species of olfactory receptor gene, and signals through various receptors are
comprehensively determined in the brain to provide information about smell and human
cognition [3]. The concept of an “artificial nose” is based on a technology that grasps
information about odors and uses them as data. In other words, it is an electronic system
technology that analyzes the state and composition of a substance through smell. Figure 1
shows the concept of an artificial nose system inspired by the olfactory perception pathway.
A biomimetic gas detection platform can be designed by constructing a nanosensor array
based on the olfactory receptor tissue and by combining a data processing technology
through pattern analysis of signal data.
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Persaud et al. proposed the concept of using different types of sensors as arrays and 
applying unique signal patterns to specific odors to enhance the selectivity, reliability, and 
accuracy of gas detection systems [4]. The developed system was called an electronic nose 
(e-nose). All corresponding technologies associated to this system are called e-noses. The 
principle of the e-nose is similar to that of the human olfactory mechanism. That is, the 
odor recognition is based on the reaction of the smell factor and olfactory receptors. The 
e-nose reacts with odor substances using sensor unit devices instead of olfactory receptor 
cells as receptors, and analyzes patterns using a computer instead of the brain [5]. 

 

Figure 1. Concept of an artificial nose (e-nose) system based on the olfactory perception pathway. 

In the 21st century, the e-nose technology has evolved significantly along with the 
development of NT/IT technologies. Low-cost, high-performance sensor devices have 
been developed on the basis of various nanobiosensor technologies, and the data pro-
cessing analysis technologies have been improved owing to the advent of artificial intelli-
gence (AI)-integrated technologies. The evolution of AI and big data processing technol-
ogies has subsequently led to the development of high-level e-nose technologies that uti-
lize a large number of sensor arrays [6]. The current artificial-nose technology can sniff a 
smell that cannot be smelled by humans using a sensor unit with a sensitivity of parts-
per-billion level [7]. Recently, this technology has been used in various fields such as 
chemistry, medical care, food quality management, and military industry [8–11]. In the 
case of conventional gas sensors, the information on the gas concentration level is ac-
quired by quantitatively analyzing specific chemicals. The e-nose sensors do not require 
such an extensive process and have been increasingly used because of their simple struc-
ture that recognizes patterns for only specific odors through a database. 

This paper introduces several research cases that analyze the smell of breath exhaled 
by humans using an artificial olfactory system; in many cases, an e-nose is used. When a 
person is diagnosed with a certain disease, various volatile organic compounds (VOCs) 
are produced in vivo owing to metabolic disorders or free radicals [12–14]. Such VOCs 

Figure 1. Concept of an artificial nose (e-nose) system based on the olfactory perception pathway.

Persaud et al. proposed the concept of using different types of sensors as arrays and
applying unique signal patterns to specific odors to enhance the selectivity, reliability, and
accuracy of gas detection systems [4]. The developed system was called an electronic nose
(e-nose). All corresponding technologies associated to this system are called e-noses. The
principle of the e-nose is similar to that of the human olfactory mechanism. That is, the
odor recognition is based on the reaction of the smell factor and olfactory receptors. The
e-nose reacts with odor substances using sensor unit devices instead of olfactory receptor
cells as receptors, and analyzes patterns using a computer instead of the brain [5].

In the 21st century, the e-nose technology has evolved significantly along with the
development of NT/IT technologies. Low-cost, high-performance sensor devices have been
developed on the basis of various nanobiosensor technologies, and the data processing
analysis technologies have been improved owing to the advent of artificial intelligence
(AI)-integrated technologies. The evolution of AI and big data processing technologies
has subsequently led to the development of high-level e-nose technologies that utilize
a large number of sensor arrays [6]. The current artificial-nose technology can sniff a
smell that cannot be smelled by humans using a sensor unit with a sensitivity of parts-
per-billion level [7]. Recently, this technology has been used in various fields such as
chemistry, medical care, food quality management, and military industry [8–11]. In the
case of conventional gas sensors, the information on the gas concentration level is acquired
by quantitatively analyzing specific chemicals. The e-nose sensors do not require such an
extensive process and have been increasingly used because of their simple structure that
recognizes patterns for only specific odors through a database.

This paper introduces several research cases that analyze the smell of breath exhaled
by humans using an artificial olfactory system; in many cases, an e-nose is used. When a
person is diagnosed with a certain disease, various volatile organic compounds (VOCs) are
produced in vivo owing to metabolic disorders or free radicals [12–14]. Such VOCs serve
as unique biometric data depending on the specificity, stage, and condition of the disease.
In other words, as the conditions under which VOCs occur depend on the particular



Biosensors 2021, 11, 337 3 of 21

disease and its various stages, they are classified as “fingerprints” of the disease conditions.
Therefore, the analysis of the exhaled gas can provide information on the physiological
and health status of an individual. This information can be used for the early diagnosis
of many diseases during the induction stage [15]. In this study, we describe the overall
concept of disease diagnosis using human respiratory gas, which has gained significant
attention in recent years. Furthermore, we describe the trend of human respiratory gas
analysis technologies used for diagnosing such diseases and analyze future scenarios of
human respiratory gas disease analysis.

2. Exhaled Breath Diagnosis

In conventional approaches, diseases were distinguished on the basis of the breath
of patients. Recent reports indicate that dogs that are trained to detect various drugs and
explosives by smell can also distinguish cancer patients from healthy people. The olfactory
analysis method is a natural approach that is characterized by many possibilities. The
current drunk-driving control technologies are based on the blood alcohol concentration
measurement, and human breath gas analysis methods are being actively researched. A
majority of this research is directed toward the analysis of respiratory diseases such as
lung cancer and asthma [16,17]. Once the relationship between a disease and breath gas
components is identified, the disease diagnosis based on the exhaled breath analysis is
expected to emerge as a future disease diagnostic method [18].

In general, the diagnostic methods using expensive analytical equipment by collecting
samples of patients’ blood, tissues, etc. require a time-consuming sample collection process
and a skilled operator owing to complex protocols. In addition, such methods can only be
performed in a limited number of places such as hospitals. In contrast, disease diagnosis
using the analysis of breathing gas can be easily performed by operators and users, and
the identification process of the analysis results can be verified in real time. Disease
diagnosis by analyzing breath gas is considered to be an innovative non-invasive diagnostic
method. Breath gas diagnosis has potential advantages over other diagnostic methods
such as blood sampling, urine sampling, biopsy, endoscopy, and imaging. First, it is a
completely non-invasive approach that allows the development of a user-friendly, simple,
and intuitive diagnostic platform [19]. Second, the sample collection in this method
is advantageous because it has superior processing when compared to serum or urine
sampling [20]. Finally, it is the most convenient method as it does not pose the problem of
bio-hazardous specimens within the current regulations.

Breath gas diagnosis is based on the physiological phenomenon of gas exchange occur-
ring in the alveoli. Human blood contains chemicals that reflect physiological phenomena
and metabolic conditions in the human body. Low-molecular organic compounds are con-
tained in the human exhaled breath through the lungs during the respiratory process and
are released out of the body [21]. The health conditions of the human body are reflected by
various VOCs contained in breathing gases that undergo various biological reactions [22].
Blake et al. [23] reported that various metabolic diseases and pathological conditions could
be observed in relation to the concentration increase of the aforementioned VOCs in the
exhaled breath gas. These are associated with the respiratory diseases, such as cardiovascu-
lar disease (CVD), diabetes, asthma, bacterial infertility and inflammatory disease, cancer,
COPD, and Alzheimer’s disease, as well as with other diseases, according to the results
of a recent breath analysis. In addition, a number of studies have been conducted on the
applicability of diagnostic technologies using these VOC gases.

Table 1 summarizes the biomarker VOCs for each disease that can be used for its
diagnosis and the currently used corresponding diagnostic methods. Although it cannot
be used as a replacement for the conventional diagnostic method, it has the potential to
serve as a portable diagnostic device capable of periodic self-diagnosis, which solves the
problems of location and equipment. Through an accurate and efficient analysis of specific
biomarker VOCs present in the breath, we demonstrate the possibility of developing a new
selective self-diagnosis platform.
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Table 1. Conventional measurements with the candidate group for biomarker volatile organic com-
pounds (VOCs) in exhaled breath gas by a diagnosable disease. A simple and efficient e-nose platform
that can distinguish VOCs in exhaled gas can be used as a selective self-diagnostic technology.

Disease Conventional Measurement Biomarker VOCs Ref.

Diabetes Glucose level
Clinical biomarkers Acetone [24]

Bacterial infection

Computed tomography (CT)
Gram stain

Microorganism culture
Morphological analysis

High isoprene

Ammonia
Hydrogen cyanide

Nitric oxide
Ethane
Pentane

[18,25–28]

Asthma

Spirometry
Peak expiratory flow
Lung function testing

Bronchoprovocation test

Acetone
Nitric oxide

Isoprene
Ammonia

[29,30]

COPD

Spirometry
X-Ray, CT

Peak expiratory flow
Lung function testing

Acetone
Ethane [31,32]

Cardiovascular
disease (CVD)

HDL & LDL cholesterol
High blood pressure
Clinical biomarkers

Obesity

Acetone
Pentane
Isoprene

[33,34]

Cancer
Clinical biomarkers

Biopsy
CT, X-ray, MRI

Acetone
Formaldehyde

Ethane
Pentane
Isoprene
Ethanol

[35–38]

2.1. Diabetes

Diabetes is an abnormal carbohydrate metabolic disease that is characterized by
hyperglycemic symptoms [39]. It is classified as either type 2 or type 1 depending on
the problems with insulin secretion or various degrees of peripheral nerve resistance to
insulin action [40,41]. Currently, the most widely applied diabetes diagnostic methods
include the fasting plasma glucose, oral glucose tolerance, and glycated hemoglobin [42].
Diabetes is a condition of abnormal blood sugar in patients, and the complications that
follow place a considerable burden on clinical and public health. Accordingly, an effective
intervention that detects the glucose abnormalities early and prevents progression from
prediabetes to diabetes is of utmost importance. Diabetes should be thoroughly managed
by the patient through a self-diagnosis. The primary self-diagnosis method is based on
glucose level measurement using existing blood collection methods [43]. Although the
low-cost diagnostic technology is currently in use, users’ reluctance to collect blood remains
to be addressed. If low-cost and efficient non-invasive diagnostic methods are developed
in the near future, it is expected to be an innovation in the health care market related
to diabetes.

Galassetti et al. [23] presented a correlation between ethanol and acetone in exhaled
breath, which is related to serum glucose levels. In the case of patients suffering from
diabetic ketoacidosis, a study showed that the acetone concentration in the exhaled gas
increases to hundreds of ppmv [44]. When the blood sugar levels remain high over long
periods of time, the fatty and amino acids are burned to produce energy. The ketone
body produced in the body is a 3-carbon ketone body derived from the oxidation of non-
esterified fatty acids, and is found in the state of hydroxyacetone (1-hydroxyacetone) and
1,2-propanediol (PPD) through acetoacetate decarboxylase [45]. The ketone bodies are
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stored in the blood and thus, lower the pH level. Therefore, glucose cannot be used as an
energy source for untreated diabetic patients. As a result, the ketone bodies are produced
as by-products and energy sources when fat is broken down instead of glucose. High
levels of ketones are produced as a result of low insulin levels in diabetic ketoacidosis [46].
Therefore, the exhaled acetone can be detected in patients with diabetic ketoacidosis and a
high-fat diet [25]. These research results can be used for developing a diabetes diagnosis
technology for acetone level monitoring in exhaled gas. The introduction of a simple and
low-cost measurement technology could enable its use in a wide range of selective testing
methods and reduce patient discomfort or pain during blood collection.

2.2. Various VOCs Derived from Inflammatory Diseases

In addition to diabetes, a few other diseases are expected to be diagnosed through
the analysis of VOCs in exhaled breath gas. In vivo immune responses that are caused
by bacterial infections or inflammatory reactions produce various types of VOC in the
body. The pathological problems can interfere with normal metabolism, and abnormal
chemical reactions can cause the detection of some VOCs in the exhaled gas [44]. By
detecting volatile chemicals such as ammonia, nitrogen oxides, and hydrogen sulfide,
the cause of pathological reactions can be analyzed and implemented in the diagnostic
technology [47]. Mathew et al. [46] reviewed various types of VOC caused by metabolic
processes in the body and metabolic disorders caused by various pathological reactions,
and suggested the possibility of the implementation of a breath diagnosis technology. The
level of ammonia (NH3) in breath gas can be used as an important biomarker. In the
human body, ammonia is produced during protein metabolism and is regulated through
the urea circuit owing to its toxicity [48]. In the case of liver and kidney problems, ammonia
levels increase [49]. In addition, bacteria such as H. pylori, which cause peptic ulcers from
the oral cavity to the duodenum, excrete ammonia gas and hydrogen sulfide through
metabolic processes [50]. Nitrogen monoxide and nitrogen oxide are important signaling
substances produced in the human body. Within the respiratory system, NO regulates
the tension of blood vessels and bronchi (promotes the expansion of blood vessels and
airways), promotes the coordinated beating of ciliated epithelial cells, and acts as an impor-
tant neurotransmitter of non-adrenergic, non-cholinergic neurons running in the bronchi.
Diseases related to inflammation can be mainly analyzed through the concentration of NO
in the breath [51–58]. Currently, a technology that can measure NO in the respiratory tract
using laser analysis sensors is being developed and used as a reference for diagnosing
inflammatory diseases [59].

Isoprene is a unit molecule that forms cholesterol and is involved in cholesterol
metabolism. Its concentration can be used as a sensitive and non-invasive metric for ana-
lyzing various metabolic effects in the human body [60]. Among the cholesterol metabolic
diseases, CVDs and hypertension are categorized as representative diseases with a very
high risk, and the patient needs constant management through periodic and voluntary
diagnosis [61,62]. The currently used self-diagnosis method is the patient family history
analysis and periodic monitoring of the blood pressure level [63,64]. Research on the
classification of exhaled breath components of patients based on various levels of VOC
other than hydrocarbons in the breath is being actively conducted [35]. The following infor-
mation is from a review by Mathew et. al. [46] for journal diagnostics in 2015. In the case
of hydrocarbons such as ethane and pentane, it is caused by oxidation of lipid components
in cells [65]. This component is found when a problem occurs in the metabolism of lipid
components, and is advantageously released through breath gas owing to its low solubility.
It is mainly associated with respiratory obstructive diseases caused by inflammation, such
as asthma, COPD, obstructive sleep apnea, and ARDS [66–70]. The hydrocarbon molecules
are biomarkers of oxidative stress, and pentane and ethane concentrations increase owing
to physical and mental stress [71–73]. It shows a significant difference in concentration
in sepsis or SIRS patients [70] and can be used in the diagnosis of inflammatory bowel
disease, sleep apnea, cancer, and ischemic heart disease [74–77].
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Asthma [78] and COPD [79], which are obstructive respiratory diseases, should be
detected early and prevented from worsening through rapid response. According to
the currently widely known medical manual, patients with active asthma need periodic
checkups every one to six months, depending on the severity of asthma. Asthma symp-
toms are diagnosed through equipment that detects lung function, such as spirometry,
in hospitals [80]. In addition, lung capacity indicators are periodically managed at home
using a personal peak flow meter (which approximately costs $20) [81]. On the basis of
pathological research results on the levels of various VOC biomarker substances, such as
NO, in the patient’s exhaled strain and hydrocarbons, research on inflammatory asthma
patients breathing diagnosis using breath gas analysis is actively underway [82–84].

2.3. Cancer

Conventionally, cancer diagnostics include genetic, epigenetic, proteomic, and gly-
comic biomarker screening, as well as some non-invasively collected biofluids [85–89]. In
the case of cancer, early detection may increase the chance of complete recovery [90]. If a
self-diagnosis technology enabling easy breathing gas analysis is developed, health and
medical expenses for cancer treatment can be reduced, and average life expectancy can
be increased. A malignant tumor, commonly known as cancer, is a disease wherein cell
mutations are caused by several risk factors to identify the cause, which leads to abnormal
cell growth and metastasis. It is reported that approximately 100 types of cancer affect the
human body.

Because the reactions of cancer cells in the body are complex, various types of VOCs
can be used as exhaled breath biomarkers. The first study on cancer diagnosis was con-
ducted for lung cancer, which is a malignant tumor of the lung tissue through direct gas
exchange. O’Neil et al. [91] conducted a study to select candidate groups of biomarker
VOCs through GC/MS by collecting breath samples from eight lung cancer patients. It
was found that among the 386 component gases that were detected with this technology,
45 components were at >75% occurrence level and 28 components were at >90% occur-
rence level. The research results were significant because they could distinguish between
normal samples and patient respiration gas using a classification process via a computer
program. Since then, many research results related to the analysis of biomarker VOCs that
are common in lung cancer patients have been published [92,93].

Phillips et al. published a study on biomarker VOCs produced by the intracellular
oxidative stress caused by breast cancer [94]. Oxidative stress is the process of oxidizing bio-
logically important molecular substances, including DNA and proteins, when an increased
amount of reactive oxygen species (ROS) is leaked into the cytoplasm in mitochondria [95].
This causes the decomposition of fatty acids and the peroxidation of lipids by abundant
oxygen radicals [96,97]. Breast cancer patients and control patients were classified using
SPSS treatment, and higher negative value (NPV) and lower positive value (PPP) were
derived, respectively, as compared with the results of the screening mammograms. Kumar
et al. published a selected ion flow tube mass spectrometry (SIFT-MS) analysis of exhaled
breath for VOC profiling of esophagogastric cancer [98]. In approximately 17 VOC species,
the concentrations of hexanoic acid, phenol, methyl phenol, and ethyl phenol differed
statistically from those in the positive control group.

Until recently, studies on exhaled breath gas analysis for various cancer disease models
and classified patient and control groups have been published steadily. If the integrated
analysis sensor array technology that can classify breathing gas samples according to the
composition of VOCs is used, a new concept diagnosis technology can be developed for
various disease models described above. Furthermore, if breath diagnosis technology is
deployed as a low-cost artificial-nose platform consisting of simple chemical sensor units, it
will be possible to design self-diagnostic devices that can be used by individuals in real time
at home. This technology could be an excellent innovation in health and medical industry.
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3. Nanosensor Array E-Nose for Exhaled Breath Diagnosis

The sensor array technology has recently been widely applied in disease diagnosis for
exhaled breath gas analysis because it is efficient for analyzing multiple VOCs, including
human breath gases [99]. Because exhaled breath gas samples have different compositions
of the compounds, their individual analysis using conventional devices, such as existing
analytical instrument GC-MS, is limited. The sample component profile can be patterned
and recognized using the nanosensor array technology. The artificial nose, which can
analyze the components of real-time breathing based on a simple system, is a novel
technology that can be used for disease self-diagnosis in healthcare. In terms of the
practical application and commercialization of e-nose sensors, low cost, ease of use, and
miniaturization are key factors. To meet these requirements, sensor technologies are being
developed based on the mechanisms derived from the unique characteristics of various
materials [100]. In this section, we discuss electrochemical sensors (metal oxide (MO)
nanomaterial-based e-nose sensors) and colorimetric sensors (metal-containing dye sensor
arrays and functional phage sensor arrays).

Table 2 summarizes representative nanosensor technologies that can be used for
diagnosis based on recent gas detection methods. We aim to introduce an electrochemical
sensor method and a technology to detect a small amount of gas mixture using a color
sensor. To detect various VOCs present in exhaled breath, artificial olfactory models
have been developed using a variety of nanosensor technologies that distinguish specific
gas molecules. These technologies are expected to be applicable to disease diagnosis in
the future.

Table 2. Gas sensor technology applicable to future disease diagnosis.

Measurement Target Sensor Type Sensing Materials Ref.

Lung cancer
Electrochemical sensor

Undoped SnO2, Co-SnO2, and Ni-SnO2 nanoparticles with
cyclic voltammetry and electrochemical impedance

spectroscopy/screen-printed electrode
[101]

Colorimetric sensor Colorimetric sensor array containing Lewis acid/base dyes
(metal–organic complex dye) [102,103]

Diabetes Electrochemical sensor

Co3O4 thin film with a cubic spinel phase with AC impedance
analyses/gold interdigitated electrode pattern [104]

Pristine SnO2 nanofiber (undoped) and Eu-doped SnO2
nanofibers (1, 2, and 3 mol% of Eu3+) with gold electrodes and

Pt wires
[105]

Ethanol in a VOC
mixture Electrochemical sensor

CeO2–TiO2 core shell nanorods with
Pt electrodes [106]

Pristine SnO2 and Yb-doped SnO2 hollow nanofiber (0.5, 1.0,
and 1.5 wt% Yb) with an Au electrode and a Pt wire [107]

Cancer cell culture Colorimetric sensor Functional M13 bacteriophage-based colorimetric sensor array [108,109]

3.1. Metal Oxide-Based Electrochemical Sensor Array for Disease Diagnosis

Metal oxide (MO) nanoparticles are promising candidates for sensor element design
owing to their remarkable physicochemical properties, adjustable surface properties, and
good stability [110]. These nanoparticles have a high density of trapped charged oxygen
species (O2−, O−, and O2−), creating a surface charged layer in the sensor element. When
the reacting gaseous molecules adsorb oxygen ions on an MO surface, they alter the surface-
trapped charge density [111,112]. The number of oxidation states used for gas sensing at the
parts-per-billion level can be controlled by the nanoparticle size, shape, and composition.
Many transition metal elements such as Fe, Co, Ni, Mn, Al, and Cu have been used as
dopants for improving the electrical and optical characteristics of MOs and for enhancing
their sensitivity to gases [113].
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Khatoon et al. [101] doped Co and Ni with tin oxide (SnO2) using a sol–gel method
and investigated it as a sensor material for e-nose development. (Figure 2a) They applied
an MO-based screen-printed electrode as the working electrode to determine the levels of
1-propanol and isopropyl alcohol in cyclic voltammetry. Furthermore, Ni-SnO2 and Co-
SnO2 were found selective to 1-propanol and isopropyl alcohol, respectively, among other
investigated VOCs (acetone, toluene, formaldehyde, 2-butanol, and ethyl acetate). Liu
et al. [114,115] developed various CeO2-based gas sensors attached with different MMnO3
(M: Sr, Ca, La, and Sm) sensing electrodes and conducted a comparative study for detecting
acetone gas. CeO2-MMnO3 compounds were prepared using a simple sol–gel method.
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Nanostructured materials with various morphologies, including nanorods, nanowires,
nanosheets, and nanofibers, have been developed for e-nose applications because their
large surface area-to-volume greatly facilitates the conversion of gas response into electric
signals. Srinivasan et al. [104] developed an acetone sensor using nanostructured Co3O4
thin films for the detection of diabetic ketoacidosis (DKA). The presence of acetone at
a trace level (1.8 ppm) in human exhaled breath signifies the presence of DKA from a
diagnostic perspective.

The acetone level of the exhaled breath air of type-2 diabetes mellitus patients ex-
ceeded 1.71 ppm, whereas that of type-1 diabetes patients was 2.19 ppm. It is known that
the concentration of acetone is directly proportional to metabolic disorders in humans. The
Occupational Safety and Health Administration states that the allowable human exposure
level of acetone is 1000 ppm in industries. Different nanostructured cobalt oxide sensing
elements were synthesized using a spray pyrolysis method at different deposition tem-
peratures (473 to 773 K) [117]. It was found that the nanostructured material was more
sensitive to acetone when analyzing different solvents such as acetone, EtOH, NH3, xylene,
toluene, and acetaldehyde. The sensor fabricated at 773 K exhibited a response of 235
toward acetone (50 ppm) at room temperature.

Furthermore, the sensor showed a limit of detection of 1 ppm, which is lower than
the minimum threshold level of DKA. Ren et al. synthesized four different Fe-doped
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TiO2 thin films on Ti plates using the microarc oxidation technique to measure the level
of ethanol gas [118]. The Fe-doped TiO2 thin films fabricated by introducing 0.5 mM
K4(FeCN)6·3H2O into 0.5 M Na3PO4 showed a better sensitivity to ethanol gas with a
response of 7.9. This value was significantly larger than the responses of other samples
(less than 5.2, at 275 ◦C) prepared with different formulations of K4(FeCN)6·3H2O and
Na3PO4. Li et al. synthesized pristine SnO2 and Er-SnO2 nanobelts using the thermal
evaporation method. When analyzing 100 ppm of various gases including formaldehyde,
ethanediol, ethanol, and acetone at temperature ranging from 150 ◦C to 260 ◦C, it was
found that the Er-SnO2 nanobelt was more sensitive to formaldehyde gas than other gases.
The experimental results revealed that the gas response of a single Er-SnO2 nanobelt device
was 9, with response and recovery times of 17 s and 25 s, respectively [119].

Wang et al. [120] also prepared SnO2 and SnO2/NiO electrospun nanofibers, which
were subsequently subjected to thermocompression and calcination processes. A fabricated
SnO2/NiO sensor was more sensitive to ethanol vapor than to other gases such as H2S, CO,
NH3, and acetone. A SnO2/NiO nanofiber exhibited a higher Ra/Rg value (27.5) than a
pristine SnO2 nanofiber (2.4) on sensing 100 ppm of ethanol and showed average response
and recovery times of 2.9 s and 4.7 s, respectively. Li et al. [121] synthesized porous
Nb2O5-TiO2 n–n junction nanofibers with different Nb molar ratios by electrospinning.

Choi et al. used detection sensors to demonstrate promising clinical applications for
diagnostic purposes through correlation analysis between exhalation components and spe-
cific diseases [116]. They utilized 1D fibers with uniformly applied platinum nanoparticle
catalysts on a porous tin oxide (SnO2) sensor material surrounded by layers of thin shells
(Figure 2b). When acetone gas was adsorbed on the surface of the material under study,
it was applied to a sensor for detecting acetone concentration at approximately 120 ppb,
which resulted in a change in the electrical resistance value. The developed nanofiber sen-
sor increased the resistance of the material by up to six times at a concentration of acetone of
1000 ppb, allowing the diagnosis of diabetes. According to another study, wherein trained
dogs diagnosed lung cancer, on average, toluene was detected approximately at an 80%
accuracy [122]. This sensor was found to detect toluene with an accuracy of approximately
70%. Active research is being conducted on using multisensor arrays for various-disease
diagnosis, such as lung cancer and diabetes. An increased number of research studies
related to the detection of VOCs based on electrochemical sensors via the change in the
resistance of MOs are being published.

3.2. Colorimetric Sensor Array for an Artificial Nose System

The pattern information for specific reactions can be stored in the fingerprint form
using metal-containing dye arrays that react at gas concentrations of hundreds of parts-
per-billion. This technique is called smell seeding, and a number of studies focusing on the
development of a personal chemical dosimeter for the detection, identification, and quan-
tification of environmental and workplace VOCs have recently been published [123–128].
Furthermore, studies have been published on the development of medical diagnosis tools
based on breath analysis. Rakow et al. fabricated a sensor array using the color transfer
phenomenon of metal-containing dyes such as metalloporphyrin, which is sensitive to
gas, and presented an artificial olfactory sensor model [129]. When there is a specific
odor, the structure of metalloporphyrins and the color change (Figure 3a) [130]. Using
2D-displayed array metalloporphyrins, a pattern-recognition e-nose that detects a wide
range of olfactants (including alcohols, amines, ethers, phosphines, phosphites, thioethers,
and thiols) and weakly ligating solvent vapors (arenes, halocarbons, and ketones) was
developed (Figure 3b) [130].
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Mazzone et al. [103] analyzed exhaled breath samples from lung cancer patients using
a colorimetric sensor array. The exhaled breath of 92 lung cancer patients and 229 control
patients was obtained via the chromaticity sensor array. (Figure 3c) The technique is further
expected to evaluate specific histologies of patients and to optimize them by incorporating
clinical risk factors [103]. Other technologies for pathogenic fungal identification and rapid
detection of bacteria have also been reported [131,132].

Kim et al. developed a superior chemical gas detection layer by simultaneously con-
trolling nanostructures and catalytic functionalization [133]. The nanostructures derived
from electrospinning act as highly dispersed ultrasmall catalysts. Electrospinning-derived
1D-dimensional MOs are nanomaterials with excellent advantages such as large surface-to-
volume ratios, high porosity, and high gas permeability, which are beneficial for building
chemical gas detection platforms. These materials are expanded to a variety of nanoarchi-
tectures derived from metal organic frameworks, graphene oxide, and polymer templates,
and they are used as a sensing sensor material [134–136].

Filamentous bacteriophage material is a functional bioreceptor with directed evolution
(DE) properties (the Nobel Prize in Chemistry 2018) [137]. Kim et al. developed a multi-
array sensor using a functional bacteriophage colorimetric sensor [138]. Phage-based
colorimetric sensors classify various VOCs that can be used as an e-nose platform.

Phage display technology, which is based on the principle of natural selection and
proliferation by mutation, can discover functional bio-reporter peptide sequences with
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selectivity for specific molecules [139]. Through a simple genetic manipulation, it is possi-
ble to produce a functional phage material for a specific bio-reporter peptide discovered
through phage display screening. The phage has ssDNA, which contains genetic infor-
mation. It is synthesized through biological reactions and can be mass-produced as a
bioreporter material with high-purity specific reactions. Oh et al. analyzed the bioreceptor
function of the functional bacteriophage and presented the results of optical colorimetric
sensor devices using the phage as a building unit (Figure 4) [110]. This single phage unit
has a uniform fiber shape of less than 1 µm and has liquid crystal characteristics. Thus,
a self-assembled nanostructure can be fabricated. This self-assembled phage structure
forms a microstructure with quasi-ordered pitches and scattered reflected light [140]. The
color of the phage structure changes according to the size and arrangement of the phage
bundles. The external stimuli caused by chemicals change the arrangement of the bundles
and change the color of the phage structure. These are used as a chemical gas sensor for
VOC classification [109], food origin analysis [141], environment monitoring [142], and
breath diagnosis [143]. Extensive research on the pattern-recognition integrated analysis
technology utilizing various color sensor arrays is currently underway. Various studies
have been published for the following five cell types: human hepatocellular adenocarci-
noma (SK-Hep-1), cervical cancer (HeLa), human colon cancer (HCT116), human non-small
lung cancer (NCI-H1299), and normal human embryonic kidney (HEK293); cells of these
types were incubated in minimum essential media (MEM) containing 10% fetal serum
culture [108]. Because each cell type produces a unique composition of VOCs, the three-
band optoelectronic sensors produce a unique color. The results of the unique color change
were obtained with 99.8% reliable data via 2D-linear discriminant analysis. The results of
this study suggest the possibility of developing an effective diagnosis technology through
further research.
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Figure 4. Colorimetric sensor system using an M13 bacteriophage as a functional biomaterial [109].
Peptide-based bioreceptor materials can secure various peptide sequences with desired functional
groups using the phage display technology. Filamentous bacteriophage material with a scale less
than 1 µm has approximately 2700 pairs of functional proteins on its surface. Hence, it can be used
as a highly sensitive bioreceptor material. The synthesis process is based on internal DNA genetic
information, and high-purity mass production is possible with simple genetic modifications. Phage
units produced by bacteria have the same structure of a certain size and, thus have liquid crystal
properties. A self-assembled structure can be produced using a bacteriophage as a unit, and it has
liquid crystal properties; therefore, a color matrix can be produced by creating light scattering at
regular distances formed by the structure. Based on the principle that phage self-assembled structures
change the surface structure in response to external stimuli, a highly sensitive colorimetric sensor
can be manufactured. This technique is referred to as the phage litmus.
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4. Signal Processing Technology Based on Olfactory Cognitive Mechanisms

An artificial olfactory sensor is composed of a gas sensor array, which consists of
multiple independent channels and an AI, which is an e-nose system that can detect
odors and quantitatively measure their types and concentrations. Fundamentally, signal
detection and data processing are required in the olfactory recognition mechanism. By
leveraging various sensor arrays to construct multichannel reporters, signal data processing
is required. An increasing number of signal receptors results in varying patterns of sensor
responses, and a systematic data analysis algorithm using a multisensor array allows for
trending classification. By utilizing the pattern analysis of the measurement data using the
sensor array, various diseases can be detected, and the influence of external environmental
factors (smoking, gender, age, etc.) can be minimized using the accumulated database. The
improved analysis algorithm for the accumulated data results in a high commercialization
potential of the artificial nose system. Table 3 summarizes various disease diagnosis
research cases through data processing using existing sensor arrays.

Table 3. Classification of disease groups through a data analysis algorithm using a sensor array.

Disease Sensor Data Process Ref.

Lung cancer Gold nanoparticle-based electrochemical sensor PCA [144]
Lung cancer
cell culture Cyranose® 320 LDA, PNN, KNN [145]

Lung cancer Cyranose® 320 SVM [93,146]
Lung cancer and COPD QCM sensor array PLS-DA [147]

Lung, breast, colorectal, and prostate cancers Electrochemical sensor single array PCA [148]
Pulmonary disease GC-MS/Chemo-nanoarray DFA [149]

Tuberculosis BH114-Bloodhound ANN [150]
Urinary tract infections BH114-Bloodhound ANN, PCA [151]

Brain cancer organoids Polymer-carbon black based electro-chemical
sensor array Normalized pattern [152]

Lung and gastric cancer, asthma and COPD FET sensor ANN, DFA [153]
Renal dysfunction Electrochemical sensor array PCA [154]

Gastric cancer Aeonose ANN [155]
Gastric cancer Metal–organic ligand-based nanosensor array DFA [156]

Pneumonia Cyranose® 320 PLS-DA [157]
Ear, nose, and throat infection Cyranose® 320 PCA [158]

Parkinson’s disease Nanosensor array KNN [159]
Head and neck cancer GC-MS PCA, SVM [160]

Human armpit body odor classification Tagushi gas sensors PCA [161]
Colorectal cancer GC-MS DFA [162]
Ovarian cancer GC-MS DFA [163]

Seventeen types of diseases Gold nanoparticle-based nanosensor array ANN, hierarchal clustering
analysis [164]

PCA; Principal component analysis; LDA; Linear discriminant analysis; PNN; Probabilistic neural network; ANN; Artificial neural
network; KNN; k-Neural network; SVM; Support vector machine; DFA; Deterministic finite automaton; QCM; Quartz microbalance;
PLS-DA; Partial least squares discriminant analysis; Cyranose® 320; a commercialized e-nose device, Cyrano Science, Pasadena, CA,
USA; BH114-Bloodhound; a commercialized gas sensor array, Leeds, UK; Aenose; a commercialized e-nose device, The eNose Company,
Zutphen, The Netherlands; FET; Field effect transistor.

4.1. Artificial Intelligence Data Processing-Based Multisensor Pattern Recognition

Multivariate analysis of gas mixture data is required for the analysis of sensor array
data. Principal component analysis (PCA) is a method that is often used for visually
distinguishing between the same sample groups in a plot. A PCA plot is a two-dimensional
picture of data from which the data maximum variance can be obtained. The intelligent
olfactory sensor can be implemented through advanced data processing techniques using
AI and machine learning (ML) with pre-processed data. The supervised learning methods
are mainly used to establish a functional relationship between the measurement space
and classification elements [165]. In the past decades, many learning methods have been
developed, for example, least squares regression (PLS), support vector machine (SVM),
artificial neural network (ANN), decision tree (DT), and K-nearest neighbor (KNN). Among
these, neural networks such as multilayer perceptrons (MLPs) have been widely used.
Recently, the deep neural network (DNN) has been developed as part of a broader family
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of ML methods based on artificial neural networks. The ML is currently the most common
application of AI and its principle is based on the automatic detection of patterns in data
and these patterns can be used for future pattern recognition. It has become possible
to derive new information by predicting or classifying collected data or by extracting
information from appropriate data [166,167].

Deep learning (DL) is also a branch of ML, and it is achieved through the ML based
on neural networks. A neural network is inspired by biology, as shown in Figure 5, and
it operates in the same way a biological brain solves problems with large units of axons
connected to neurons. With the introduction of the concept of dropout, the over-fitting
problem of neural networks was resolved, the accuracy was increased significantly, and
the DL technology was newly highlighted [168]. This significantly reduced the computa-
tional time owing to the advancement of GPU hardware. In addition, the accuracy was
considerably enhanced because accurate conclusions could be drawn through very fast
iterative learning with big data. Recently, DL algorithms based on convolutional neural
networks (CNNs) have shown excellent performance in various fields such as computer
vision [169]. In particular, the performance of DL was further improved by the newly intro-
duced ReLU activation function. The signal processing functions include sigmoid, tanh,
and ReLU. The ReLU is a function that returns 0 when the value less than 0 is returned,
and returns the same value when a value greater than 0 is found. The desired result can be
outputted by applying ReLU in the internal hidden layer and sigmoid returning 1 if the
value is greater than 0 in the output layer. This factor could be essential for the successful
implementation of an intelligent olfactory sensor intended for the application in medical,
environmental, and safety fields that require high performance based on big data [170–172].
Recently, several studies on the application of DL to intelligent olfactory sensors have been
reported [173].
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is significantly increased.



Biosensors 2021, 11, 337 14 of 21

4.2. Multimodal (MM) Analysis

To analyze the concentration of a specific gas accurately, the influence of other gas
components should be minimized. Several technologies are being developed for each
sensor to minimize the effects of gases other than the gas component under analysis.
However, few gases possess the same physical (mass, absorbance, etc.) and chemical
(adsorption degree, reaction, etc.) properties. The gas components with the same chemical
or physical properties cannot be separated using only a chemical or physical sensor. When
a gas is analyzed based on several chemical or physical sensors, some measurement errors
occur, and measurement sensitivity and reliability are not guaranteed.

By simultaneously analyzing measurement information of heterogeneous multimodal
(MM) sensors, such as sensors that analyze chemical or physical properties, gas components
that cannot be separated by the same type of the sensor method can now be separated. As a
result, the gas analysis specificity can be improved. The ultralow-concentration (ppt or less)
gases can be distinguished using MM information analysis based on measurement informa-
tion of various kinds provided by pattern recognition-based sensors and AI technologies.
The sensor-array that we introduced is also the multimodality concept. By arranging
various sensors with different characteristics, each single sensor unit can complement each
other against an external variable that cannot be distinguished. By extending the concept of
multimodality, multi-array sensors of physical, chemical sensors, biosensors, etc. enables
the identification of advanced information based on advanced discrimination.

The olfactory sensor technology is expected to develop into olfactory intelligence using
pattern recognition, AI, and MM analysis. Consequently, the measurement sensitivity,
accuracy, and reliability can be improved. Moreover, it is expected to develop into a future
technology that provides new functions, such as early diagnosis/warning.

5. Conclusions

Clinical diagnosis and post-treatment monitoring technologies based on respiratory
gas analysis have several advantages such as non-invasiveness, patient convenience, low
cost, and real-time analysis. For successful implementation and use as a self-diagnostic
device, this technology should be developed in the direction of miniaturization and sim-
ple sampling.

Organic compounds derived from the human body are indicators that assist with
disease diagnosis. Body odor, sputum, urine, sweat, breath, etc. are the sources of odor
required to analyze these organic compounds. Conductive polymer compounds with
different physicochemical properties can be used to analyze the channel-specific pattern
of electrical conductivity that changes depending on the type and concentration of gas
molecules. Alternatively, olfactory receptors can be immobilized directly on each channel to
provide specificity to gas molecules. In order for respiratory gas analysis to be established
as a clinical examination tool, an in-depth and extensive clinical study of respiratory gas
components and diseases should be conducted.

Olfactory sensors can be miniaturized and integrated using nanosensor technology,
and they possess the advantage of low production costs. Currently, research is being
carried out on the disease diagnosis analysis using various nanosensors. If a low-cost,
easy-to-use, and portable artificial olfactory sensor is implemented, it can be extended
and applied to all fields that require continuous monitoring. For the future development
of diagnostic sensor technology in the form of an artificial olfactory perception model,
multichannelling, miniaturization, weight reduction, low manufacturing cost, and sensor
network construction are essential. Additionally, for the development of clinically reliable
sensor array technology, a sensor element with high sensitivity as well as high selectivity
performance should be developed, and a consistent breathing gas sampling method should
be secured.

Advanced AI analysis methods such as DL are attracting significant attention because
of their widespread use to improve the accuracy of signal analysis and result prediction of
multichannel sensors in the future. Although the disease diagnosis using human breathing
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gas is still under development, a simple and convenient disease screening method using
breathing gas has been designed through continuous gas analyzer development, sensor
array technology development, and research on the relationship between human breathing
gas and diseases. It is expected that this technology will be applied to disease screening in
various forms, starting with the diseases.

Intelligent olfactory sensor technology holds potential for applications and services in
various industries including medical, environmental, and safety fields that were previously
impossible. In particular, the clinical equivalence and efficacy evaluation with existing
medical devices for early disease monitoring using intelligent olfactory sensors in the
medical field have been reported. Therefore, for the successful implementation of this
technology, it is essential to develop a new technology that combines MM sensors that
can provide high sensitivity, selectivity, and reliability with high-performance ML using
big data.

Author Contributions: C.K., J.-W.O. and D.-W.H. proposed the research objective and the structure
of the review article. C.K. and I.S.R. wrote the paper using materials supplied by J.-M.L., J.H.L.,
M.S.K. and S.H.L. J.-W.O. and D.-W.H. revised and improved the manuscript. J.-W.O. and D.-W.H.
supervised the study. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01072566
and 2020R1I1A1A01069244) and by the Korea Medical Device Development Fund grant funded by the
Korea government (the Ministry of Science and ICT, the Minis-try of Trade, Industry and Energy, the
Ministry of Health and Welfare, the Ministry of Food and Drug Safety) (NTIS Number: 9991006781).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable. No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sarafoleanu, C.; Mella, C.; Georgescu, M.; Perederco, C. The importance of the olfactory sense in the human behavior and

evolution. J. Med. Life 2009, 2, 196.
2. Gardner, J.W. Electronic Noses and Olfaction 2000; IOP Publishing: Bristol, UK, 2001.
3. Young, J.M.; Shykind, B.M.; Lane, R.P.; Tonnes-Priddy, L.; Ross, J.A.; Walker, M.; Williams, E.M.; Trask, B.J. Odorant receptor

expressed sequence tags demonstrate olfactory expression of over 400 genes, extensive alternate splicing and unequal expression
levels. Genome Biol. 2003, 4, 1–15. [CrossRef]

4. Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature
1982, 299, 352–355. [CrossRef] [PubMed]

5. Gardner, J.W.; Bartlett, P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994, 18, 210–211. [CrossRef]
6. Aleixandre, M.; Lozano, J.; Gutiérrez, J.; Sayago, I.; Fernández, M.; Horrillo, M. Portable e-nose to classify different kinds of wine.

Sens. Actuators B Chem. 2008, 131, 71–76. [CrossRef]
7. Sysoev, V.V.; Goschnick, J.; Schneider, T.; Strelcov, E.; Kolmakov, A. A gradient microarray electronic nose based on percolating

SnO2 nanowire sensing elements. Nano Lett. 2007, 7, 3182–3188. [CrossRef]
8. Wilson, A.D. Review of electronic-nose technologies and algorithms to detect hazardous chemicals in the environment. Procedia

Technol. 2012, 1, 453–463. [CrossRef]
9. Kou, L.; Zhang, D.; Liu, D. A novel medical e-nose signal analysis system. Sensors 2017, 17, 402. [CrossRef]
10. Baldwin, E.A.; Bai, J.; Plotto, A.; Dea, S. Electronic noses and tongues: Applications for the food and pharmaceutical industries.

Sensors 2011, 11, 4744–4766. [CrossRef] [PubMed]
11. Raj, V.B.; Singh, H.; Nimal, A.; Sharma, M.; Gupta, V. Oxide thin films (ZnO, TeO2, SnO2 and TiO2) based surface acoustic wave

(SAW) E-nose for the detection of chemical warfare agents. Sens. Actuators B Chem. 2013, 178, 636–647. [CrossRef]
12. Incalza, M.A.; D’Oria, R.; Natalicchio, A.; Perrini, S.; Laviola, L.; Giorgino, F. Oxidative stress and reactive oxygen species in

endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul. Pharmacol. 2018, 100, 1–19. [CrossRef]
13. Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic

strategies. Life Sci. 2016, 148, 183–193. [CrossRef]
14. Hoamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [CrossRef]

http://doi.org/10.1186/gb-2003-4-11-r71
http://doi.org/10.1038/299352a0
http://www.ncbi.nlm.nih.gov/pubmed/7110356
http://doi.org/10.1016/0925-4005(94)87085-3
http://doi.org/10.1016/j.snb.2007.12.027
http://doi.org/10.1021/nl071815+
http://doi.org/10.1016/j.protcy.2012.02.101
http://doi.org/10.3390/s17040402
http://doi.org/10.3390/s110504744
http://www.ncbi.nlm.nih.gov/pubmed/22163873
http://doi.org/10.1016/j.snb.2012.12.074
http://doi.org/10.1016/j.vph.2017.05.005
http://doi.org/10.1016/j.lfs.2016.02.002
http://doi.org/10.1038/nature05485


Biosensors 2021, 11, 337 16 of 21

15. Boots, A.W.; Bos, L.D.; van der Schee, M.P.; van Schooten, F.-J.; Sterk, P.J. Exhaled molecular fingerprinting in diagnosis and
monitoring: Validating volatile promises. Trends Mol. Med. 2015, 21, 633–644. [CrossRef]

16. Phillips, M.; Cataneo, R.N.; Cummin, A.R.; Gagliardi, A.J.; Gleeson, K.; Greenberg, J.; Maxfield, R.A.; Rom, W.N. Detection of
lung cancer with volatile markers in the breath. Chest 2003, 123, 2115–2123. [CrossRef] [PubMed]

17. Dweik, R.; Boggs, P.; Erzurum, S.; Irvin, C.; Leigh, M.; Lundberg, J.; Olin, A.; Plummer, A.; Taylor, D. An official ATS clinical
practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med.
2011, 184, 602–615. [CrossRef] [PubMed]

18. Cao, W.; Duan, Y. Breath analysis: Potential for clinical diagnosis and exposure assessment. Clin. Chem. 2006, 52, 800–811.
[CrossRef] [PubMed]

19. Cheng, W.-H.; Lee, W.-J. Technology development in breath microanalysis for clinical diagnosis. J. Lab. Clin. Med. 1999, 133,
218–228. [CrossRef]

20. Braun, P.X.; Gmachl, C.F.; Dweik, R.A. Bridging the collaborative gap: Realizing the clinical potential of breath analysis for
disease diagnosis and monitoring–tutorial. IEEE Sens. J. 2012, 12, 3258–3270. [CrossRef]

21. Das, S.; Pal, M. Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review. J. Electrochem.
Soc. 2020, 167, 037562. [CrossRef]
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