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Mickael Leclercq1, Abdoulaye Baniré Diallo2 and Mathieu Blanchette1,*

1School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, H3A0E9,
Canada and 2Laboratoire de bio-informatique du département informatique, Université du Québec à Montréal,
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ABSTRACT

MicroRNAs (miRNA) are short single-stranded RNA
molecules derived from hairpin-forming precursors
that play a crucial role as post-transcriptional regu-
lators in eukaryotes and viruses. In the past years,
many microRNA target genes (MTGs) have been
identified experimentally. However, because of the
high costs of experimental approaches, target genes
databases remain incomplete. Although several tar-
get prediction programs have been developed in the
recent years to identify MTGs in silico, their speci-
ficity and sensitivity remain low. Here, we propose
a new approach called MirAncesTar, which uses an-
cestral genome reconstruction to boost the accuracy
of existing MTGs prediction tools for human miR-
NAs. For each miRNA and each putative human tar-
get UTR, our algorithm makes uses of existing pre-
diction tools to identify putative target sites in the
human UTR, as well as in its mammalian orthologs
and inferred ancestral sequences. It then evaluates
evidence in support of selective pressure to maintain
target site counts (rather than sequences), account-
ing for the possibility of target site turnover. It finally
integrates this measure with several simpler ones us-
ing a logistic regression predictor. MirAncesTar im-
proves the accuracy of existing MTG predictors by
26% to 157%. Source code and prediction results for
human miRNAs, as well as supporting evolutionary
data are available at http://cs.mcgill.ca/~blanchem/
mirancestar.

INTRODUCTION

MicroRNAs (miRNAs) form a class of evolutionarily
conserved non-coding single-stranded RNA molecules in-

volved in the regulation of gene expression by translational
repression and mRNA destabilization (1–4). They are in-
volved in the regulation of most animal and plant physio-
logical processes (5–7), are implicated in many human dis-
eases (8–10), and represent promising therapeutic applica-
tions (6,11).

Unlike in plants, where the gene silencing requires a
near-perfect complementarity between the miRNA and its
mRNA target site, the repression of mRNA expression in
animals is determined in part by the complementarity of
a short region of the miRNA, called the seed. The seed is
usually located between positions 2 to 7 of the miRNA, but
variations exist (12) and non-canonical sites are common
(13). MiRNA target binding sites (MTBS) are generally lo-
cated in the 3′ untranslated region (3′ UTR) of genes, but
also, in a lower proportion, in their 5′ UTR and open read-
ing frame (14). MiRNAs produced from a single locus have
the potential to silence a large number of genes (henceforth
called its miRNA target genes (MTG)), and silenced genes
are often targeted by more than one miRNA (15).

Experimental identification of miRNA target genes in-
volves techniques such as gene expression analysis, using ex-
pression of ectopic miRNAs followed by the quantification
of remaining non-degraded target mRNA on a genome-
wide scale with microarrays or RNA-seq (16), as well as
approaches that directly identify interactions between mR-
NAs and proteins such as argonaute, including AGO2-
PAR-CLIP (17). Experimentally identified miRNA target
genes can be retrieved from databases such as MirTarBase
(18), TarBase (19) and miRWalk (20). Importantly, these
databases provide information about the strength of the
experimental evidence in support of each target. Despite
such databases already containing more than 300 000 hu-
man miRNA-target interactions, this is far from a complete
repertoire. Indeed, the number of experiments required to
identify all MTGs of all miRNAs, in all tissues, conditions
and species of interest remains impractical. Therefore, com-
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putational methods to predict MTGs continue to be neces-
sary.

Over the last few years, many MTG prediction tools have
been developed and applied to various species. A first set
of approaches, including miRanda (21) and PicTar (22), fo-
cused on identifying thermodynamically stable interaction
sites between miRNAs and putative target genes. Later, var-
ious rule-based approaches, such as PITA (23), or machine
learning approaches, such as MirTarget2 (miRDB) (24,25)
and TargetMiner (26), were proposed to integrate miRNA–
mRNA duplex structural information with other types of
features, such as target site accessibility, A/U content or
target-site abundance, in order to improve prediction accu-
racy (27).

Although these approaches have grown increasingly ac-
curate over the past few years, and despite significant ef-
forts, existing programs continue to produce high rates of
false positives and false negatives (27). In an effort to allevi-
ate this problem, several programs, including mirMark (28),
Diana-microT (29) and TargetScan (30), have proposed to
use inter-species sequence conservation as an indication of
functional binding. MirMark considers as part of its input
cross-species sequence conservation scores from PhastCons
(31), and TargetScan makes direct use of UTR sequence
alignments to measure conservation on each branch of a
calculated phylogenetic tree.

The underlying principle of using interspecies conserva-
tion is that functional miRNA target sites are important to
the appropriate regulation of a gene’s expression, so muta-
tions that would disrupt binding are generally deleterious
and over time more mutations should accumulate outside
target sites than within them. However, concerns about the
use of site conservation criteria have been raised by Farh et
al. (32) and Xu et al. (33), who observed that a large fraction
of MTBS is not highly conserved among mammals. Apply-
ing strict requirements of sequence conservation thus re-
sults in an increased false-negative rate. Nevertheless, more
than 60% of human protein-coding genes are under selective
pressure to maintain pairing to miRNAs (34) that explains
in part why many mammalian miRNA target sites are con-
served above background levels (35).

The failure of conservation-based approaches to iden-
tify certain MTBS is partly due to an evolutionary process
called binding site turnover (36) (Note that this concept is
unrelated to that of miRNA turnover, which describes a
change in miRNA expression due to its own degradation
(37)). Consider a gene that was targeted by a given miRNA
M at binding site A at some point in the past. Because
MTBS are short, random mutations can easily create a new
target site B for M in the vicinity of existing ones. Since
MTBS are generally not dependant on their exact position
in the UTRs of regulated genes, site B may be as potent
as site A (provided B’s position is in an accessible portion
of the folded mRNA), thus reducing the selective pressure
to maintain both. Mutations that would abrogate the func-
tion of A would thus not be deleterious. If such a mutation
happens, the only functional site remaining is B and it then
becomes under strong selection. This is called a turnover
event, where although the target gene has continuously been
targeted by M over evolutionary time, the position of the
functional binding site has changed. Interspecies compari-

son would reveal that the sequence of neither the old nor the
new site is particularly conserved, because both have been
evolving neutrally for some time. This phenomenon is well
characterized for transcription factor binding sites (38–40)
and taking it into consideration has been shown to improve
the accuracy of binding predictions (41). For miRNAs, tar-
get site turnover has been observed in cases where a target
gene has multiple target sites for the same miRNA, a situ-
ation called cooperative targeting that allows MTBS to be
lost and gained over time, as long as one or more remain
present in the same target (42). Simkin et al. (43) have re-
cently exhibited several cases of miRNA target site turnover
within primates.

In this paper, we introduce MirAncesTar, an approach
to improve the miRNA target gene predictions made by
existing tools by making use of interspecies comparison
while taking into account MTBS turnover. MirAncesTar
uses computationally reconstructed ancestral mRNA se-
quences, rather than relying on pure conservation scores
such as phastCons or PhyloP (31,44,45). Our approach is
not a predictor in itself, but rather an accuracy booster that
can be applied to any existing predictor. Applied to three of
the most commonly used MTBS predictors, MirAncesTar
results in a large improvement in accuracy and compares
favorably with three of the recent MTG predictors making
use of sequence conservation, mirMark (28), Diana-microT
(29) and TargetScan (30).

MATERIALS AND METHODS

Data sets

Human miRNAs were retrieved from miRbase v20 (46,47),
for a total of 2580 mature miRNAs. Experimentally val-
idated miRNA targets (called known targets in this pa-
per) were downloaded from miRTarBase version 6.0 (18)
that contains a total of 3242 19 interactions between 2619
human miRNAs and 12 738 target genes, including 7439
strong evidence interactions. Of those, three subsets of miR-
NAs were considered: (i) M100 is a set of 100 miRNAs that
had at least 200 known targets in the union of miRTarBase
(release 5.0) and mirWalk (version 1) (Supplementary Ta-
ble S1); (ii) M396 is a set of 396 miRNAs that had at least
200 known targets in the most recent version of miRTarBase
6.0 (Supplementary Table S2); (iii) M308 ⊂ M396, a set of
308 miRNAs for which target predictions are available from
both TargetScan and Diana-microT. The number of known
targets (based on miRTarBase 6.0) used for the training and
evaluation varies from 47 388 miRNA-target gene pairs for
M100 to 150 892 pairs for M396.

Human 5′ and 3′ UTRs sequences of human protein-
coding genes were retrieved from the UCSC genome
browser (build GRCh37/hg19, RefSeq genes annotation).
PhastCons conservation scores (31) and conserved regions
based on a 100-way multiple sequence alignment (48) were
also retrieved from the UCSC genome browser.

Human 5′ and 3′ UTRs sequences of human protein-
coding genes were retrieved from the UCSC genome
browser (build GRCh37/hg19, RefSeq genes annotation).
PhastCons conservation scores (31) and conserved regions
based on a 100-way multiple sequence alignment (48) were
also retrieved from the UCSC genome browser.
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Target gene predictors

MTGs predictors were selected based on their availability
and running time. We considered five target gene predic-
tors:

1. MiRanda (August 2010 version; (21)), which identifies
putative targets by sequence alignment and ranks them
based on thermodynamic stability. Default options.

2. RNAhybrid (49), which determines the most stable hy-
bridization site based on energy parameters from Math-
ews et al. (50), with length restrictions established for
bulges and internal loops (49). Default options, except
for target length option (-m 1 000 000), a P-value thresh-
old (-P 0.1) and the appropriate species selection (-s
3utr human).

3. MirMark (version 1.0; (28)), a machine learning based
method using more than 700 features describing the in-
teractions between a miRNA and a UTR, such as tar-
get site availability, structure and sequence features and
PhastCons46way conservation data. Default options.

4. TargetScan (30), which predicts miRNA target genes by
searching for the presence of 6 to 8mer sites that match
the seed region of a given miRNA and make use of species
alignment to locate conserved sites. We did not run this
tool ourselves but instead downloaded its predictions
from targetscan.org, release 7.0, august 2015. The sum
of the context++ scores of conserved and non-conserved
sites was considered as target score.

5. Diana-microT v4 (29), trained on miRbase v18, is based
on binding and conservation features identified in high-
throughput experimental data, and calculated for each
miRNA and each miRNA recognition elements respon-
sible for the interaction with a target gene.

For each tool, we obtained a ranked list of putative tar-
gets for each miRNA, sorted in decreasing order of the sum
of confidence scores of predicted target sites

Ancestral reconstruction

Ancestral genomes were reconstructed with an improved lo-
cal version of Ancestor 1.1 (51), a tool that uses a maxi-
mum likelihood approach based on an evolutionary model
that takes in account insertions, deletions and substitutions.
The reconstruction is computed from whole-genome multi-
ple alignments available from UCSC genome browser (52)
for 46 vertebrate species (including 35 mammals), which
were built with the blastZ/Multiz pipeline (48,53) based on
a previously published phylogenetic tree (54). 5′ UTR and
3′ UTR reconstructed ancestral sequences are available as
supplementary data on our site. This produced a set of up to
69 extant or ancestral orthologous mammalian sequences
per human gene, although for most genes, orthologs are
missing in a small number of species (average number of
orthologs/ancestors per gene: 65.3; 0.1% of genes have no
orthologs outside primates).

Measuring evidence of selective pressure on predicted target
site count

To identify targets for a given miRNA M, target site predic-
tions are first obtained for each human 5′ and 3′ UTRs, their
orthologs and ancestral sequences, using a given Single-
Sequence Target Site Predictors (SSTSP). Consider branch
(p,u) of the phylogenetic tree, where p is the parent of u. We
first build an evolutionary null model of the count of pre-
dicted target sites for M, which aims at describing how this
number may change along branch (p,u), assuming that the
sequence under consideration is not a true target of M. In
other words, we model the evolution of the count of false-
positive predictions in UTRs. Let Xu denote the random
variable corresponding to the number of sites at node u, and
let xg,u denote the observed number of target sites predicted
for M in the sequence at node u for gene g. Let T(p,u)(a,b)
= Pr[Xu = b | Xp = a] be the conditional probability of the
sequence at u containing b sites given that the sequence at p
contained a sites. T(p,u) is estimated on the basis that the vast
majority of predicted target sites for M are false-positives,
so that

T(p,u)(a, b) = |{g ∈ Genes : xg,p = a ∧ xg,u = b}|
|{g ∈ Genes : xg,p = a}| .

Figure 1 shows some of the T conditional distributions
for branches of the tree that have different lengths. Let
P(p,u)(a, b) = ∑

b′≥b T(a, b′) be the P-value associated to
observing b sites at node u given that there were a sites at
node p. The score of gene g as a putative target for miRNA
M is obtained as

Mir Ancestar Raw(g, M) =
∑

(p,u) ∈ Tree branches
−log

(
P(p,u)(xp, xu)

)

Normalized conservation score

To take into account the fact that longer UTRs have a
higher probability to be targeted than shorter ones, we in-
troduce a second scoring mechanism that calculates for each
branch (p,u) a P-value conditioned on the (binned) length
L(u) of the sequence at node u. Specifically,

Tnorm(p,u),L(a, b) =
|{g ∈ Genes: bin(L(g,u))=L ∧ xg,p=a ∧ xg,u=b}|

|{g ∈ Genes: xg,p=a ∧ bin(L(g,u))=L}| .

Pnorm(p,u),L(a, b) =
∑

b′≥b

Tnorm(p,u),L(a, b′)

Mir Ancestar Norm(g, M) =
∑

(p,u) ∈ Tree branches
− log

(
Pnorm(p,u),bin(L(g,u))(xp, xu)

)

The length binning function bin(·) is chosen so that ap-
proximately 500 genes fall within each bin.
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Figure 1. Examples of the posterior probability of the count of predicted target sites for let7a-5p, for two different branches of the phylogenetic tree: (A)
A short branch leading from the human-chimp ancestor; (B) A longer branch leading from the mouse-rate ancestor to mouse.

Posterior probability normalized conservation score

While we found that the MirAncestarNorm score per-
formed well, we realized that it over-penalizes genes with
long UTRs, by intrinsically assuming that all genes are
equally likely to be targets, irrespective of their UTR
lengths. In reality, longer UTRs are generally more likely
to be targets for any given miRNA. We thus introduced a
last score called MirAncestarPost, which captures the pos-
terior probability of a gene g being a target for M, given
its length L(g) (in human) and its length-normalized score
Mir Ancestar Norm(g, M) (abbreviated MAN(g, M) in the
formula below). Let P(g,M) denote the event that g is a tar-
get of M.

Where Pr[L(g) | P(g, M)], Pr[MAN(g, M) | P(g, M)],
Pr[L(g) | P(g, M)], and Pr[MAN(g, M) | P(g, M)] are
represented using multinomial distributions and estimated
from the known targets genes and non-target genes (sepa-
rately in each cross-validation iteration, with binning of the
MirAncestarNorm score and length).

MirAncestar feature set and training

While the MirAncestarPost scoring approach is in itself
competitive with existing SSTSPs, we are aware that it is
not capturing some properties that could be useful for pre-
diction. Thus, we elected to instead combine the three scor-
ing schemes presented above (MirAncestarRaw, MirAnces-
tarNorm and MirAncestarPost) with a set of seven other
simpler measures:

1. UTRlength: The total length of the gene’s UTRs in hu-
man.

2. TotalSitesCount: The total number of target sites pre-
dicted in the human gene, its orthologs and ancestors.

3. TotalSitesCountNorm: TotalSitesCount/UTRlength.
4. HumanTotalScore-Conserved: The sum of the SSTSP

scores of all target sites predicted in the human sequence,

limited to the highly conserved portions (defined by the
PhastCons 46-way predictions).

5. HumanTotalScore-NonConserved: The sum of the
SSTSP scores of all target sites predicted in the human
sequence, outside of the highly conserved portions.

6. HumanMaxScore-Conserved: The maximum of the
SSTSP scores of all target sites predicted in the human
sequence, limited to the highly conserved portions.

7. HumanMaxScore-NonConserved: The maximum of the
SSTSP scores of all target sites predicted in the human
sequence, outside of the highly conserved portions.

These features were chosen because they are similar to
those previously used by other tools (feature 1, 4–7 in the
list above) or capture the total predicted site density across
species (features 2, 3). The 10 features are combined us-
ing a logistic regression approach trained and evaluated us-
ing 10-fold cross-validation, using Weka (55). Because we
work with unbalanced classes, we used a cost sensitive clas-
sifier, used to reweight training instances according to the
total cost assigned to each class. This weighting method
simulates stratification, avoiding downsampling the major-
ity class and allowing taking advantage of the full avail-
able data. The cost matrix associated with the cost-sensitive
classifier was set as follow: False-negatives were assigned
a cost of 1, while false-positives were assigned a cost of
|PositiveTrainingSet|/|NegativeTrainingSet|. The logistic re-
gression parameters were learned based on a positive train-
ing set consisting of the set of known targets of M100 miR-
NAs, and the negative training set was the set of non-targets
for the same miRNAs. For each SSTSP, a different set of lo-
gistic regression parameters were learned.

RESULTS

MirAncesTar is an approach that makes use of comparative
genomics data to improve the accuracy of target gene pre-
dictions for a given miRNA by evaluating the conservation
of the count of predicted target sites among mammalian
orthologs and their ancestors. MirAncesTar exploits exist-
ing SSTSP such as miRanda (21) to identify candidate tar-
get sites in genes of the species under study (here, human),
their orthologs (here, from 34 other mammals) and compu-
tationally reconstructed ancestral sequences. The method
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does not directly evaluate sequence conservation of tar-
get sites per se, but instead seeks evidence for selective
pressure to maintain a certain number of target sites in
gene’s UTRs (irrespective of their position), thus allowing
for target site turnover. The target site count conservation
score is then combined with other simpler measures (UTR
length, sum and maximum of site SSTSP scores inside and
outside conserved regions, and total number of predicted
sites (see Materials and Methods)), using a logistic regres-
sion predictor. Here, we report our evaluation of the accu-
racy of MirAncesTar compared to a variety of other ex-
isting tools, and investigate the factors that affect its per-
formance. The complete set of target predictions for each
of the 2580 human miRNAs in each isoform of the Ref-
Seq human gene annotation is available at http://cs.mcgill.
ca/~blanchem/mirancestar.

MirAncesTar improves the accuracy of miRNA target gene
prediction

For each of the 18 653 UTRs sequences of human genes
annotated in RefSeq release 66 (after merging isoforms),
we extracted orthologous mammalian sequences from the
UCSC 46-way vertebrate whole-genome alignment (48,56),
which yielded a maximum of 34 aligned mammalian or-
thologs. Ancestral sequences for each of the 34 internal
nodes in the phylogenetic tree (Supplementary Figure S1)
were inferred using a local version of Ancestors 1.1 (51,57),
which was previously estimated to be able to infer ancestral
mammalian sequences with an accuracy ranging from 85%
to 98%, depending on the ancestral node.

We trained and tested (using 10-fold cross-validation) our
various predictors on experimentally identified target sites
of a set of 100 well-characterized miRNAs (see Methods).
These 100 miRNAs have on average 474 known targets per
miRNA. For each SSTSP P ∈ {miRanda, RNAhybrid, mir-
Mark}, we evaluated the accuracy of MirAncesTarP, the
MirAncesTar predictor based on the predictions obtained
with P, and compared it to P itself when applied to the hu-
man sequences alone. For each miRNA and each predictor,
we obtained the ranked list of predicted targets among Ref-
Seq genes, sorted by the sum of confidence values (predic-
tion score) of predicted targets. We then evaluated the pro-
portion of all known targets captured among the top k pre-
dictions (recall), for k ranging from 1 to 1000 (Figure 2A–
C). Although receiving-operator curves are a more classi-
cal way to evaluate predictors (presented in Supplementary
Figure S2), we find that recall curves provide a more intu-
itive and practical evaluation of a predictor, by providing
the answer to the question: if a researcher was to look at
the top k predictions made by a given tool, what fraction of
the known targets would be recovered?

Figure 2A compares the recall curves of miRanda and
MirAncesTarmiRanda. The latter provides a notable improve-
ment. For example, at k = 1000, MirAncesTarmiRanda has
an average recall of 26.1%, compared to 18.4% for mi-
Randa, a relative increase of 20.7%. The recall relative in-
crease is actually much larger when limiting our atten-
tion to a smaller number of top predictions; e.g. at k =
100, MirAncesTarmiRanda improves the recall of miRanda
by 67%. The improvements in recall are even more sig-

nificant for RNAhybrid (Figure 2B) where MirAncesTar
yields a 158% increase in recall (at k = 1000). MirMark is
not a true single-sequence predictor because it uses as part
of its input a measure of interspecies sequence conserva-
tion (PhastCons score (31)). As such, we were not able to
use it directly to predict targets sites in orthologs and an-
cestors and instead modified it to not take sequence con-
servation into consideration. The resulting predictor (Mir-
Mark0) had a recall that was slightly worse than the original
MirMark (Figure 2C), but MirAncesTarMirMark0 nonethe-
less succeeded at increasing the recall value 63% above that
of MirMark (at k = 1000). (Because MirMark produces
better results if we calculate the recall based on the max-
imum of the scores of the putative sites instead of their
sum, we used the former method in this case). Overall,
MirAncesTar produced significant improvements over all
SSTSP we considered. The best recall curve was obtained
using MirAncesTarmiRanda, which outperformed the other
two MirAncesTar-based predictors, by 72–78% at k = 1000
and even more for smaller values of k.

Although MirAncesTar performs on average better than
SSTSP predictors, its accuracy varies depending on the
miRNA whose targets are being predicted. Figure 2D
presents the recall obtained by MirAncesTarmiRanda (at k =
1000) for each miRNA, compared to that obtained with mi-
Randa alone. MirAncesTarmiRanda improves the recall for 93
of the 100 miRNAs considered, including 39 where the im-
provement was statistically significant (in red in the figure; P
≤ 0.05; two-tailed Student’s t-test). In one case, the recall is
more than doubled. Figure 2E and F show the analogous re-
sults for RNAhybrid and MirMark. Improved recall values
were obtained for 99% and 98% of miRNAs respectively,
with 85% and 78% of these improvements being statistically
significant.

TargetScan (30) and Diana-microT (29) are two of the
most widely used miRNA target gene predictors that ex-
ploit interspecies comparisons to score putative target sites.
For that reason, we could not use them as a SSTSP for Mi-
rAncesTar to be based off. Because both tools offers pre-
computed target predictions for a large set of miRNAs,
we were able to expand our study to a larger set of 308
well-characterized miRNAs having at least 200 known tar-
gets and for which target gene predictions were available
from both TargetScan and Diana-microT. To obtain recall
curves, we again listed in decreasing order of scores the pre-
dicted targets provided by the tools. Figure 3 show that
MirAncesTarMiranda obtains recall values that are signifi-
cantly larger than those of Diana-microT (by ∼25–40%, de-
pending on the value k). Recall values are comparable to
those of TargetScan at k = 1000, but ∼10% better for k <
400. For a larger set of miR NAs (Supplementary Figure
S3), MirAncesTarMiranda reports on average a higher recall
rate than TargetScan for all values of k. We also evaluated
each predictor on only the subset of MirTarBase targets in-
teractions with strong experimental evidence (i.e. identified
using reporter assays or Western blots), and found that all
three predictors reached much higher recall values (at k =
1000, MirAncesTar: 43%; Diana-microT: 39%, TargetScan:
44%).

To better understand the properties of different
prediction methods, we compared the target predic-

http://cs.mcgill.ca/~blanchem/mirancestar
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Figure 2. Comparison of the recall (primary y-axis) and relative recall improvement (RRI, secondary y-axis, log-scale) of single-sequence target gene
predictors and their corresponding MirAncesTar predictors. (A–C) Average (over 100 miRNAs) of the recall (percentage of known targets recovered) as
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tions of miRanda, TargetScan, Diana-microT and
MirAncesTarMiranda on the same set of 308 miRNAs.
Interestingly, the set of target predictions made by the three
tools have only moderate overlap (Figure 4). This suggests
that the three tools are somewhat complementary. Genes
predicted as targets by all four tools have large positive
predictive value (PPV; fraction of positive predictions
that are currently known to be correct), at 21.6%. Those
predicted by three of the tools also have high PPV, ranging
from 23.9% (MirAncestar+TargetScan+Diana-microT) to
only 8.7% (TargetScan+Diana-microT+miRanda). Targets
predicted by a single tool had lower PPV, ranging from
4.2% (miRanda alone) to 6% (TargetScan alone). This
shows that significant specificity gains can be obtained
by combining the three comparative genomics based
predictors.

MirAncesTar exploits sequence conservation but is robust
with respect to target site turnover

As seen in Figure 2D, the recall of MirAncesTarmiRanda
(at k = 1000) varies quite widely between miRNAs, rang-
ing from 7% to 57%. Two main reasons appear to ex-
plain this variability. The first is the ability of miRanda to
correctly identify candidate target sites in human. Indeed,
the correlation between the recall values of miRanda and
MirAncesTarmiRanda is quite high (R2 = 0.84, Figure 2D);
this is unsurprising, since MirAncesTarmiRanda builds off mi-
Randa. Second, the extent to which MirAncesTarmiRanda
improves the target recall (at k = 1000) compared to mi-
Randa varies from a 2-fold increase for miR-92b-3p (from
19.2% to 38.4%) to no improvement for several miRNAs,
and, in the case of let-7i-3p, miR-324-3p, 324–5p, 30b-3p,
373-3p, 30d-3p and 92a-1-5p, to a slight decrease in re-
call. We sought to understand the particular characteris-
tics of a miRNA that may be associated with a gain or
loss in accuracy with MirAncesTarmiRanda. We regressed the
MirAncesTarmiRanda recall improvement against a number
of miRNA properties (nucleotide content, average Phast-
Cons UTR conservation scores of known targets, total pre-
dicted target sites count, etc.). The only significant interac-
tion identified was with the average PhastCons conservation

scores of known targets (P-value = 2.7 × 10−6), which sug-
gests that, unsurprisingly, MirAncesTar is more effective for
miRNAs whose target genes have a tendency to have more
conserved UTRs. Those are often miRNAs that target tran-
scription factors, especially those whose family is involved
in regulation of embryonic development, such as let-7d (58),
let-7e (59) and mir-124 (60), which are the three miRNAs
for which MirAncesTar has the highest recall values.

One of the key innovations of MirAncesTar is its ability
to tolerate MTBS turnover. This is supported by the fact
that the UTRs correctly predicted as targets by MirAnces-
Tar tend to have lower conservation levels (avg. Phast-
Cons of 0.305) than those predicted by TargetScan, Diana-
microT or MirMark (respectively avg. PhastCons score of
0.322, 0.419 and 0.507). Figure 5 illustrates the predicted
target sites for hsa-let-7a-5p in the SMCR8 gene, a known
target of that miRNA, which obtained a high prediction
score (target ranked 39th out of 18 653 genes) from Mi-
rAncesTar but was scored poorly by other conservation-
based tools (target ranking by mirMark: 4896th, Tar-
getScan: 768th, Diana-microT: not in the top 7338 predic-
tions available for this miRNA). Clearly, no specific target
site predicted in human is conserved across all mammals.
Interestingly, however, there is evidence of a turnover event
in rodents (mouse, rat and kangaroo-rat), where a site that
was otherwise conserved in most mammals was shifted by
∼600 bp. Overall, the number of predicted sites in extant
ancestral sequences (shown on the phylogenetic tree in the
figure) is remarkably constant, which is why this target is
assigned a high score by MirAncesTar.

Contribution of the different features used by MirAncesTar

MirAncesTar is a logistic regression predictor where each
putative target is represented using 10 features that cap-
ture in different ways the number of predicted target sites
in the species of interest (human) and/or in its orthologs
and ancestors (see Materials and Methods). It is instruc-
tive to consider how each of these features contributes to
the overall accuracy of the predictor. Supplementary Fig-
ure S3 shows the recall curves obtained for each of the 10
features when used individually as predictor, for SSTSP =
miRanda. By far the most informative feature is MirAnces-
TarPost, a score that captures evidence of selective pressure
to maintain the number of candidate target sites during the
evolution of the putative target. In itself, it is competitive
with TargetScan and outperforms the three SSTSP used in
this study. Interestingly, the second most predictive feature
is the number of sites predicted by miRanda outside highly
conserved portions of the UTR (PhastCons), which ranks
better than the analogous number of target sites located
within such conserved regions. This counterintuitive result
is caused by the fact that most validated target UTRs con-
tain zero conserved predicted targets.

DISCUSSION

We propose here a new algorithm that relies on ances-
tral sequence reconstruction to improve the accuracy of
miRNA predictors in human, based on the idea that, de-
spite the fact that UTRs are generally under negative se-
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Figure 4. Overlap among the predictions made with miRanda, MirAncesTarmiRanda, TargetScan and Diana-microT on 308 miRNAs, with k = 1000 for
each tool and miRNA.

lective pressure to maintain a given set of miRNA target
sites, individual target sites are often subject to turnover.
MirAncesTar builds off an evolutionary model that charac-
terizes how the number of predicted targets in a neutrally
evolving sequence changes over time, and seeks to iden-
tify UTRs that depart from that null model. It uses pre-
dictions made by existing SSTSPs, executed on UTRs of
mammalian species and their ancestors, to identify genes
that exhibit evidence of this type of selective pressure. It
then learns how best to combine this measure of selective
pressure with other simpler measures of target site content
in the target species and its ancestors/orthologs. MirAnces-
Tar significantly improved the overall accuracy of the three
single-sequence target site predictors it was based off (mi-
Randa, RNAhybrid and mirMark). For certain miRNAs,
recall (at k = 1000) was more than doubled, while we found
no miRNA for which recall was significantly decreased.
The best overall accuracy was obtained using miRanda as
SSTSP, although MirAncesTar produced its largest relative
increase in accuracy for RNAhybrid (158% increase in recall
at k = 1000). MirAncesTarmiRanda also outperforms exist-
ing sequence conservation based predictors Diana-microT
and MirMark, and has slightly better performance than
TargetScan. Notably, the accuracy gains obtained using
MirAncesTarmiRanda appear to be largely due to its abil-
ity to tolerate target site turnover. Not all miRNAs benefit
equally from the application of MirAncesTarmiRanda. Those
for which MirAncesTar results in the largest increase in re-
call are those (i) whose target sites are already relatively well
predicted by miRanda, and (ii) whose known targets tend
to exhibit elevated levels of sequence conservation, such as

miRNAs whose function is to regulate cell differentiation
or organismal development.

An important benefit of MirAncesTar is that it can be
used with any existing single-sequence target site predic-
tor, and with the three predictors considered here, it results
in significant gains in accuracy. By decoupling the individ-
ual sequence target site prediction task (performed by mi-
Randa, RNAhydbrid, mirMark or other tools) from the
evaluation of selective pressure on target site count (per-
formed by MirAncesTar), we obtain an approach that will
age well because it will benefit from future improvements in
single sequence target site predictors (e.g. improved consid-
eration of target site accessibility, non-canonical sites, etc.).

Although the overall recall of TargetScan and MirAnces-
Tar are similar, the properties of predicted targets are quite
different. Part of the explanation lies in how UTR length
affects prediction accuracy. The recall of TargetScan is al-
most independent of UTR length: short targets (<500 bp)
are recovered with the same recall as long ones (>5000 bp)
(Supplementary Figure S4A). Conversely, the recall of Mi-
rAncesTar increases with target length, from only 3% for
short UTRs to more than 50% for long ones. This is due
to the fact that evidence of selective pressure on target site
counts is easier to detect for target genes that contain a
relatively large number of predicted sites. On the contrary,
the precision (positive predictive value) of MirAncesTar is
largely independent of target length: in other words, a gene
that is predicted to be a target by MirAncesTar has approx-
imately 10% probability of being a known target, irrespec-
tive of its length (Supplementary Figure S4B). Instead, the
precision of TargetScan is length-dependent, ranging from
only 6% for genes with very short UTRs to more than 15%
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Figure 5. Example of putative target site turnover for hsa-let-7a-5p in the SMCR8 gene. Putative target sites predicted by miRanda in each species are
marked. The number of predicted target sites in each species and each computationally reconstructed ancestral sequence is shown on the nodes of the
species tree. The position of sites for non-human species is converted to that of its human orthologous position through the multiple sequence alignment.

for genes with relatively long UTRs. The predictions made
by Diana-microT show an intermediate effect.

A similar analysis is instructive to highlight the effect of
UTR sequence conservation on precision and recall. Un-
surprisingly, the precision of each method improves with se-
quence conservation (average UTR PhastCons score) (Sup-
plementary Figure S4C). However, large differences are
observed in terms of recall (Supplementary Figure S4D):
while both TargetScan and MirAncesTar recover 20–30% of
known targets irrespective of their sequence conservation,
Diana-microT has recall values that range from very poor
(6%) for weakly conserved UTRs to very high (>40%) for
highly conserved ones.

These differences have important consequences on the
interpretation of the predictions made by these tools. On
one hand, the length bias of MirAncesTar predictions, and
the conservation bias of Diana-microT, can induce artificial
functional enrichment (e.g. for a gene ontology enrichment
analysis) among predicted targets. On the other hand, in-

vestigators interested in validating experimentally predicted
targets should expect a length-dependent success rate if they
base their study on TargetScan, but not so with MirAnces-
Tar.

Several possible directions may prove fruitful to explore
in order to further improve the accuracy of MirAncesTar.
First, in its present version, the position of predicted sites
is not taken into consideration; only the total count mat-
ters. While this conveniently allows for target site turnover,
it could be that an approach that would be semi position-
specific would have some benefits. One could, for example,
consider a model where changes in target site position are
allowed but penalized. Second, it may prove beneficial to
perform single-sequence target site predictions in ancestral
and orthologous sequences using as input the miRNA se-
quence from the very same species, rather than the human
sequence, as was done here, in order to account for pos-
sible changes in the miRNA sequence itself. However, our
initial assessment of this idea showed that miRNAs where
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mutations altered binding affinities were rare within mam-
mals, probably because they would result in broad changes
in the target repertoire, which would be strongly selected
against. Furthermore, in the rare cases where we observed
such changes, targets appeared to be under low selective
pressure, thus reducing the impact of such a generalization.
Third, it would be interesting to investigate the use of an
approach similar to that proposed here in order to transfer
target gene predictions from a species with rich experimen-
tal data (e.g. human) to less well studied species (most other
mammals). Finally, improvements may be obtained by con-
sidering more sophisticated machine-learning predictors to
replace our logistic regression classifier, or by considering
additional sets of features. In particular, one may attempt
to predict target genes based on the target site predictions
of more than one SSTSP, although this would come at the
expense of additional running time.

Finally, we note that although our focus here was on
predicting target genes for human miRNAs, it should be
equally powerful in other mammalian species (provided a
sufficiently large number of known miRNA target sites are
available for the training). MirAncesTar should also be ap-
plicable to other groups of species where sufficiently many
closely related taxa are sequenced, such as fruit flies (61) or
crucifers (62), although the accuracy of ancestral sequence
reconstruction may not be as high for these lineages.

In conclusion, this paper is a striking example of a pre-
diction task that can be achieved more accurately through
a careful analysis of not only a human sequence and its or-
thologs, but also of computationally reconstructed ances-
tral sequences. Tracing the evolution of a region across the
mammalian phylogeny significantly eases the detection of
compensatory events such as target site turnover, by helping
resolve the timing of these events. Did the loss of a particu-
lar target site precede or follow the creation of another one
nearby? The answer to this question lies in the analysis of
ancestral sequences, and is crucial for detecting evidence of
selective pressure. We note that this concept is quite general
and could quite easily be applied to other sequence-based
prediction tasks. As the number of species whose genome
get sequenced increases (63), so will the power of this fam-
ily of approaches.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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