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ABSTRACT We report frequent losses of components of the classical nonhomolo-
gous end joining pathway (C-NHEJ), one of the main eukaryotic tools for end joining
repair of DNA double-strand breaks, in several lineages of parasitic protists. More-
over, we have identified a single lineage among trypanosomatid flagellates that has
lost Ku70 and Ku80, the core C-NHEJ components, and accumulated numerous in-
sertions in many protein-coding genes. We propose a correlation between these two
phenomena and discuss the possible impact of the C-NHEJ loss on genome evolu-
tion and transition to the parasitic lifestyle.

IMPORTANCE Parasites tend to evolve small and compact genomes, generally en-
dowed with a high mutation rate, compared with those of their free-living relatives.
However, the mechanisms by which they achieve these features, independently in
unrelated lineages, remain largely unknown. We argue that the loss of the classical
nonhomologous end joining pathway components may be one of the crucial steps
responsible for characteristic features of parasite genomes.
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While DNA integrity and genome stability are crucial for all living organisms, they
are permanently challenged by various factors causing DNA damage. The most

deleterious DNA lesions are double-strand breaks (DSBs), since accurate repair of one
strand using the other one as a template, as occurs in other types of DNA damage, is
not possible in this case. To fix such an extreme type of damage, cells have evolved
repair mechanisms known as homologous recombination (HR) and nonhomologous
end joining (NHEJ).

HR, which relies on the presence of a homologous intact template, starts with
5=-to-3= resection at the DSB, producing 3= overhangs usually longer than 100 nucle-
otides. At least one of the single strand ends invades the homologous region of an
intact chromosome, preferentially the sister chromatid (1). This strand invasion of
single-stranded DNA into a template sequence produces a displacement loop (D-loop)
and is mediated by recombinases of the RecA/Rad51/RadA family, found in all three
domains of life (2). Upon invasion, the free 3= end of the strand is then extended by
DNA polymerase(s). Subsequent steps diverge into one of the three pathways with
various mutagenic potentials: (i) the double Holliday junction (dHJ) pathway engages
both ends of the DSB and can lead to sequence crossover between the broken and
intact molecules, (ii) synthesis-dependent strand annealing initially involves only one
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DSB end, and (iii) break-induced replication employs only one end of the break and can
copy many kilobases from the donor sequence (3–5).

In contrast to HR, NHEJ repairs a DSB by religating the broken ends without
engaging an unbroken homologous template. It is divided into two main types,
classical (C-NHEJ) and alternative (A-NHEJ) NHEJ. Unlike A-NHEJ, C-NHEJ has no enzy-
matic overlap with HR and in mammals is directed by five core components: Ku70/Ku80
heterodimer (Ku), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), DNA
ligase IV (Lig4), and the XRCC4 and XLF proteins (6–8). The Ku heterodimer first
recognizes and binds a DSB in a sequence-independent manner, preventing extensive
DSB end resection and serving as a scaffold on which other components of the C-NHEJ
machinery are subsequently assembled.

Ku recruits DNA-PKcs, with which it forms a stable complex, tethers the broken DNA
ends, and blocks access of other proteins. The lesion is processed, and DNA ends are
sealed by the Lig4-XRCC4-XLF complex. Depending on the type of DNA end (overhang
or blunt end), other factors (such as the endonuclease Artemis and DNA polymerases)
and processes (end resection and DNA synthesis) may also be involved in this repair
mechanism (6, 7).

The C-NHEJ machinery is conserved from bacteria to higher eukaryotes, although
the levels of conservation of its components differ. In eukaryotes, the Ku heterodimer
and Lig4 represent its core. Other components are less conserved and may even be
absent. While retained in animals (9, 10), DNA-PKcs is absent in the yeast Saccharomyces
cerevisiae, in which its roles are carried out by the MRX complex (11). Whether the
absence of DNA-PKcs results in a reduced use of C-NHEJ is unclear, though yeasts
certainly use HR as the main mechanism for DSB repair (12). Bacterial C-NHEJ employs
a reduced enzymatic machinery, which comprises a Ku homodimer, homologous to
eukaryotic Ku70 and Ku80, and a DNA ligase often fused to other functional domains
(13–16). C-NHEJ in Archaea also utilizes a Ku homodimer, but with a different DNA
ligase, DNA polymerase, and phosphodiesterase, all of which nonetheless appear
closely related to their bacterial homologues (17).

Although the C-NHEJ pathway is often considered more error-prone than the HR
pathway, this view has been challenged recently by emerging evidence that the latter
can often be erroneous as well, especially in large and repetitive genomes (3, 18),
whereas the C-NHEJ is often robust and accurate (19). However, such fidelity does not
apply to the A-NHEJ pathways, named microhomology-mediated end joining (MMEJ)
and single-strand annealing (SSA). Both are frequently associated with deletions, since
they rely on short regions of homology around a DSB, revealed by more extensive DSB
processing than in the case of C-NHEJ. The SSA pathway is independent of Rad51 but
operates by annealing 25- to 400-bp-long stretches of high sequence homology in a
Rad52-dependent reaction, suggesting at least some functional overlap with the HR
machinery (3–5). Since such long stretches of homology are relatively rare, SSA nor-
mally generates large deletions around the DSB and is often associated with tandem
repeats. MMEJ also results in deletions (20), but the shorter lengths of homology
needed for strand annealing, allied to the reaction’s tolerance of mismatches, ensure
that deletions are normally less extensive. However, the same substrate requirements
also imply that MMEJ can cause translocations, as well as complex deletions/insertions,
where insertions are usually 2- to 30-bp-long, reiterating either adjacent or distant
sequences (21, 22).

In metazoans, MMEJ is facilitated by poly(ADP-ribose) polymerase 1 (23), while DSB
recognition requires additional proteins. Six- to 20-bp-long microhomologies are used
to allow annealing around the processed DSB (24, 25), the overhangs are cleaved off,
and single-stranded gaps are filled in and ligated by DNA ligases I and/or III (26, 27).
Another key component of metazoan MMEJ is DNA polymerase theta (Pol �), which
possesses both polymerase and helicase domains, tethers DSB ends, anneals the
broken ends at microhomology sites, and synthesizes DNA in template-dependent and
-independent manners to allow DSB religation (21, 28–31). Despite this central role in
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MMEJ, Pol � is not present in all organisms. For example, yeasts employ other poly-
merases for this purpose (32).

The HR pathway predominates in the S and G2 phases of the cell cycle, when newly
replicated, homologous sister chromatids are present. In contrast, Ku-dependent
C-NHEJ operates during the whole cell cycle, being the major DSB repair mechanism in
multicellular eukaryotes (12, 33, 34). Whether MMEJ or SSA is limited to specific parts
of the cell cycle is unclear.

Parasites tend to lose C-NHEJ. Perhaps because C-NHEJ is not the sole mechanism
of end joining in eukaryotes, the pathway has been lost in several lineages (32, 35, 36).
Prominent among the organisms lacking C-NHEJ are parasites. The absence of C-NHEJ
components has been documented for the human parasitic protists Trypanosoma spp.
(37), Plasmodium spp. (38), and Encephalitozoon cuniculi (39). Experimental analysis of
DSB repair has shown that only A-NHEJ and not C-NHEJ is used in at least two of these
genera (40–45).

To understand the phylogenetic distribution of C-NHEJ across eukaryotes, we
searched for the orthologues of Ku70, Ku80, and Lig4, since these are the main widely
conserved factors (Fig. 1).

From 230 eukaryotic genomes present in the EggNOG database (the genome of
Aspergillus oryzae, in which Ku70 and Ku80 were artificially deleted to make HR more
effective, was not included), 181, 26, and 3 genomes encoded all three, two, and one
component, respectively, and in 20 genomes, all three components were missing
(Table S1). The analysis revealed an overall trend of parasitic protists to lack the C-NHEJ
pathway. For example, C-NHEJ is lost in microsporidia and Entamoeba spp., yet it is
retained in free-living fungi (46) and Dictyostelium spp. that form their sister clades,
respectively. Nonetheless, this rule is not without exceptions. Among apicomplexan
parasites, all C-NHEJ components were retained in the genera Toxoplasma and
Neospora yet lost in Plasmodium, Cryptosporidium, and Theileria. Moreover, C-NHEJ is
absent in the red alga Cyanidioschyzon merolae, the only known free-living protist

FIG 1 Distribution of main C-NHEJ components across eukaryotes. Median genome size is represented as black
circles of corresponding size.
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lacking it (Fig. 1). Such a sporadic absence of C-NHEJ is most readily explained by
multiple independent losses during eukaryotic evolution.

Why parasites? Two important questions arise from the observation that multiple
eukaryotic lineages have discarded C-NHEJ. What processes and forces triggered the
loss of such an important DNA repair pathway? What consequences might it have for
genome stability and structure?

It has been suggested that the distribution of C-NHEJ in bacteria is connected with
their life cycle, with the pathway present in species with a prolonged stationary phase
(47, 48), during which there is no available sister chromatid to perform HR. This is also
consistent with the observed predominance of C-NHEJ in the haploid cells of eu-
karyotes, as well as in the G1 or G0 phase of the cell cycle, when HR cannot be
implemented and the cell has to rely on the nonhomologous DSB repair pathways (49,
50). Vice versa, the organisms that divide often and spend long time in the diploid state
tend to rely on HR and lose C-NHEJ.

Alternatively, the loss of C-NHEJ may be triggered by an attempt to limit or even
eradicate transposons that rely on it for their movement (51). Finally, the patchy
distribution of different DSB repair pathways may reflect their relative impact on
genome changes. For example, C-NHEJ can be mutagenic, contributing to sequence
diversity during maturation of vertebrate immune genes (52). Consequently, the bal-
ance between the beneficial and detrimental aspects of C-NHEJ-associated mutagen-
esis (53) may dictate the need for its loss, facilitating use of the more faithful HR.
However, the absence of C-NHEJ also results in a higher dependence on the A-NHEJ
pathway, as appears to be the case during DSB repair in trypanosomatids and other
organisms without C-NHEJ (40–45, 54, 55). Such prominence of A-NHEJ may become
useful because of additional functions that C-NHEJ cannot perform, such as enhanced
genome rearrangement, due to the reliance of A-NHEJ on annealing short, imperfect
regions of homology. However, at least in the case of trypanosomatids, the extensive
synteny of the Trypanosoma brucei, Trypanosoma cruzi, and Leishmania genomes (56)
argues against the function of A-NHEJ in genome rearrangements, although we cannot
exclude its reclusive role in localized genome variation, such as in multigene families
(57–59).

Instead, loss of C-NHEJ can be better correlated with reduced genome size. For
instance, the chordate Oikopleura (54), the red alga Cyanidioschyzon (60), and the
prokaryote Mycobacterium leprae (61) have undergone a process of genome compac-
tion and, unlike their relatives, notably lack C-NHEJ. Similarly, the size range from 8 to
23 Mb of the C-NHEJ-lacking genomes of the apicomplexans Theileria parva (62),
Cryptosporidium spp. (63), and Plasmodium spp. (64) is significantly smaller than the
80-Mb genome of the related Toxoplasma gondii (65) (Fig. 1). The loss of C-NHEJ and
subsequent gradual compaction of the genome were also observed in the evolution of
microsporidians (46, 66). Importantly, Deng and colleagues associated the genome
compaction in Oikopleura with the loss of C-NHEJ machinery (54). Consistent with this
suggestion, our comparative analysis of eukaryotic genomes lacking and containing
C-NHEJ machinery revealed a mean size of 29.2 Mb for the former and 667.9 Mb for the
latter, a remarkable difference of �20 times (P � 1.0 �10�8). While this cannot be the
sole explanation of size differences, since the �165-Mb genome of Trichomonas
vaginalis (67) also lacks C-NHEJ machinery (although its close relative Trichomonas
tenax has a genome of only 46 Mb [68]), it is highly plausible that when genome
streamlining is advantageous, C-NHEJ tends to be discarded, either due to its dispens-
ability or because this step further accelerates sequence loss.

Selective pressure makes parasites fast, concise, and economic, preferably exceed-
ing their hosts in these parameters. Moreover, compared with their free-living relatives,
parasites typically have smaller and streamlined genomes and are more susceptible
to gene loss. All this is beneficial, since smaller genomes allow parasites to multiply
faster and with lower metabolic costs (69, 70). In this context, we posit that the
observed multiple independent losses of the C-NHEJ components in parasitic
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lineages provide evidence that loss of this DSB repair mechanism leads to genome
compaction and, in turn, provides parasites with a number of selective advantages
detailed below.

At a DSB, the Ku heterodimer binds promptly to the broken DNA ends (71),
protecting them from further degradation and resection by nucleases, which would
lead to deleterious deletions (72). In the absence of C-NHEJ, the organism uses A-NHEJ
pathways, such as MMEJ and SSA, which inevitably triggers sequence deletions (20).
Moreover, the HR-based break-induced replication and SSA pathways can also produce
deletions at the breakpoint flanks (73, 74). Thus, following the loss of C-NHEJ, a
eukaryotic genome undergoes chromosome aberrations, including deletions and trans-
locations, leading to loss of genetic material and consequent genome shrinkage
(75–77). For instance, it has been experimentally demonstrated that A-NHEJ causes
novel indel mutations in Oikopleura, and this process was implicated in the mechanism
of genome shrinkage (54).

We may speculate about the potential mechanisms behind the genome shrinkage.
Keeling and Slamovits considered two principal ways leading to the shrinkage of a
genome, which are not mutually exclusive: reduction and compaction (78). Reduction
is a process of elimination of some functional elements, such as protein-coding genes,
whereas compaction is a process of rearranging the existing functional elements in a
denser way, for instance, by removing the parts of the noncoding sequences. Both
processes operate in the eukaryote genomes: they can occur together or separately.
The smallest known nuclear genomes are those of parasitic microsporidia (2.5 Mb) and
nucleomorphs (0.373 Mb). They represent extreme cases of both processes, having the
highest gene density and the smallest number of genes among eukaryotes (78).

The physical mechanism of genome shrinkage is the loss of whole chromosomes
(aneuploidy) or their parts (deletion mutations). Aneuploidy occurs due to the errone-
ous cell division when the chromosomes do not distribute correctly between the
daughter cells. Large deletions originate as a result of DSB without rejoining, translo-
cation of mobile elements, or erroneous, unequal, and ectopic recombination, such as
between repeated regions. It is probable that this recombination is more likely to occur
in the noncoding parts of genome, which have more repeated elements than protein-
coding sequences, causing genome compaction (79). Small deletions occur as a result
of DNA polymerase errors, such as slippering on repeats (80). Comparative studies of
various animal genomes showed that on the level of small (�400-bp) indels, deletions
prevail over insertions both in the protein-coding genes (81) and in the noncoding
sequences (82), which may also lead to gradual loss of genetic material.

Still, we cannot exclude the possibility that loss of the C-NHEJ pathway is not the
cause but rather the consequence of genome shrinkage. Even though HR occurs in
mammals, C-NHEJ acts as their main DSB repair pathway (12, 33, 34). However,
eukaryotes with smaller genomes and functional C-NHEJ, such as S. cerevisiae, prefer-
ably employ HR for DSB repair (12). There is at least one reason for C-NHEJ being the
main DSB repair pathway in large eukaryotic genomes. The search for a homologous
sequence during HR occurs across the entire genome, raising the risk of invading
homologous ectopic sequences, which is especially high given the abundance of
almost identical retrotransposon repeats in such genomes (3, 18, 83). In contrast, HR
may be the mechanism of choice in small, nonrepetitive genomes, such as those of
most bacteria and some unicellular eukaryotes, including parasites. The dependence of
HR on the presence of homologous chromatids implies that during haploid cell cycle
stages, organisms without C-NHEJ must rely on other repair pathways, such as MMEJ
and/or SSA. However, as mentioned above, these pathways are highly error-prone, with
a tendency to generate indel mutations (20, 75, 84–86). While deleterious for free-living
eukaryotes, this sloppiness in repair mechanisms may be beneficial for parasites. By
depending on these mutagenic pathways, they increase their mutation rate, thus
benefiting in the arms race with the host’s immune system (69, 70).

The nonrandom loss of the Ku proteins in parasitic lineages might be also associated
with function(s) of the heterodimer in telomere maintenance. Ku is known to protect
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telomeres from abnormal fusions and has an inhibitory effect on the recombination of
normal telomeres. The Ku heterodimer also controls telomere length by recruiting
telomerase and is involved in the telomere silencing effect (87–89). Furthermore,
chromosomal ends and adjacent subtelomeric regions are of particular importance for
parasites, as this is where factors involved in host cell interaction and immune escape
mechanisms are frequently located (90, 91). Genes specifying variant surface antigens
that allow parasites to evade the hosts’ immune response are often found in the
(sub)telomeric regions. Such surface variation systems are known for Plasmodium and
Babesia spp. (64, 92), T. brucei (93, 94), and the fungus Pneumocystis carinii (95). Similar
strategies have also been described for several prokaryotic pathogens, such as Neisseria
spp. (96), Haemophilus influenzae (97), and Borrelia spp. (98). Importantly, variation of
these polymorphic and fast-evolving surface proteins is promoted by DSBs, at least in
the case of T. brucei (99). In the (sub)telomeric regions of P. falciparum, antigenic
variation occurs via homologous and ectopic recombination (100–102), which is inhib-
ited by Ku in the organisms that have it (10, 103). In this regard, the retention of Ku in
T. brucei and other trypanosomatids, in the absence of other C-NHEJ components, is a
notable anomaly.

Why is Ku retained in trypanosomatids? The human parasites Trypanosoma and
Leishmania (Trypanosomatida, Kinetoplastida) retain Ku70 and Ku80 (104, 105) but have
lost Lig4. This is an unusual combination, since other organisms lacking Lig4 usually
also do not possess the Ku proteins (Fig. 1). Recently, we have sequenced and
annotated the genomes of two unnamed insect flagellates belonging to the “jaculum”
clade, a novel trypanosomatid lineage (106, 107); the raw sequencing data and the draft
assembly are available at NCBI (www.ncbi.nlm.nih.gov) under BioProject PRJNA543408.
Their genome sizes are 19.8 Mb and 24.9 Mb in the draft genome assemblies, and the
numbers of predicted proteins are 6,163 and 7,571, correspondingly. Unexpectedly,
unlike for other trypanosomatids, both Ku genes were ablated from these genomes,
proving that the Ku heterodimer is not indispensable for these organisms. Interestingly,
a detailed inspection of the genomes of both “jaculum” species revealed a high
frequency of specific insertions in protein-coding genes, while deletions were rare
(Fig. 2; see also Fig. S1 in the supplemental material). Since “jaculum” is not a basal
trypanosomatid clade, but rather one from the crown (106, 107), and the insertions are
specific for this group, the most parsimonious scenario is that the insertions appeared
de novo in the common ancestor of “jaculum.”

Insertions were present in the majority of examined coding sequences, although
they were underrepresented or completely absent from the most conserved genes,
such as ribosomal proteins and glycolytic enzymes (Table S2). In 247 analyzed align-
ments in the two “jaculum” species, inserted sequences constituted 14.9% and 17.4%
of the alignments, whereas in T. brucei only 8.9% of the alignment were represented by
insertions (P1�4.3 � 10�11; P2�1.4 � 10�13) (Table S2). We compared the amino acid
compositions of insertions and sequences without insertions, and we found that some
amino acids were overrepresented or underrepresented in the inserted sequences;
however, this pattern was similar in all the analyzed species (Table S3). Mass spectrom-
etry confirmed that the insertions were indeed retained in mature proteins (Fig. 2 and
Fig. S1).

Next, we investigated whether the observed insertions are neutral with respect to
the function of the affected proteins. For that purpose, we mapped the insertions in
selected conserved “jaculum” proteins on experimentally determined structures of their
orthologues in T. brucei (Fig. 3). The inspected insertions either formed terminal
extensions or were located to the external loops, but they never occurred in regions
involved in ligand binding, ion coordination, or interaction with other molecules. This
observation is fully consistent with the hypothesis that all insertions are functionally
neutral.

We propose that the observed features are a consequence of the loss of the Ku
heterodimer. Moreover, our data suggest an additional, so far unexplored, role(s) of Ku
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in trypanosomatid parasites. In all examined species, with the sole exception of the
“jaculum” lineage, Lig4 is absent but both Ku70 and Ku80 are retained (Fig. 1). Data
available from Trypanosoma cruzi, T. brucei, and Leishmania spp. indicate that the Ku
heterodimer does not participate in C-NHEJ and that in the corresponding genomes
DSBs are predominantly repaired via HR and MMEJ (37, 43–45, 108). However, it is
possible that the Ku70/80 complex plays a role in DSB repair even without its partner
Lig4, because it may act as “first aid,” binding within seconds to the disrupted DNA ends
(71), holding them together and protecting them from further damage until the slower
HR or A-NHEJ proteins come to serve. Such a role may be important in Leishmania spp.
and T. brucei, in which pronounced levels of genome rearrangements are observed,
either genome-wide or in the subtelomeric region for immune evasion, and might
involve DNA DSBs (109, 110). Alternatively, Ku70 and Ku80 are involved in other DNA
repair pathways, such as base excision and DNA alkylation repair (111), although a role
for Ku in these processes has so far not been examined in trypanosomatids. Moreover,
together with the MRN complex, the Ku heterodimer may serve as a signaling molecule,
modulating activity of the ATM kinase, which phosphorylates other factors and initiates
a signaling cascade in the DNA damage response pathway (10). Again, the function of
the ATM kinase has not yet been scrutinized in trypanosomatids. Finally, the Ku
proteins play an important role in telomere maintenance (104, 105, 112). Data obtained
from the analysis of the “jaculum”genomes may shed light on the genome-wide roles
of these conserved and multifunctional proteins not only in trypanosomatids but also
in other eukaryotes.

Taking the alternative end joining pathways into consideration may give us a hint
regarding the origin of the insertions that are prominent in “jaculum.” In metazoan
MMEJ, DNA polymerase � uses only one to four complementary nucleotides to initiate
polymerization, frequently producing short templated and nontemplated insertions
(113, 114), reminiscent of those pervading the “jaculum” genome. We consider as highly
plausible a hypothesis that in the “jaculum” trypanosomatids, the insertions may result
from the erroneous A-NHEJ and HR repair processes, unconstrained by the Ku proteins.
Similarly, in tunicate Oikopleura dioica, which lacks Ku70/80 and other components of
C-NHEJ, DSB repair by A-NHEJ results in acquisition of multiple novel insertions (54).

FIG 2 Multiple insertions are present in “jaculum” proteins. The N-terminal part of the poly(A)-binding protein alignment of chosen trypanosomatids is shown
(full-length alignment is available in Fig. S1). Insertions present in “jaculum” proteins are highlighted by yellow background. Peptides identified by mass
spectrometry are underlined in black. Two dots represent regions of the sequence alignment that are conserved among the species and were omitted for
simplicity.
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An interesting question is why the observed insertions in “jaculum” and other
trypanosomatids were significantly prevalent over deletions (Fig. 2 and Fig. S1). It is
known that insertions in protein-coding sequences are usually several times more
frequent than deletions, apparently because the latter are generally more deleterious
and more susceptible to purifying selection (115). We also noticed that amino acids are
predominantly altered in the flanking regions of the insertions and may represent
remnants of the deletions, rendering these parts of the alignment to be inaccurately
aligned. Moreover, the lengths of the inserted region are often variable in different
species, which may be explained by consequent insertions and deletions (Fig. 2 and
Fig. S1).

A comparably high incidence of indel mutations, accompanied by loss of all main
C-NHEJ components, has been reported for the causative agent of human malaria,
Plasmodium falciparum (42) (Fig. 1). In this protist, the occurrence of indels is over
10-fold higher than that of base substitutions (116). It is therefore worth pointing out
that in most other organisms, base substitutions are much more frequent than indels.
For example, the substitution-to-indel ratios are approximately 10:1 in primates and
20:1 in bacteria (117). While P. falciparum is known to be a highly polymorphic and
fast-evolving parasite (116), these features are so far not associated with the absence of
C-NHEJ. The above-described circumstantial evidence makes the putative connection
between the DNA repair pathways and the unique features of the Plasmodium ge-
nomes worth exploring.

Concluding remarks. We have found that the C-NHEJ pathway, which is a highly
conserved key eukaryotic DNA repair pathway, has been independently lost multiple

FIG 3 Mapping of insertions in the “jaculum” proteins onto structures of dihydrofolate reductase in complex with
pyrimethamine (118) (A), leucyl aminopeptidase (119) (B), the phosphatase domain of phosphoglycerate mutase
(120) (C), and adenosine kinase in complex with adenosine and AMPPNP (121) (D) from T. brucei. The positions and
lengths of insertions in the “jaculum” proteins are shown in red.
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times in several parasitic protist lineages. We provide several alternative explanations
for these seemingly nonrandom losses. Moreover, we raise the question of whether
parasites benefit from this repair mechanism or, unlike their free-living kin, try to free
themselves from its constraints.
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