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Amikacin pharmacokinetic data in Kuwaiti (Arab) intensive care unit (ICU) patients are lacking. Fairly sparse serum amikacin peak
and trough concentrations data were obtained from adult Kuwaiti ICU patients. e data were analysed using a nonparametric
adaptive grid (NPAG) maximum likelihood algorithm. e estimations of the developed model were assessed using mean error
(ME) as a measure of bias and mean squared error (MSE) as a measure of precision. A total of 331 serum amikacin concentrations
were obtained from 56 patients. e mean (±SD) model parameter values found were𝑉𝑉𝑐𝑐 = 0.2302 ± 0.0866 L/kg, 𝑘𝑘slope = 0.004045
± 0.00705min per unit of creatinine clearance, 𝑘𝑘12 = 2.2121 ± 5.506 h−1, and 𝑘𝑘21 = 1.431 ± 2.796 h−1. e serum concentration data
were estimated with little bias (ME = −0.88) and good precision (MSE = 13.08). e present study suggests that amikacin pharma-
cokinetics in adult Kuwaiti ICU patients are generally rather similar to those found in other patients.is population model would
provide useful guidance in developing initial amikacin dosage regimens for such patients, especially using multiple model (MM)
dosage design, followed by appropriate Bayesian adaptive control, to optimize amikacin dosage regimens for each individual patient.

1. Introduction

Amikacin is an aminoglycoside antibiotic that is most effec-
tive against Gram-negative bacteria. Its optimal dosing is
highly variable and depends on the site and severity of
infection, the susceptibility of the organism, and the body
weight and renal function of the patient.

Like other aminoglycosides, amikacin has a very narrow
therapeutic index, and the concentrations needed for optimal
efficacy are close to those having a risk of toxicity. Amikacin
is a concentration-dependent drug, with the rate of killing of
microorganisms being proportional to the drug concentra-
tions achieved in serum, especially peak concentrations [1].
However, abnormally high plasma or serum trough concen-
trations soon aer commencing therapy is oen associated
with toxicity [1].

�ith multiple daily dosing of amikacin, the speci�c
desired peak concentration for life-threatening Gram-nega-
tive sepsis usually ranges between 30 and 50 𝜇𝜇g/mL, while the

corresponding speci�c desired trough amikacin concentra-
tion ranges between 5 and 10 𝜇𝜇g/mL.

Although aminoglycosides are extensively used, the accu-
rate determination of their optimal dosage is complicated
by marked intra-and interindividual variability in its phar-
macokinetic behavior in patients with normal or abnormal
renal function [2]. Management of intensive care unit (ICU)
patients oen requires general support of failing organs
including speci�c treatment and administration of multiple
drugs. All these situations may alter the pharmacokinetics
of many drugs such as amikacin in critically ill patients.
Large interindividual variations in the pharmacokinetics of
amikacin in ICU patients have been described [3, 4]. us,
amikacin is a drug for which therapeutic drug monitoring
(TDM) has a well-established role. Individualized optimal
dosage regimens should be designed and implemented as
early as possible in therapy to yield maximal efficacy. It has
been reported that severe sepsis modi�es amikacin kinetics
by increasing its apparent volume of distribution of the
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T 1: Demographic and biological characteristics of the patients
included in the population model.

Parameter Mean (range)
Gender (male : female) 32 : 24
Age (years) 57.4 (19–90)
Weight (kg) 72.6 (50–110)
Height (cm) 166.2 (148–182)
Serum creatinine (mg/dL) 1.50 (0.60–6.26)
Creatinine clearance (mL/min) 75.06 (7.81–177.10)
Total no. of peak concentrations collected 85
Total no. of trough concentrations collected 246

central compartment and decreasing its elimination rate,
probably as a consequence of leaky capillaries and organ
failure [5–7].

Population pharmacokinetic techniques are widely used
to characterize the interindividual variability of pharmacoki-
netic parameter values among patients. e objective of the
present study was to analyze a representative population
of critically ill Kuwaiti patients receiving amikacin therapy
using the nonparametric adaptive grid (NPAG) program,
in the MM-USCPACK collection [8, 9]. is soware has
been incorporated into the Pmetrics soware, which is now
embedded in R.

2. Materials andMethods

2.1. Study Approval. All data for this study were obtained
retrospectively during routine clinical care of ICU Kuwaiti
patients. e study was approved by both Health Sciences
Center (HSC) Ethics Committee (HSC, Kuwait University,
Kuwait) and the Ministry of Health Ethics Committee (Min-
istry of Health, Kuwait). Informed consent was not needed
since the blood samples were collected for routine care
and therapeutic drug monitoring (TDM) of their amikacin
therapy.

2.2. Patient Characteristics. FromDecember 2008 toOctober
2010, �y six Kuwaiti patients received amikacin therapy in
the ICU of Al-Amiri Hospital in Kuwait and were included
in this study. No additional blood samples were taken other
than those requested for routine TDM of amikacin.emost
frequent clinical conditions in these patients were septicemia
(23 patients), pneumonia (6 patients), and severe trauma (27
patients). e patients’ demographic data and characteristics
are presented in Table 1.

2.3. Drug Administration. All patients received an initial
standard Kuwaiti amikacin dosage regimen of 500mg every
12 h. All doses were administered intravenously over 5min,
the standard practice in Kuwait. Exact dosing times were
recorded.

2.4. Blood Sampling. Blood samples were withdrawn daily
from the patients for determination of amikacin in serum.
e trough level was taken within 30min before a dose was

administered, whereas the peak level was taken 1 h aer the
5min i.v. infusion was started. Exact blood sampling times
were recorded. Blood samples were immediately centrifuged,
and serum samples were collected and stored at −80∘C
pending analysis.

2.5. Drug Analysis. Serum amikacin samples as well as serum
creatinine were measured by Kobas Integra 400 (Roche
Diagnostics, Basel, Switzerland). Calibration standards of
amikacin in serum were at concentrations of 0, 2.5, 5, 10,
20, and 40 𝜇𝜇g/mL. Quality control samples at concentrations
of 5.31, 14.8, and 26.9 𝜇𝜇g/mL were assayed each time patient
samples were assayed.e tests were performed according to
the manufacturer’s protocol [11]. e intra-run and interrun
coefficients of variation for amikacin assay were less than 5%
and 10%, respectively.
2.6. Assay Error. e standard deviation (SD) of the assay
over its working range was determined using 5 replicates of
each serum amikacin concentrations of 0, 2.5, 5, 10, 20, and
40 𝜇𝜇g/mL. e relationship between serum amikacin con-
centrations and the assay SD was described by a polynomial
equation using the MM-USCPACK soware as follows:

SD = 𝐴𝐴0𝐶𝐶
0 + 𝐴𝐴1𝐶𝐶

1 + 𝐴𝐴2𝐶𝐶
2, (1)

where 𝐴𝐴0, 𝐴𝐴1, 𝐴𝐴2, are various coefficients and 𝐶𝐶0, 𝐶𝐶1, 𝐶𝐶2

are the concentrations raised to the zero power, �rst power,
and the second power, respectively. e coefficients of this
polynomial equation were used to give proper weighting
of each measured concentration by the reciprocal of the
assay variance (SD2) at each measured concentration, in
performing the population analysis using theNPAG soware.

2.7. Data Analysis. In the present study, the NPAG method
of population pharmacokinetic analysis was selected for
performing the population pharmacokinetic modeling for
the following speci�c reasons. In contrast to parametric
approaches such as NONMEM, for example, there is no need
to make any constraining assumptions about the shape of the
model parameter distributions such as normal and log nor-
mal. In addition, nonparametric (NP) models permit multi-
ple model (MM) dosage design, which is always maximally
precise [12], while dosage regimens developed using only
single-point parameter values such asmeans ormedians from
parametric population modeling methods cannot do this, as
they do not use the entire model parameter distributions
and therefore cannot evaluate and maximize the expected
precision with which the dosage regimen hits a clinically
selected target goal. Moreover, NPAG soware calculates
the likelihood function exactly and thus possesses statistical
consistency in contrast to parametric approaches, many of
which (but certainly not all) use only approximate methods;
�rst order (FO), �rst-order conditional estimation (FOCE),
for example, to calculate the likelihood. ey, therefore, do
not have statistical consistency. is most desirable property
of statistical consistency means that the more subjects one
studies in the population, the closer the estimated parameter
distributions approach the true ones. is means that the
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more subjects studied, the closer the predicted parameter
value approaches the true value [9, 12].

Individual patient data including serum amikacin con-
centrations, age, weight, height, gender, serum creatinine,
and dosage history were entered in the MM-USCPACK
PC program. e soware used the entire dosing history,
amikacin peak and trough levels, and the estimated creati-
nine clearances [8]. e model pharmacokinetic parameter
distributions for the population were computed by the NPAG
nonparametric maximum likelihood method [9]. e model
used was a two-compartment open model with elimination
from the central compartment. e �tted parameters were
the apparent volume of distribution of the central compart-
ment (𝑉𝑉𝑐𝑐, L/kg), the transfer rate constants (𝑘𝑘12 and 𝑘𝑘21) from
the central to peripheral and from the peripheral back to
central compartments, respectively, (in h−1), 𝑘𝑘slope, the renal
component of 𝐾𝐾el, the elimination rate constant, (in h−1 per
unit of creatinine clearance), where

𝐾𝐾el = 𝑘𝑘nr + 𝑘𝑘slope ∗ CLcr. (2)

In this analysis, the nonrenal elimination rate constant
(𝑘𝑘nr) was �xed to zero, assuming no nonrenal elimination
of amikacin. Creatinine clearance was estimated from serum
creatinine concentrations using theMM-USCPACK soware
[8].

e population analysis began with a uniform prior dis-
tribution spread over 40009 grid points of equal probability
between stated initial ranges for each parameter. It then
proceeded iteratively to maximize the likelihood of the entire
model parameter distributions given the observed serum
amikacin concentrations. e program stopped when 2 suc-
cessive estimations of the log likelihood differed by less than
0.001%. is was the criterion that the likelihood function
had reached a maximum.e program also estimated mean,
median, and standard deviations of each pharmacokinetic
parameter, as well as the covariance matrix of the model
parameters.

In addition, the nonparametric Bayesian posterior joint
density was computed for each individual patient. In the
nonparametric approach, this is done by computing the
Bayesian posterior probability of each population model
support point given the individual patient data. In this way,
each patient’s Bayesian posterior joint probability density is
determined.

2.8. Evaluation of the Parameter Estimates. e performance
of the parameter estimates was evaluated by comparing the
estimated serum amikacin concentrations with the patient’s
measured data. e bias (weighted mean error, ME) and pre-
cision (bias-corrected weighted mean squared error, MSE)
were assessed according to Sheiner and Beal [13]. e bias
and precision were evaluated separately for peak and trough
serum amikacin concentrations.

3. Results

A total of 331 serum amikacin samples comprising 85
peak levels and 246 trough levels were analyzed (Table 1).

T 2: Population pharmacokinetic parameters of amikacin in 56
ICU patients.

Parameter Mean Median S.D. C.V., %
𝑘𝑘𝑠𝑠 (h

−1 per unit of CLcr) 0.004045 0.002576 0.007054 174.389
𝑘𝑘12 (h

−1) 2.21207 0.584539 5.5061 248.912
𝑘𝑘21 (h

−1) 1.43121 0.23237 2.7957 195.338
𝑉𝑉𝑐𝑐 (L/kg) 0.23012 0.218929 0.08658 37.6236

e mean peak concentration was 22.32 𝜇𝜇g/mL (95%CI;
19.7–24.9 𝜇𝜇g/mL) and the mean trough concentration was
4.26 𝜇𝜇g/mL (95%CI; 3.88–4.64 𝜇𝜇g/mL). With the conven-
tional amikacin dosage regimen, it was found that only 14%
of the peak levels were within the therapeutic range of 30
to 50 𝜇𝜇g/mL, and only 24% of the trough levels were within
the therapeutic range of 5 to 10 𝜇𝜇g/mL.is strongly suggests
the advantage of population modeling and dosage individu-
alization using tools such as NPAG and the MM-USCPACK
soware to maximize the precision of achievement of target
serum amikacin concentrations.

3.1. Assay Error. e polynomial equation describing ami-
kacin assay standard deviation (SD) was found to be

SD = 0.2451 + 0.0950 ∗ 𝐶𝐶𝐶 (3)

e 𝐶𝐶2 term was set to zero.
e coefficients of this equation were then entered into

theMM-USCPACK soware and used for weighting the data
as described earlier, using the NPAG soware.

3.2. Population Model Results. Using the NPAG soware,
convergence was reached on cycle 669. e �nal log likeli-
hood was −777.4437, and the number of active grid points
decreased from an initial value of 40009 down to 27. e
parameter values were essentially stable before the conver-
gence criterion was reached. e marginal density plots of
the pharmacokinetic parameters 𝑘𝑘slope and 𝑉𝑉𝑐𝑐 are displayed
in Figures 1(a) and 1(b). e pharmacokinetic parameter
summaries estimated from the �nal population model are
presented in Table 2. As shown in Figures 1(a) and 1(b),
theremay be two possible subpopulations of adult and elderly
patients or subpopulations of patients with renally impaired
and normal function. As shown in Figure 1(a), for instance,
two subpopulations appear to be present, a principal one
with 𝑘𝑘𝑠𝑠 values ranging from almost zero to 0.005 h−1 per unit
of creatinine clearance and another small one with values
ranging from about 0.033 to 0.039 h−1 per unit of creatinine
clearance. Moreover, it is possible that two subpopulations
may also be present in the volume of distribution of the
central compartment (𝑉𝑉𝑐𝑐). In this regard, the �rst subpopu-
lation is centered at about 0.2 L/kg and another one centered
at about 0.36 L/kg, a value seen somewhat more oen in
Caucasian ICU patients (Figure 1(b)).

e performance of the NPAG population and individ-
ualized Bayesian estimates are shown in the plots of the
observed versus estimated serum amikacin concentrations
(Figures 2 and 3). e scatter plots of estimated versus
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F 1: Marginal density plot of the parameters 𝑘𝑘𝑠𝑠 (h
−1 per unit of creatinine clearance); renal component of elimination rate constant (a)

and𝑉𝑉𝑐𝑐 (L/kg); apparent volume of distribution of the central compartment (b) generated by NPAG program for adult ICU patients (𝑛𝑛 𝑛 𝑛𝑛)
who received amikacin.
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F 2: Scatter plot of predicted (𝑥𝑥-axis) versus measured (𝑦𝑦-axis) serum amikacin concentrations (𝜇𝜇g/mL) based on means (a) and
medians (b) of population parameter distributions. Pooled data from all patients (𝑛𝑛 𝑛 𝑛𝑛).

observed serum amikacin concentrations using the mean
(Figure 2(a)) and median (Figure 2(b)) population model
parameter values have been demonstrated. e relationship
between the mean predicted and measured serum amikacin
concentrations was found to be the following: measured
conc = 1.57 ∗ predicted conc + 0.53; 𝑟𝑟2 = 0.72; ME =
−3.71; MSE = 55.89 (Figure 2(a)), whereas the relationship
between themedian predicted andmeasured serumamikacin
concentrations was found to be the following: measured
conc = 1.05 ∗ predicted conc − 0.8; 𝑟𝑟2 = 0.69; ME = 0.29,
MSE = 35.08 (Figure 2(b)). Similarly, the scatter plots based

on themeans (Figure 3(a)) andmedians (Figure 3(b)) of each
individual patient’s Bayesian posterior parameter distribu-
tions have been presented. In this regard, the relationship
between the mean predicted and measured serum amikacin
concentrations was found to be the following: measured
conc = 1.00 ∗ predicted conc + 0.89; 𝑟𝑟2 = 0.89; ME = −0.88;
MSE = 13.08 (Figure 3(a)), whereas the relationship between
the median predicted and measured serum amikacin con-
centrations was found to be the following: measured conc =
0.93 ∗ predicted conc + 0.3; 𝑟𝑟2 = 0.85; ME = 0.34; MSE =
17.30 (Figure 3(b)). e estimates based on the individual
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F 3: Scatter plot of predicted (𝑥𝑥-axis) versus measured (𝑦𝑦-axis) serum amikacin concentrations (𝜇𝜇g/mL) based on means (a) and
medians (b) of each individual patient’s Bayesian posterior parameter distributions. Pooled data from all patients (𝑛𝑛 𝑛 𝑛𝑛).

T 3: Assessment of absolute predictive performance of NPAG
in amikacin population model. Figures in parenthesis are 95%
con�dence intervals.

Level N ME MSE
T 246 0.24 (−0.03–0.51) 4.67 (2.93–6.42)
P 85 2.10 (1.18–3.01) 22.16 (13.46–30.87)
N: sample size; ME: weighted mean error; MSE: bias-corrected weighted
mean squared error; T: trough; P: peak.

patient’s Bayesian posterior parameter distributions were
much better than those based on the population distribu-
tions. is illustrates the utility of Bayesian individualization
of each patient’s model based on his/her individual data using
TDM.

Separating peaks from troughs, themean (±SD) observed
and predicted (based on individual patient’s mean Bayesian
posterior parameter values) serum amikacin trough con-
centrations were 4.38 ± 3.26 𝜇𝜇g/mL and 4.14 ± 3.16 𝜇𝜇g/mL,
respectively; whereas those for the peak concentrations were
23.36 ± 12.32 𝜇𝜇g/mL and 21.27 ± 12.42 𝜇𝜇g/mL, respectively.
e mean error (ME) was lowest for amikacin trough
levels and highest for peak levels (based on individual
patient’s mean Bayesian posterior parameter values), just
as the assay error was less for the troughs and more for
the peaks as described by the assay SD polynomial. e
precision, mean squared error (MSE), of the mean serum
amikacin concentration predictions (based on individual
patient’s mean Bayesian posterior parameter values) ranged
from 4.67 𝜇𝜇g/mL (95%CI; 2.93–6.42) for trough levels to
22.16 𝜇𝜇g/mL (95%CI; 13.46–30.87) for peak levels, Table 3.

Bland-Altman plots of the mean serum amikacin trough
and peak concentrations (based on individual patient’s
mean Bayesian posterior parameter values) are displayed

in Figures 4(a) and 4(b), respectively, and are consistent
with the relationship between the more precisely measured
troughs and the less preciselymeasured peaks. As shown, 94%
of trough residual levels and 93% of peak residual levels were
in the range of the mean (±2SD) overall difference between
estimated and measured serum concentrations.

A three-dimensional plot of 𝑉𝑉𝑐𝑐 versus 𝑘𝑘𝑠𝑠 using NPAG
soware demonstrated the potential presence of two clusters
of subpopulations (Figure 5). Moreover, a correlation exists
between 𝑉𝑉𝑐𝑐 and 𝑘𝑘𝑠𝑠 (𝑟𝑟

2 = 0.44).

4. Discussion

Amikacin pharmacokinetic parameter distributions have
substantial interindividual variation among the patients
treated with the drug. is interindividual variability is
especially great in ICU patients [14], presumably owing to
various physiological changes in ICUpatients.e�ndings of
the present study demonstrate that the𝑉𝑉𝑐𝑐 is not signi�cantly
increased in ICU patients, as its mean value of 0.23 L/kg
(Table 2) is similar to that of normal patients and in agree-
ment with previous studies [15]. However, except for our
subgroup with the higher 𝑉𝑉𝑐𝑐, our results contrast with those
of other investigators who reported increased values of𝑉𝑉𝑑𝑑 in
ICU patients [16–18]. Nevertheless, the narrow therapeutic
range and great interindividual variability of amikacin in all
patients emphasize the need for therapeutic drug monitoring
of its peak and trough levels for optimized dosing as well as
optimal efficacy and prevention of serious side effects.

In this analysis, however, several possible subpopula-
tions of patients were found, though there was no other
information to identify why this should be so. e ability
to detect such unsuspected subpopulations is a distinct
strength of the nonparametric approach and is one of the
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F 4: Bland-Altman plot of the mean serum amikacin (𝑥𝑥-axis) trough concentrations (a) and peak concentrations (b) versus difference
(𝑦𝑦-axis) between predicted and observed amikacin concentrations. e solid line represents the mean difference; the dashed lines represent
the limits of agreement (mean difference ±2 SD difference).
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for Kuwaiti ICU patients (𝑛𝑛 𝑛 𝑛𝑛) using NPAG program.

reasons why this method of analysis was selected for use
here. ese subpopulations might well have been missed by
population analyses using parametric approaches, which only
computemeans and covariances of the assumed distributions
of the model parameter values [9]. e Bayesian posterior
parameter values would have had to be analyzed, and the
population analysis would then have to be speci�cally set
up to detect such anticipated multimodal distributions. In
addition, the problem of subpopulations within a larger
population is most important from the point of view of
developing maximally precise dosage regimens for patients.
When a patient belongs to a larger population in which

the parameter distributions are not Gaussian, as found here,
the use of parametric models based on only single-point
parameter estimates has no way to evaluate and optimize
the expected precision with which a dosage regimen will hit
a target. is is a distinct limitation of what is known as
separation principle control [19]. is principle states that
whenever one seeks to control a system, �rst by getting single-
point estimates of the model parameter values (rather than
estimating the entire parameter distributions) and then using
these single point estimates to control the system, the control
is done suboptimally. is is because there is no method of
estimating the degree of failure of the regimen to hit the
target. It is simply assumed that the regimen is designed
to hit the target exactly, and everyone of course knows
that this will not be the case. In contrast, nonparametric
population models, having multiple discrete support points
which describe the entire model parameter distributions
without having to make any assumptions about their shape,
can easily compute the expected weighted squared error with
which any dosage regimen fails to hit a desired target and can
then �nd the regimenwhich speci�callyminimizes that error.
is is Multiple Model (MM) dosage design [9, 12] and it is
well known in the aerospace community for �ight control and
spacecra guidance applications.

In the present RightDose clinical soware, MM dosage
design proceeds as follows: just as the process of weighted
nonlinear least squares begins with an initial set of parameter
estimates, so does MM dosage design begin with an
initial estimate of the dosage regimen to be developed. is
candidate regimen is given to each populationmodel support
point. Each point, having its own set of model parameter
values, predicts future serum concentrations resulting from
that regimen, with the probability estimated for each point
in either the original population model or the Bayesian
posterior joint density of an individual patient. At the time
the desired target is to be achieved, one can compare each
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T 4: Comparative mean population amikacin pharmacokinetic
parameters for Kuwaitis (Arabs) and other ethnic groups.

Parameter Hispanic∗ Asian∗ Caucasians∗ Arabs∗∗

𝑘𝑘𝑠𝑠 (h
−1 per unit of

CLcr) 0.00404 0.00424 0.00394 0.00405

𝑉𝑉𝑐𝑐 (L/kg) 0.248 0.264 0.26 0.23
∗Jhee et al., 1994 [10].
∗∗Present study.

prediction, weighted by its own probability with the target
goal, and the weighted squared error of the failure of that
candidate regimen to hit the target is calculated.en, just as
in least squares, the dosage regimen is iteratively optimized
until the regimen hitting the target with the minimum
expected weighted squared error is found.is isMMdosage
design. e combination of nonparametric population
modeling andMMdosage design lends great strength to these
applications. It can be seen that in addition to covariates,
the MM dose regimen itself becomes a most important
tool to minimize the variability of patient response when
hitting a desired target goal. MM dosage design is unique to
nonparametric models having their multiple support points.
Such maximal precision can never be computed, and this
process can never be done if only parametricmodels are used.
In general, amikacin pharmacokinetic behavior in Kuwaiti
ICU patients compares reasonably well with previously
reported �ndings [10]. Table 4 presents the comparative
mean population amikacin pharmacokinetic parameters of
Kuwaiti patients in contrast to other ethnic groups including
Hispanic, Asian, and Caucasian subjects. e results suggest
that the Kuwaiti population is a part of a larger population
comprising Hispanic, Asian, and Caucasian subjects.

In conclusion, a population pharmacokinetic model for
amikacin was developed from 56 adult Kuwaiti ICU patients
using the NPAG program. e present study demonstrates
lack of signi�cant differences in amikacin pharmacokinetic
behavior in Kuwaiti patients in comparison with Asian,
Hispanic, or Caucasian patients. e present study sug-
gests that amikacin pharmacokinetics in adult Kuwaiti ICU
patients are generally rather similar to those found in other
patients. e distributions of the present population phar-
macokinetic parameters can be utilized as population priors
for developing initial amikacin dosage regimens in Kuwaiti
patients, using the MM-USCPACK Rightdose PC soware
(http://www.lapk.org/). e �ndings of the present study
will help clinicians to establish optimized amikacin dosing
regimens for each individual Kuwaiti ICU patient, using
MMBayesian adaptive control. Further study is warranted to
evaluate the clinical utility of these �ndings in Kuwaiti ICU
patients.
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