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Liver cancer is the sixth most frequently diagnosed primary malignancy and ranks as the
third leading cause of cancer-related death worldwide in 2020. ER stress also plays a vital
role in the pathogenesis of malignancies. In the current study, we aimed to construct an
endoplasmic reticulum stress-related genes (ERGs) signature to predict the overall survival
(OS) of patients with HCC. Differentially expressed ERGs (DE-ERGs) were analyzed using
The Cancer Genome Atlas (TCGA-LIHC cohort) and International Cancer Genome
Consortium (ICGC-LIRI-JP cohort) databases. The prognostic gene signature was
identified by the univariate Cox regression and Least Absolute Shrinkage and Selection
Operator (LASSO)-penalized Cox proportional hazards regression analysis. The predictive
ability of the model was evaluated by utilizing Kaplan–Meier curves and time-dependent
receiver operating characteristic (ROC) curves. Gene set variant analysis (GSVA) was
performed to explore the underlying biological processes and signaling pathways.
CIBERPORT and single-sample Gene Set Enrichment Analysis (ssGSEA) were
implemented to estimate the immune status between the different risk groups. A total
of 113 DE-ERGs were identified between 50 normal samples and 365 HCC samples in the
TCGA-LIHC cohort, and 48 DE-ERGs were associated with OS through the univariate Cox
regression. A six DE-ERGs (PPARGC1A, SQSTM1, SGK1, PON1, CDK1, and G6PD)
signature was constructed and classified patients into high-risk and low-risk groups. The
risk score was an independent prognostic indicator for OS (HR > 1, p < 0.001). The
function enrichment analysis indicated that cell cycle, RNA degradation, protein
localization, and cell division were the main biological processes. The high-risk group
had higher immune cell infiltration levels than those of the low-risk group. We predicted the
response to targeted therapy in high- and low-risk patients with HCC and found that the
high-risk patients were more sensitive to pazopanib. At last, we verified the expression of
the six gene patterns in HCC tissues by qRT-PCR and immunohistochemistry. This
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signature may be a potential tool to provide a choice for prognosis prediction and personal
management of patients with HCC.

Keywords: hepatocellular cancer, endoplasmic reticulum stress, gene signature, overall survival, immune infiltrate
cells

INTRODUCTION

Liver cancer is the sixth most frequently diagnosed primary
malignancy and ranks as the third leading cause of cancer-
related death worldwide in 2020 (Sung et al., 2021).
Hepatocellular carcinoma (HCC) is the most common form of
liver cancer and accounts for 90% of the deaths (Llovet et al.,
2021). At present, surgery is still the most effective treatment for
HCC. However, due to the occult onset and rapid progression,
patients often have lost the best opportunity for surgical
treatment at the time of diagnosis. Moreover, the patients with
HCC have a poor prognosis because of highly distant metastasis
and recurrence rate (Forner et al., 2018), with a 5-year survival
rate of only 18.1% (Jemal et al., 2017). Therefore, it is essential to
explore the molecular mechanism of HCC development and find
new early diagnosis and treatment targets for HCC patients.

Endoplasmic reticulum (ER) is the largest organelle in
eukaryotic cells, which functions in protein synthesis and
transportation, protein folding, lipid and steroid synthesis,
carbohydrate metabolism, and calcium storage (Fagone and
Jackowski, 2009). Pathological or physiological stress such as
oncogene activation, iron imbalance, oxidative stress, nutritional
deficiency, calcium homeostasis disorder, viral infection, exceed
protein secretion, and hypoxia can interfere with the normal
protein folding process of ER, resulting in the accumulation of
unfolded/misfolded proteins in the ER lumen and leading to ER
stress (Ma and Hendershot, 2004; He et al., 2020). Importantly,
ER stress is mainly coordinated by three sensors, namely PRKR-
like ER kinase (PERK), inositol requiring enzyme 1 (IRE1), and
activating transcription factor 6 (ATF6), which properly reduce
the load of unfolded proteins to reinstate the cell homeostasis (Xu
et al., 2021). Moreover, ER stress plays a vital role on the
pathogenesis of malignancies (Wadgaonkar and Chen, 2021).
Increased protein synthesis caused by ER stress leads to
unregulated cell proliferation, which is involved in the
occurrence and development of solid tumors (Marciniak et al.,
2021). In addition, the PERK inhibitor GSK2656157 can
efficiently reduce cancer growth (Atkins et al., 2013). While
some preclinical in vivo and in vitro approaches have shown
promising results by targeting ER stress-related molecules such as
IRE1α and PERK, its specific mechanism and its relationship with
other related pathways are still unclear.

Links between ER stress and tumor immune
microenvironment (TIME) are firmly established.

TIME plays an important role in regulating tumor
progression. The interaction between cellular and structural
components modulates cancer cell invasion and promotes
cancer metastasis (Neophytou et al., 2021). Hepatocytes are
enriched with ER and are susceptible to ER stress, which
contributes to a passive immune response and participates in

the development of aggressive and drug-resistance hepatocellular
carcinoma. Furthermore, checkpoint-blockade immunotherapies
have radically reversed cancer therapy (Wei et al., 2021).
Immunotherapy targeting cytotoxic T lymphocyte antigen 4
(CTLA4), programmed cell death-ligand 1 (PD-L1), or
programmed cell death 1 (PD-1) have become effective and
frequently-used ways in the treatment of various cancers
(Herbst et al., 2019; Pires da Silva, 2021; Sacco, 2021). In
addition, tumor mutation burden (TMB) refers to the total
number of somatic mutations in the tumor cells, and
increased TMB may carry neoantigens to stimulate anti-cancer
immunity response (Schumacher et al., 2015; Roszik et al., 2016).
A previous study reported that TMB predicts survival after
immunotherapy across multiple cancer types (Samstein et al.,
2019). However, the prediction of TMB for immunotherapy in
HCC patients is inaccurate. A challenging problem which arises
in this domain is that its suitable population and mechanism in
HCC remain unclear.

In this study, we firstly constructed a clustering analysis based
on DE-ERGs from the TCGA-LIHC cohort. Moreover, we
fortunately built and validated a risk model to predict the
outcomes of HCC patients from TCGA and ICGC databases.
Moreover, we explored the correlation between the risk signature
and TIME and TMB. Importantly, we verified the expression of
the six-gene patterns in HCC tissues by qRT-PCR and
immunohistochemistry. Furthermore, we analyzed the
association between GDSC drug sensitivity and the ERGs-
related risk model. These results may prove a new insight for
HCC survival prediction and therapy strategies.

MATERIALS AND METHODS

Data Selection
RNA-seq and clinical information of patients with HCC were
obtained from The Cancer Genome Atlas (TCGA) data portal
(TCGA-LIHC cohort-FPKM) (http://portal.gdc.cancer.gov/) and
International Cancer Genome Consortium (ICGC-LIRI-JP)
database (http://daco.icgc.org). The comprehensive gene list of
ERGs was extracted from Genecard (https://www.genecards.org/
), and genes with a relevance score ≥7 were chosen (Zhang et al.,
2021). TCGA-LIHC mutation data (TCGA. LIHC. varscan
somatic) was also downloaded from the TCGA database.

Differentially Expressed Endoplasmic
Reticulum Stress-Related Genes Analysis
To choose ERGs that contribute to the development and
progression of HCC, differentially expressed genes (DEGs)
between tumor tissue and normal tissues were analyzed using
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the “edgeR” package. The DEGs with an adjusted p-value < 0.05
and |log2 (fold change) | > 1 were considered as screened
criterion. Differentially expressed ER stress-related genes (DE-
ERGs) were identified by the intersection between the ERGs list
(mentioned above) and the DEGs list through the online tool
Jvenn (http://jvenn.toulouse.inra.fr/). The “clusterprofiler”
package in R software was utilized for Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis to identify the biological function of DE-
ERGs in HCC (Kanehisa et al., 2012; Gene Ontology Consortium,
2015). Adjusted p value < 0.05 was set as significant screen
criteria.

Identification of Molecular Subgroups of
Hepatocellular Carcinoma
We used the STRING database (https://string-db.org) to explore
the degree of interactions among the DE-ERGs, and the
interaction combined score >0.4 was defined as a significant
edge score (Szklarczyk et al., 2015). Then, cytoHubba of
Cytoscape (Version 3.8.2) was used to visualize the top 20 hub
genes in the PPI network (Shannon et al., 2003). In addition, we
performed the Non-negative Matrix Factorization (NMF)
method to identify subgroups of HCC samples based on
113 DE-ERG transcription profiles using the “NMF” R
package. The samples were iterated thirty times through NMF,
extracting the biological correlation coefficient and predicting the
internal characteristic structure in the gene expression matrix
(Gaujoux and Seoighe, 2010). Using the cophenetic coefficient,
contour, and sample size algorithm, the HCC samples were
classified into k clusters with k = 2–10, and the samples were
divided into two categories.

Development and Reliability Evaluation of
Prognosis-Related Signature
The prognosis-related DE-ERGs were identified and a six ERGs
risk score signature was developed based on the training set, and
its predictive performance was validated in the test dataset. The
univariate cox regression analysis was used to identify genes
related to survival with adjusted p-values <0.05. Then the
significant genes were selected for the least absolute shrinkage
and selection operator (LASSO) cox regression, which was
performed by using the “glmnet” R package (Friedman et al.,
2010;Wang et al., 2019). The regression coefficients were derived
from the LASSO cox analysis and the risk score= (β 1 * EXP gene1)
+ (β2 * EXP gene2) +. . .+ (β n* EXP gene n) (Liang et al., 2020). The
patients were classified into high-risk and low-risk groups based
on the median value of the risk score. The Kaplan–Meier survival
curve, and the area under the curve (AUC) of the time-
dependent receiver operating characteristics (ROC) curve
were applied to estimate the predictive ability of the
prognostic model. The principle component analysis (PCA)
was performed to explore whether two risk groups were
distributed in discrete directions. The independent predictive
efficiency of the prognostic signature was evaluated by univariate
and multivariate cox analyses. The Mann–Whitney test was

applied to evaluate the association of risk signature with
different clinicopathologic features using GraphPad Prism 8.
A bilateral p value < 0.05 was of statistical significance. The
hazard ratio (HR) and 95% confidence intervals (CI) were
calculated. The patients with survival information from
ICGC-LIRI-JP were used for external validation. The same
methods were performed to assess risk scores for each case.

Gene Set Variant Analysis and Mutation
Analysis
The “GSVA” and “clusterProfiler” package in R was utilized to
evaluate the Gene Oncology biological processes and KEGG
pathways of this signature. The R package “limma” was
applied to screen the significant terms with an adjusted p
value <0.05. We identified the different biological pathways
enriched in the different risk groups. We explored the
mutation status between the two risk groups. The “maftools”
R package was applied to visualize the TCGA-LIHC mutation
data and drew the waterfall plots of high- and low-risk groups
(Mayakonda et al., 2018).

Estimation of TME, Tumor-Infiltrating
Immune Cell Types and Immune
Checkpoint in Hepatocellular Carcinoma
Patients
To further assess the correlation between the risk score and TME,
ESTIMATE was performed to calculate the stromal score and
immune scores that presented immune cell infiltration in the
tumor (Yoshihara et al., 2013). We used the “GSVA” R package to
perform ssGSEA analysis, and obtained the infiltrating scores of
16 immune cells and the immunoactivity of 13 immune-related
pathways in the HCC patients (Hänzelmann et al., 2013). We
utilized the “heatmap” R package to show the expression feature
of the known immune checkpoints on HCC patients in different
risk groups.

Prediction of Drug Sensitivity in RiskModels
The correlation between drug sensitivity and the mRNA
expression of six DE ERGs was investigated through the web
server GSCALite (http://bioinfo.life.hust.edu.cn/GSCA).
Moreover, the response of targeted therapy in HCC patients
was determined based on the public database GDSC (Genomics
Drug sensitivity in cancer) (Yang et al., 2013). The half-maximal
inhibitory concentration (IC50) was evaluated to represent the
drug response. In addition, the package “pRRophetic” was
applied to estimate the potential target drug response between
high-risk and low-risk groups.

Tissue Samples and Real-Time PCR and
Immunohistochemical Staining
We collected 33 pairs of HCC and para-cancer tissues from
HCC patients who underwent hepatectomy in Sun Yat-Sen
Memorial hospital between December 2021 and March 2022
and stored them in 80 refrigerators. The clinical information of
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these patients was also collected (Supplementary Table S6).
Informed consent was obtained from each patient, and the
study was approved by the Ethics Committee of Sun Yat-Sen
Memorial. We extracted the RNA from the tissues with Trizol
(Takara, China), and performed reverse transcription using
Prime Script RTase (Takara, China), according to the
manufacturer’s protocol. According to the manufacturer’s
instructions, real-time PCR was used to measure mRNA
expression levels using SYBR green (Takara, China). A list
of the primers used for real-time PCR is provided in
Supplementary Table S7. Immunohistochemical (IHC)
staining was performed as described previously (Zhang

et al., 2020) using the following antibodies: Anti-
PPARGC1A, Anti-PON1, Anti- SGK1, Anti- SQSTM1,
Anti- G6PD, and Anti-CDK1. All antibodies used in the
study are shown in Supplementary Table S8.

Statistics Analysis
Differences between the high- and low-risk groups were tested
using the Mann–Whitney test for non-normally distributed
variables and the unpaired t-test for normally distributed
variables. The correlation between gene expression and risk
score was tested using the Pearson correlations. The statistical
analysis tools-R software (version 4.0.3, R Foundation for

FIGURE 1 | Identification of differentially expressed endoplasmic reticulum stress-related genes. (A) Volcano plot of differentially expressed genes in HCC based on
data from TCGA-LIHC cohort. (B) Venn diagram for the intersections between HCC differentially expressed genes and endoplasmic reticulum stress-related genes. The
interaction network among these genes is exhibited in (C), and the top 20 hub genes are presented in (D).
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Statistical Computing, Vienna, Austria) and GraphPad prism
v8.00 (GraphPad Software Inc.) were used in this study. Venn
diagram was drawn using jvenn (Bardou et al., 2014), and the

results of RT-qPCR were conducted statistical analysis using
paired t-test. All statistical results with a p-value of <0.05 were
considered significant.

FIGURE 2 | Non-negative Matrix Factorization of HCC molecular subgroups based on DE ERGs. (A) The curves of cophenetic correlation coefficient, RSS, and
dispersion et al. were used to reflect the stability of the cluster obtained fromNMF. (B) The heatmap corresponding to the consensusmatrix for k = 2 obtained by applying
NMF. (C). K-M survival curves showed the differences of overall survival rate among the 2 clusters. (D) The heatmap of 113 endoplasmic reticulum stress-related genes
in 2 clusters.
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RESULTS

Data Source
The TCGA-LIHC cohort containing 424 samples (374 patients with
HCC and 50 normal samples) was used to analyze differentially
expressed genes. We obtained 365 samples with detailed clinical
characteristics (age, sex, survival time, survival status, pathological
grade, and TNM stage) to further estimate the independence of the
predictive model. The 231 Japanese patients were from the ICGC-
LIRI-JP dataset. The basic description of patients’ clinical
characteristics used in this study is presented in Supplementary
Table S1. There are 786 ER stress-related genes with a relevance
score of not less than seven listed in Supplementary Table S2.

Screening of Differentially Expressed
Endoplasmic Reticulum Stress-Related
Genes in Hepatocellular Carcinoma
Patients
Based on the screened criteria, 2,073 DEGs were selected: 1,298 were
upregulated and 775 were downregulated (Figure 1A). From this list
of ERGs, 113 DE-ERGs were extracted (Figure 1B). The results of
GO analysis for these DE-ERGs were presented in Supplementary
Figure S1A, in which the most enriched terms were “cellular
response to stress,” “endoplasmic reticulum lumen,” and
“extracellular matrix structural constituent,”, respectively. The
most important enriched cancer-related signaling pathways by
these genes were: the “PI3K-AKT signaling pathway, the “HIF-1
signaling pathway”, and the “TNF signaling pathway”
(Supplementary Figure S1B). The interaction network among
these genes is exhibited in Figure 1C. Cancer-associated proteins,
such asMYC, IGF-1, andMMP9were identified as the main hubs in
the resulting networks, and it had been previously reported that they
were related to tumorigenesis and metastasis (Figure 1D).

Identification of Hepatocellular Carcinoma
Subtypes Based on Differentially Expressed
Endoplasmic Reticulum
Stress-Related Gen
The expression profiles of 113 DE-ERGs were used for NMF analysis
of HCC. According to the cophenetic coefficient (Figure 2A), the
optimum cluster was obtainedwhen the k-value was 2. The 365HCC
patients were divided into two clusters: cluster 1 (n = 265) and cluster
2 (n = 100; Figure 2B). A survival analysis revealed that cluster two
had a poorer prognosis than that of cluster one (p < 0.001,
Figure 2C). The expression landscapes of 113 DE-ERGs in cluster
1 and 2 with different clinical features were presented in the heatmap
(Figure 2D), and there were significant differences between the two
clusters and tumor size, tumor stage, and patients’ survival status.

Construction and Verification of
Endoplasmic Reticulum Stress-Related
Gene Signature
We employed the univariate Cox analysis to explore survival-
related DE ERGs in the training group; 48 DE ERGs related to OS

were screened (Supplementary Figure S2A). These 48 prognostic
genes were checked in the 1000-times-repeated LASSO-Cox
regression model, and then those genes with a frequency of
over 1,000 times were constructed to an EGRs signature. The
cross-validation for tuning parameter selection in the LASSO
model obtained six prognostic genes using minimum λ
(Supplementary Figures S2B,C). Six genes (PPARGC1A,
SQSTM1, SGK1, PON1, CDK1, and G6PD) were included, as
presented in Supplementary Table S3. Three genes (SQSTM1,
G6PD, and CDK1) were classified into risky group with HR >1
related to poorer prognosis and presented higher expression
levels in tumor tissues than in normal tissues. While others
(PPARGC1A, PON1, and SGK1) were the protective type with
HR <1 related to a better prognosis, and preferentially lower
expressed in malignant tissues than normal tissues, but SGK1 had
no significant result in survival (Supplementary Figures S3, S4).
We built a prognostic model based on the results of LASSO
regression to explore the relationship between the six ERGs
signature and survival. The risk score was calculated using the
following formula: risk score= (−0.0060 × EXPPPARGC1A) +
(−0.0013 × EXP PON1) + (−0.0010 × EXPSGK1) + (0.0013 ×
EXP SQSTM1) + (0.0089 × EXPG6PD) + (0.0181 × EXPCDK1).
The patients in the training cohort were assigned to the high-
risk group (n = 182) or low-risk group (n = 183) according to the
median value of the risk score. The clinical characteristics of HCC
patients in the different subgroups were displayed in
Supplementary Table S4. The AUCs of the risk score were
0.789, 0.724, and 0.691 for the 1–3-years survival times,
respectively (Figure 3A). The K-M curve indicated that the
patients in the high-risk group exhibited poorer OS than that
of the low-risk group (p = 2.27e-06; Figure 3B). The heatmap
revealed expression patterns of six ERGs between two different
risk groups (Figure 3C). We ranked the risk score of patients in
the training cohort and analyzed their distribution in Figure 3D.
The survival status of HCC patients in the training set was
marked on the dot plot (Figure 3E). With increasing the risk
score, the number of dead patients increased. We confirmed that
patients in the two risk groups were distributed in discrete
directions (Figure 3F). To assess the robustness of the six
ERGs signature, we verified their performance using the
validation cohort from ICGC. Similarly, the 1–3-year AUCs
were 0.735, 0.738, and 0.713, respectively (Supplementary
Figure S5A). The patients in the high-risk group had a poorer
prognosis than that of the low-risk group (p = 0.01485;
Supplementary Figure S5B). The distribution of PI, survival
status, and expression of these six ERGs for HCC patients in the
test set were displayed in Supplementary Figures S5C–E.
Furthermore, univariate and multivariate Cox regression
models were used to analyze the relationship between OS,
clinical-pathological variables, and the risk scores in the
training and validation cohort (Figure 4; Supplementary
Table S5). This risk signature could act as an independent
prognostic factor for OS through the multivariate analysis. The
differences between the different risk groups and clinical features
were evaluated in the TCGA-LIHC cohort and ICGC-LIRI-JP
cohort (Supplementary Figure S6). The six ERGs signature was
significantly higher in advanced grade, AJCC stage, and T stage
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FIGURE 3 | KM survival analysis, risk score assessment by the ERG-related gene signature and time-dependent ROC curves in the training cohort. (A) ROC curve
for overall survival of the training set. The AUC was assessed at 1–3 years. (B) KM survival analysis of high-and low-risk samples. (C) Six ERGs expression patterns for
patients in high- and low-risk groups by the 6-GRG signature. (D, E) Relationship between the risk score rank/survival status and risk score rank/survival time (days). (F)
PCA analysis for HCC patients.

FIGURE 4 | Forrest plot of the univariate and multivariate association of the prognostic model and clinicopathological characteristics with overall survival. (A,B)
Univariate and multivariate analysis with Cox proportional hazard model in TCGA-LIHC cohort and ICGC-LIRI-JP cohort, respectively.
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cases in the TCGA-LIHC cohort. However, no difference was
observed between age, gender, N stage, and M stage. Survival
analysis of subgroups revealed that the high-risk group had a
shorter survival time than the low-risk group, whatever age,
gender, clinical stage, pathological grade, or TNM stage
(Supplementary Figure S7).

Gene Set Variant Analysis and Genomic
Mutations in the High-Risk and Low-Risk
Group
The GSVA analysis showed most KEGG pathways and GO
biological process terms enriched in the high-risk group were
associated with cell cycle, RNA degradation, protein

localization, and cell division. The oncogenesis-associated
signaling pathways such as Wnt beta-catenin signaling and
PI3K/AKT/mTOR signaling were highly enriched in the high-
risk group, while oxidative phosphorylation and fatty acid
metabolism were enriched in the low-risk group (Figures
5A,B). The top 20 most frequently mutated genes in 298
patients with HCC were presented in Supplementary
Figures S8A,B. As shown, we can see the mutation genes
and mutation frequencies were different between two risk
groups. The high-risk group exhibited higher mutation
frequencies than those of the low-risk group (90 vs. 81%).
The high-risk group had a significantly higher mutation
frequency of TP53 than that of the low-risk group (41 vs.
14%). Interestingly, we found that TMB was higher in high-

FIGURE 5 | GO biological process terms (A) and KEGG pathways (B) enrichment of low- and high-risk groups by GSVA analyses in the training cohort.
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risk group (p < 0.0001) but not associated with OS (p = 0.108;
Supplementary Figures S8C,D).

Tumor-Infiltrating Immune Cell Types and
Immune Checkpoint Feature of Risk
Signature
We found that the immune score was higher in the high-risk
group but of no significance, and the stromal score was higher in

the low-risk group (Figures 6A–C). We quantified the
enrichment scores of diverse tumor-infiltrating immune cell
types and explored related functions or pathways with
ssGSEA. The heatmap of 16 types of immune cells and
13 immune-related functions in each HCC patient were
displayed in Figure 6D. We found that contents of the
antigen-presented process, including aDCs, iDCs,
Macrophages, Tfh, Th1 cells, Th2 cells, and Treg cells
enriched in the high-risk group. Moreover, these related

FIGURE 6 | Tumormicroenvironment in high-risk and low-risk groups. Comparison of the (A) stromal score, (B) immune score, and (C)ESTIMATE score between high-risk
and low-risk groups (D)The immune landscapes of high-risk and low-risk groups. (E)Comparisonof immunecell infiltration between high-risk and low-risk groups. (F)Comparison
of the involved immune related function between high-risk and low-risk groups. *Adjusted p < 0.05, ** adjusted p < 0.01, *** adjusted p < 0.001, **** adjusted p < 0.0001.
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pathways APC co-stimulation, HLA, checkpoint, MHC class I,
T cell co-stimulation had a higher score in the high-risk group,
while the score of NK cells, type I IFN response and type II IFN
response were higher in the low-risk group (Figures 6E,F). The
expression of immune checkpoints between the high- and low-
risk groups showed that most immune checkpoints were high-
expression levels in the high-risk group in the TCGA-LIHC
cohort and ICGC cohorts (Supplementary Figures S9A,B). At
present, the immunotherapy targeting PD-1, PD-L1, and CTLA4
has shown remarkable efficacy on tumor immune activation.
Therefore, we investigated the correlation between their
expression levels and the risk score. We found that the

expression levels of PD-1 and CTLA4 were higher in the high-
risk group than in the low-risk group, and their expression levels
were positively correlated with the signature. However, the
expression level of PD-L1 has no statistical significance
(Supplementary Figures S10A–L).

Correlation Between Genomic Drug
Sensitivity in Cancer Drug Sensitivity and
the Risk Model
We explored the correlation between GDSC drug sensitivity and
the risk score. The results from GSCA suggested that there was an

FIGURE 7 | Relationship of ERG-related risk model with target therapy response. (A) the correlation between GDSC drug sensitivity and the risk score. Estimated
IC50 indicating the efficiency of chemotherapy to ERGs in low- and high-risk patients of pazopanib (B), dasatinib (C), erlotinib (D), bortezomib (E), Tipifarnib (F), gefitinib
(G) and AUY929 (H).
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apparent correlation between the expression of G6PD, SQSTM1,
and SGK1 and multiple drug sensitivity (Figure 7A).
Furthermore, we observed that seven targeted therapy drugs
including pazopanib, dasatinib, erlotinib, bortezomib,
tipifarnib, gefitinib, and AUY929 (HSP90 inhibitor) witnessed
significant differences in estimated IC50 between high- and low-
risk groups (Figures 7B–H). The patients with high risk
presented higher sensitivity in pazopanib, gefitinib, erlotinib,
and dasatinib than patients with low-risk.

Validation of the Expression Levels of
Endoplasmic Reticulum Stress-Related
Genes in Hepatocellular Carcinoma
To illuminate the biological significance of ERGs in HCC, we
used immunohistochemistry and qRT-PCR to detect the
expression of ERGs in 33 HCC samples. As presented in
Figure 8, the expression levels of PPARGC1A, PON1, and
SGK1 were down-regulated in HCC tissues compared to
paired normal tissues, while the expression levels of SQSTM1,
G6PD, and CDK1 were increased.

DISCUSSION

At present, ERGs have an important impact on cancer
progression, including cell proliferation, invasion, cell death,
and metastasis. However, for the majority of ERGs, the
biological mechanisms are still unclear in HCC. The
identification of ERG’s predictive signature is vital to
understand the characterization of endoplasmic reticulum
stress in HCC. In this study, we aimed to explore the
expression profiles of ERGs in HCC and normal tissues and
estimate their roles in tumorigenesis and tumor immunity.

Based on the expression profiles of the training set, we
constructed a risk score using univariate and LASSO Cox
regression analyses, which showed that the prognostic signature is
an effective way to independently generate prognosis of HCC
patients. Moreover, we found the high-risk group had a poorer
prognosis. This signature was composed of six DE-ERGs
(PPARGC1A, SQSTM1, SGK1, PON1, CDK1, and G6PD) with
prognostic capability. Three genes (SQSTM1, G6PD, and CDK1)
were upregulated in the tumor tissues compared to the HCC normal
tissues in the TCGA-LIHCdataset. Three genes (PPARGC1A,PON1,
and SGK1) were preferentially lower expressed in malignant tissues
than in normal tissues. In addition, our experimental results from
qRT-PCR and IHC confirmed this trend. PPARGC1A, also named
PGC-1 (alpha), is a transcriptional coactivator that regulates the
genes involved in energy metabolism. PGC-1 (alpha) presented
downregulation in prostate cancer and was associated with the
development of metastasis (Valcarcel-Jimenez et al., 2019). A
previous study had demonstrated that PGC-1 (alpha) incurred a
progressive loss in tumor-infiltrating T cells, and this was induced by
chronic AKT signaling in tumor-infiltrating T cells (Scharping et al.,
2016). Paraoxonase-1 (PON1), an esterase with a broad range of
substrate specificity, belongs to a member of the family of
paraoxonases. PON1 activity has been reported in atherosclerosis

and cardiovascular disease (Mackness and Mackness, 2004). PON1
was found to downregulate in gastroesophageal cancers and
associated with lymph node metastasis (Krzystek-Korpacka et al.,
2008). SGK1 is involved in the development of almost all tumors and
may function as a potential biomarker for cancer diagnosis and
prognosis. SGK1 plays multiple roles in the tumor, such as
tumorigenesis, cancer cell proliferation, apoptosis, invasive, and
migration (Liu et al., 2018). Moreover, an increasing number of
studies have suggested that SGK1 can regulate the functions of
immune cells including T helper cells, and regulatory T cells in the
tumor microenvironment (Sang et al., 2020). SQSTM1 (better
known as p62), is an autophagy receptor, and its activity
mediates multiple biological functions including autophagy, cell
growth, and cell death (Gong et al., 2021). Recent studies have
demonstrated that SQSTM1 promotes cell growth and induces
autophagy in thyroid cancer by modulating AKT/mTOR
signaling pathway (Yu et al., 2021). G6PD is a key enzyme in
glucose metabolism and plays an important role in the
modulation of proinflammatory responses and oxidative stress in
macrophages (Ham et al., 2013). The upregulation of G6PD in
gastric cancer activates NF-κB signaling to promote cancer cell
metastasis (Chen et al., 2021). CDK1 belongs to cyclin-dependent
kinase family and participates in regulating the G2/M phase
transition during the cell cycle (Malumbres, 2014). CDK1 was
overexpressed in colorectal cancer and liver cancer and can
promote cell proliferation and induce apoptosis (Tong et al.,
2021). These previous studies indicated that the six ERGs played
crucial roles in cancer progression, which provided some basic
support for our research.

Based on the GSVA analysis, the high-risk group was apparently
positively related to cell cycle, RNA degradation, and protein
localization. Notably, tumor-related signaling pathways such as
PI3K, MYC, mTOR, and Wnt were significantly enriched in
high-risk group, and continuous activation of these pathways
have been demonstrated to be linked with HCC (Tian et al.,
2021; Xia et al., 2021; Yi et al., 2021). Endoplasmic reticulum
stress-related signaling pathway such as unfolded protein
response was significantly enriched in the high-risk group, which
further validated that endoplasmic reticulum stress has a close
connection with tumor development. Immune checkpoints play a
critical role on suppressing the immune system’s ability to kill tumor
(Dyck andMills, 2017). In recent years, immune checkpoint therapy,
which targets regular pathways in T cells to take part in immune
escape response of cancer, has been a new direction in the field of
anticancer after traditional therapeutic methods (Jiao et al., 2020).
The result of ssGSEA analysis suggested that the endoplasmic
reticulum stress is positively correlated with the immune
signaling pathways in HCC patients. The high-risk group has a
higher infiltration level of DCs, iDCs, macrophages, and Th2 cells, as
well as higher expression levels of immune checkpoints. The result
now evidence of the relationship between endoplasmic reticulum
stress and immunity, which emphasized the key role of
immunotherapy for HCC patients with a high-risk score. In
addition, the expression of PD1, and CTLA4 are significantly
higher in the high risk-group than in the low-risk group, and are
positively correlated with the risk score. Moreover, we found that
high-risk group has higher TMB levels. In a word, combined with
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previous studies, we speculated that high-risk groups tend to benefit
from immunotherapy. The mutation frequency of TP53, CTNNB1,
TTN, andMUC16 are more than 10% in different risk groups. TP53
is involved in cell cycle, and its mutation may promote tumor
procession. We guessed that a higher TMB in the high-risk group
induced higher immune cells infiltration and had poorer survival
rate, which is in line with the previous study (Schumacher et al.,
2015). Overall, this suggests that the prognostic signature can predict
the expression level of immune checkpoints. With the progress of

HCC, common targeted therapy has become extremely limited. New
targeted therapeutic drugs need to be applied to alleviate the
advanced HCC patients and improve survival rate. Therefore, we
attempted to predict the response to targeted therapy in high- and
low-risk patients and found that high-risk patients with HCC were
more sensitive to pazopanib (VEGFR inhibitor), dasatinib (Src/Bcr-
Abl inhibitor), erlotinib, and gefitinib (EGFR inhibitor) than low-
risk patients were. These results suggested patients with high risk can
receive greater clinical benefits from targeted therapy.

FIGURE 8 | ThemRNA and protein expression levels of six ER stress-related genes in the normal tissues and cancer tissues of the HCC patients through qRT-PCR
and IHC. (A–F) The mRNA expression levels of six ER stress-related genes. (G) The protein expression of six ER stress-related genes.
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Nevertheless, the limitations of this study should be addressed.
First, this is a bioinformatics analysis based on public cancer
databases; hence, the prognostic robustness and clinical utility of
the ERGs signature need to be further verified in larger prospective
trials. Second, although we verified the expression of six gene
patterns in HCC tissue, the more in-depth mechanisms of ERGs
and liver cancer should be explored in laboratory settings.

CONCLUSION

We integrated the six-ERGs into a panel and established a novel
multigene signature for predicting the prognosis in HCC, and
further investigated the biological mechanism, TME, and
genomic mutation of this prognostic model. This signature
may be a potential tool to provide a choice for prognosis
prediction and personalized management of HCC.
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