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Abstract: Resveratrol, a natural compound in grapes and red wine, has drawn attention due to
potential cardiovascular-related health benefits. However, its effect on vascular inflammation at
physiologically achievable concentrations is largely unknown. In this study, resveratrol in concentra-
tions as low as 1 µm suppressed TNF-α-induced monocyte adhesion to human EA.hy926 endothelial
cells (ECs), a key event in the initiation and development of atherosclerosis. Low concentrations
of resveratrol (0.25–2 µm) also significantly attenuated TNF-α-stimulated mRNA expressions of
MCP-1/CCL2 and ICAM-1, which are vital mediators of EC-monocyte adhesion molecules and
cytokines for cardiovascular plaque formation. Additionally, resveratrol diminished TNF-α-induced
IκB-α degradation and subsequent nuclear translocation of NF-κB p65 in ECs. In the animal study,
resveratrol supplementation in diet significantly diminished TNF-α-induced increases in circulating
levels of adhesion molecules and cytokines, monocyte adhesion to mouse aortic ECs, F4/80-positive
macrophages and VCAM-1 expression in mice aortas and restored the disruption in aortic elastin fiber
caused by TNF-α treatment. The animal study also confirmed that resveratrol blocks the activation
of NF-κB In Vivo. In conclusion, resveratrol at physiologically achievable concentrations displayed
protective effects against TNF-α-induced vascular endothelial inflammation in vitro and In Vivo. The
ability of resveratrol in reducing inflammation may be associated with its role as a down-regulator of
the NF-κB pathway.

Keywords: resveratrol; physiological concentrations; vascular inflammation; monocyte adhesion;
TNF-α; NF-κB

1. Introduction

Cardiovascular disease (CVD) is the number one cause of death in the United States
and one of the top leading causes of death worldwide, mostly due to the westernization
of traditional diets [1–3]. Atherosclerosis, a major cause of CVDs, is an inflammatory
vessel disorder commonly characterized by plaque formation as a result of monocyte-
derived macrophages that ultimately develop into lipid-laden foam cells [4–6]. Previous
studies have reported that endothelial dysfunction following chronic inflammation is
essential in the initiation and development of atherosclerosis [7–9]. In the early stages
of atherosclerotic plaque development, circulating monocytes are recruited by activated
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endothelial cells (ECs) followed by EC-monocyte adhesion and subsequent transmigration
into the intima [5]. Accumulating evidence suggests that these processes are driven by
proinflammatory chemokines, such as interleukin-8 (IL-8) and monocyte chemoattractant
protein-1 (MCP-1), and adhesion molecules, such as intracellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) [6,10,11].

It is well-established that tumor necrosis factor-alpha (TNF-α), a major pleiotropic
proinflammatory cytokine, plays a pivotal role in endothelial dysfunction and subsequent
damage to vascular function [12,13]. Indeed, elevated levels of circulating TNF-α were
found in the plasma of humans with vascular diseases [14,15], while in TNF-α knockout
mouse models, decreased endothelial adhesion and atherogenesis have been reported [16].
TNF-α is also known to induce apoptosis in aortic endothelial cells [17] and demonstrate
a high presence in atherosclerotic lesions [18], indicating its critical role in developing
vascular disease. In research, TNF-α has been commonly used as an inflammation trigger
due to its ability to increase expression of other proinflammatory cytokines, chemokines,
such as MCP-1, and adhesion molecules, including VCAM-1 and ICAM-1 [19,20]. Previous
studies reported that TNF-α-induced up-regulation of chemokine and adhesion molecule
gene expression is mediated largely by nuclear factor-kappa (NF-κB) [21,22]. NF-κB can be
activated upon phosphorylation of inhibitors of NF-κB by TNF-α-stimulated activation of
the IkB kinase (IKK) complex [23]. The p65 heterodimer, also known as RelA, is a member
of the NF-κB family of transcription factors and shows increased nuclear translocation in
the thickened intima of human atherosclerotic lesions [24,25]. Since inflammation-driven
endothelial dysfunction is a prime trigger in atherosclerosis initiation and exacerbation,
compounds that attenuate TNF-α- induced NF-κB activation and subsequent expression of
inflammatory markers are potential therapies to vascular endothelial dysfunction.

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid phytoalexin compound
found in skins of grapes and berries and naturally present in high concentrations in red
wine [26]. Resveratrol has drawn wide attention due to potential cardiovascular-related
health benefits potentially stemming from its role as an antioxidant and anti-inflammatory
agent [27–30]. Indeed, results from a study done in a cell-free system indicated resveratrol
as a scavenger for superoxide anion radicals [29]. Additionally, data from in vitro studies
suggest resveratrol inhibits LPS-induced ROS generation and Nox1 expression, protecting
vasculature by reducing oxidative stress [30]. Animal studies demonstrated that resver-
atrol treatment decreased neutrophil infiltration into myocardial ischemia/reperfusion
tissue [27] and reduced cardiac hypertrophy [28], indicating a cardioprotective role. While
these data shed light on protective effects of resveratrol against vascular disease, they do
not reflect physiological effects of resveratrol as the concentrations used in these studies
exceed plasma resveratrol levels (≤5 µm) that are attainable in animals and humans after
consumption of resveratrol-containing food or supplements [31–33]. In a study done with
12 healthy males aged 25–45 years, depending on whether 25 mg resveratrol was delivered
by vegetable juice, wine or grape juice, the peak serum concentration of free and conjugated
resveratrol was 1.8–2 µm [31,32]. In another phase I study, up to 2.4 µm of unmetabolized
resveratrol was found in the plasma of human participants who orally ingested a single
dose of 5 g of resveratrol [33]. When 5 g of resveratrol was ingested daily for 29 consecutive
days, peak plasma concentrations of trans-resveratrol reached up to 4.2 µm [34]. In both
studies, oral intake of high doses (5 g) of resveratrol was demonstrated to be safe, as
evidenced by the lack of any serious adverse events [33,34]. Since most of the previous
studies used resveratrol concentrations well above those that were nutritionally relevant,
the biological significance of previous findings is largely unclear, and the cellular and
organismal action of resveratrol at physiologically achievable concentrations in the plasma
(≤5 µm) needs to be examined further. In this study, we investigated whether resveratrol
at physiologically achievable concentrations attenuates TNF-α-induced adhesion of mono-
cytes to endothelial cells and its underlying mechanisms. We also analyzed the effect of
dietary intake of resveratrol on TNF-α-induced vascular inflammation in C57BL/6 mice.
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2. Results
2.1. Resveratrol Reduced TNF-α-Induced Monocyte Adhesion to ECs

Adhesion of monocytes to ECs is a crucial step in propagating endothelial dysfunc-
tion in inflammatory diseases. We investigated whether resveratrol would have an anti-
inflammatory effect by affecting monocyte adhesion to ECs. Exposure of EA.hy926 ECs to
TNF-α showed at least a twofold increase in THP-1 monocyte adhesion to ECs (Figure 1).
However, 1 h pretreatment with resveratrol in concentrations as low as 1 µm significantly
suppressed TNF-α-induced monocyte binding, and 20 µm resveratrol reduced monocyte
adhesion to levels seen in the control group that was not treated with TNF-α. The inhibitory
effect of resveratrol on monocyte adhesion was found to be concentration-dependent.

Figure 1. Resveratrol suppressed TNF-α-stimulated monocyte adhesion to EA.hy926 endothelial
cells. The cells were pretreated with resveratrol (R, 1 µM, 5 µM, 20 µM) for 1 h prior to the addition
of TNF-α (T, 10 ng/mL) for 24 h in the continued presence or absence of resveratrol. THP-1 cells
were labeled with a fluorescence probe and the adhesion was determined using a microplate reader
at excitation and emission wavelengths of 496 nm and 520 nm. T, TNF-α; R, Resveratrol. Values
represent mean ± SEM, n = 3–5. *, p < 0.05 vs. control; #, p < 0.05 vs. TNF-α-alone-treated cells.

2.2. Resveratrol Suppressed Gene Expression of TNF-α-Induced Chemokine and Adhesion
Molecules in ECs

Prior to monocyte adhesion, monocytes are recruited to ECs through chemokines and
adhesion molecules [35,36]. Real-time PCR determined that exposure of ECs to TNF-α for
1 h significantly increased mRNA expression of monocyte chemoattractant protein CCL2
and intercellular adhesion molecule ICAM-1 (Figure 2A,B). Pretreatment of resveratrol
in concentrations as low as 0.25 µm markedly suppressed TNF-α-induced expression of
these chemokines and adhesion molecules. These results indicate that pretreatment of
resveratrol has an anti-inflammatory effect.
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Figure 2. Resveratrol reduced the expression of ICAM-1 (A) and CCL2 (B) in ECs. EA.hy926 cells were pretreated with
various concentrations of resveratrol (R) for 1 h prior to the addition of TNF-α (T, 10 ng/mL) for 1 h in the continued
presence or absence of resveratrol. The relative mRNA abundances of ICAM-1 and CCL2 were determined by real-time PCR
and mean quantities were normalized based on the mean of housekeeping gene GAPDH. T, TNF-α; R, Resveratrol. Values
represent mean ± SEM, n = 3. *, p < 0.05 vs. control; *, p < 0.05 vs. TNF-α-alone-treated cells. CCL2/MCP-1, monocyte
chemoattractant protein-1; ICAM-1, soluble intercellular adhesion molecule-1.

2.3. Resveratrol Inhibits TNF-α-Induced NF-κB Activation in HUVECs

NF-κB activation through nuclear translocation of the p65 heterodimer is an essential
step in TNF-α-induced transcription of chemokines and adhesion molecules [23–25]. Thus,
we investigated the role of resveratrol on TNF-α-stimulated activation of NF-κB signaling.
Immunofluorescence-stained images of NF-κB p65 nuclear translocation showed that
cells pretreated with resveratrol showed a significant reduction in positive fluorescence
as compared to cells treated only with TNF-α (Figure 3A,B). These results suggest that
resveratrol has a potent anti-inflammatory effect that is partly mediated through inhibition
of the NF-κB signaling pathway.

2.4. Dietary Ingestion of Resveratrol Suppresses TNF-α-Induced Vascular Inflammation In Vivo

We further examined whether resveratrol could affect TNF-induced vascular inflam-
mation in C57BL/6 mice. First, monocyte binding to mouse aortic endothelia Ex Vivo
was evaluated using WEHI 78/24 monocytic cells. TNF-α treatment caused significantly
increased monocyte adhesion to the endothelia of aortic cross-sections, which was largely
reduced in mice fed 0.4% resveratrol in the diet (Figure 4A–E).

Previous studies indicated that chemokine MCP-1 and CXCL1/KC play a key role in
monocyte recruitment, while adhesion molecules ICAM-1 and VCAM-1 are involved in
ensuring firm adhesion of monocytes to the endothelial layer and subsequent transmigra-
tion into the intima of the artery [37,38]. As seen in Figure 4B–D, chemokines MCP-1/JE
and CXCL1/KC (mouse homologs of human chemokine MCP-1) and adhesion molecules
sICAM-1 and sVCAM-1 were present in significantly higher concentration in mice treated
with TNF-α compared to that of the control group. However, in mice that were fed di-
etary supplementations of resveratrol, serum concentrations of MCP-1/JE, CXCL1/KC,
sICAM-1 and sVCAM-1 regressed. Based on these results, we demonstrate that resveratrol
attenuates endothelial inflammation partly by reducing chemokine and adhesion molecule
production.
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Figure 3. Resveratrol inhibited TNF-α-induced NF-κB signaling in HUVECs. (A) The cells were pretreated with 1 µm
of resveratrol (R) for 1 h prior to the addition of TNF-α (T, 10 ng/mL) for 15 min in the continued presence or absence
of resveratrol. Nuclear translocation of the NF-κB p65 subunit was visualized by immunofluorescence staining of ECs.
Representative immunofluorescence fields show NF-κB p65 (green), nucleic acid with DAPI (blue), and overlay. (B) The
nuclear and cytoplasmic fractions of p65 were quantified using a scoring system as described in Materials and Methods.
*, p < 0.05 vs. control; #, p < 0.05 vs. TNF-α-alone-treated group.
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Figure 4. Dietary intake of resveratrol decreased monocyte binding to aortic endothelia (A), secretion of chemokines
(B,C) and adhesion molecules (D,E) in the serum of TNF-α-treated mice. MCP-1/JE, CXCL1/KC, sICAM-1, and sVCAM-1
in serum were analyzed using ELISA. Values represent mean ± SEM. *, p < 0.05 vs. control; #, p < 0.05 vs. TNF-α-alone-
treated mice. T, tumor necrosis factor-α; MCP-1/JE, mouse monocyte chemotactic protein 1/JE; CXCL1/KC, chemokine
(C-X-C motif) ligand 1; sICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble vascular adhesion molecule-1.

During inflammation, monocytes undergo sub-endothelial transmigration and dif-
ferentiate into macrophages [35–39]. F4/80 is one of the most commonly used monocyte-
derived macrophage markers [40]. To further corroborate the hypothesis that resveratrol
suppresses inflammation In Vivo, immunohistochemistry was employed to assess the
expression of vascular adhesion molecule VCAM-1 and monocyte-derived macrophage
marker F4/80 in mouse aortic cross-sections (Figure 5A–D). As shown in Figure 5A–D,
the aorta of mice administered with TNF-α displayed a high intensity of positive F4/80
and VCAM-1 staining, indicating high recruitment of monocytes to the aortic vessel and
differentiation into macrophages. However, dietary supplementation of resveratrol sig-
nificantly reduced the intensity of both F4/80 and VCAM-1 staining, confirming the
anti-inflammatory properties of resveratrol (Figure 5A–D).
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Figure 5. Representative images showing the immunohistochemical staining for F4/80-positive monocyte-derived
macrophages (A) and adhesion molecule VCAM-1 (B) in aortic cross-sections of C57BL/6 mice. C57BL/6 mice were
fed AIN-93G rodent diets with and without 0.4% resveratrol for one week followed by 25 µg/kg/day of TNF-α injected
intraperitoneally for 7 days. After the treatment periods, the animals’ aortas were harvested for sectioning. Quantitative
analysis of F4/80- (C) and VCAM-1- (D) positive areas were performed. Arrows indicate typical positive-stained regions
at a magnification of 40× (scale bar = 50 µm). T, TNF-α; R, resveratrol; T + R, TNF-α + resveratrol, * p < 0.05 vs. control;
#, p < 0.05 vs. TNF-α-alone-treated mice.

2.5. Resveratrol Prevents TNF-α-Induced Disruption of Aortic Elastin Fiber in Mouse Aortic
Cross-Sections

Histopathological examination of aortas using Verhoeff–Van Gieson staining revealed
severe vascular structural abnormalities, primarily disruption and discontinuity of elastin
fibers, in mice treated with TNF-α (Figure 6). Dietary ingestion of resveratrol significantly
inhibited these structural abnormalities in the aortas and aided in the maintenance of the
delicate organization of elastin fibers, comparable to that of the control group (Figure 6).
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Figure 6. Representative aortic elastin fibers were visualized using Verhoeff–Van Gieson staining (magnification of 40×,
scale bar = 50 µm). C57BL/6 mice were fed AIN-93G rodent diets with and without 0.4% resveratrol for one week followed
by 25 µg/kg/day of TNF-α injected intraperitoneally for 7 days. After the treatment periods, the animals’ aortas were
harvested for sectioning. T, TNF-α; R, resveratrol; T + R, TNF-α + resveratrol.

2.6. Resveratrol Diminishes TNF-α-Induced NF-κB Activation in Aortic Cross-Sections

Immunohistochemistry was used to identify activation of the NF-κB p65 heterodimer
in mice aortas. As displayed in Figure 7A,B, a strong NF-κB staining was present in the
mouse aortic cross sections in the TNF-α-only treatment group, indicating inflammation in
the aortic vessels. However, dietary supplementation of resveratrol significantly dimin-
ished the intensity of the staining, suggesting the inhibitory role of resveratrol in NF-κB
signaling In Vivo.

Figure 7. Representative images showing the immunohistochemical staining for NF-κB p65 in aortic cross-sections
(magnification of 40×, scale bar = 50 µm). C57BL/6 mice were fed AIN-93G rodent diets with and without 0.4% resveratrol
for one week followed by 25 µg/kg/day of TNF-α injected intraperitoneally for 7 days. After treatment periods, the
animals’ aortas were harvested for sectioning. Representative photomicrographs of immunohistochemical staining for
NF-κB p65 (A). Quantitative analysis of NF-κB p65 (B). T, TNF-α; T+R, TNF-α + resveratrol. *, p < 0.05 vs. control; #, p < 0.05
vs. TNF-α-alone-treated mice.
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3. Discussion

Extensive studies demonstrated that resveratrol, primarily consumed through grapes
and red wine, exerts cardioprotective effects through its antioxidant and anti-inflammatory
properties [23–27]. Its first recognized importance was in the early 1990s with the in-
troduction of the “French paradox”, an incidence where the French population, despite
having a regular high-fat diet, had a lower susceptibility to heart disease partially due to
regular consumption of resveratrol-containing red wine [41]. However, the protective role
of resveratrol against vascular inflammation and the underlying mechanism at physiologi-
cally achievable concentrations in a TNF-α-induced inflammatory model remains largely
unknown to the best of our knowledge.

Numerous clinical studies reported low bioavailability of resveratrol in the body due to
the rapid metabolism of trans-resveratrol into glucuronide and sulfate conjugates [31,42–44].
However, many previous studies showed the anti-inflammatory action of resveratrol in
ECs using concentrations that are far beyond physiologically achievable through dietary
intake [45,46]. In this research, we demonstrated that resveratrol at physiologically achiev-
able concentrations (<5 µm) attenuates TNF-α-stimulated monocyte-EC adhesion. Clinical
studies revealed that free and conjugated forms of resveratrol were present in plasma and
urine samples of human subjects who orally consumed resveratrol [32,33], but only up to
2.4 µm of resveratrol was found in the plasma of human participants who orally ingested a
high dose of resveratrol (5 g) [33]. Adhesion molecules such as VCAM-1 and ICAM-1 and
chemokines such as MCP-1/JE and CXCL1/KC are important modulators in monocyte
recruitment, rolling, and adhesion to the vascular endothelium and play a fundamental
role in the pathogenesis of atherosclerosis [35,36,47]. We report that resveratrol suppressed
TNF-α-induced increases in adhesion molecules and chemokines in ECs. Additionally,
resveratrol reduced TNF-α-stimulated activation of NF-κB by inhibiting IκB-α degradation
and subsequently preventing nuclear localization of NF-κB p65 subunits in ECs, suggesting
that resveratrol may exert its anti-inflammatory effect by interfering with the NF-κB signal
transduction pathway. Mice fed a diet of 0.4% resveratrol showed suppressed serum
concentrations of adhesion molecules and chemokines as well as attenuated expression of
VCAM-1- and F4/80-positive macrophages in the vascular tissue of aortic cross sections.
Overall, our results suggest that resveratrol can be an easily attainable naturally occurring
and low-cost compound that can be used to ameliorate atherosclerosis.

Endothelial dysfunction and monocyte recruitment is essential in the initiation and
exacerbation of atherosclerosis [48]. Previous studies implied that up-regulated expres-
sion of adhesion molecules and chemokines are involved in endothelial dysfunction and
chronic endothelial inflammation, hence aiding in the development of atherosclerosis and
other cardiovascular diseases [8,49,50]. Adhesion molecules such as ICAM-1 and VCAM-1
are mediators that aid monocytes’ transition from rolling to firm arrest and subsequent
transmigration into inflamed tissue [35]. In fact, elevated expression of these leukocyte
adhesion molecules was reported in vascular-lesion-prone sites and in human coronary
atherosclerotic plaques [51,52]. Additionally, C-C and C-X-C chemokines such as MCP-
1 and IL-8 play a vital role in monocyte recruitment, rolling, and adhesion to vascular
endothelial monolayers [35,37,47]. Here, we demonstrated that resveratrol significantly
reduced TNF-α-activated mRNA expression of ICAM-1 and MCP-1 in ECs, suggesting that
the anti-inflammatory effect of resveratrol may be partially due to a reduced production of
proinflammatory adhesion molecules and chemokines. The in vitro results were recapitu-
lated in the animal study, which showed that the up-regulated serum levels of MCP-1/JE,
CXC1/KC, sVCAM-1, and sICAM-1 after TNF-α treatment was vastly attenuated in mice
that were fed resveratrol. Murine animals do not have IL-8 but chemokine CXCL1/KC can
act as a functional homolog [53]. These results suggest that resveratrol may be exerting
its cardioprotective effects against vascular inflammation partially by preventing produc-
tion and/or secretion of chemokines and adhesion molecules. Since adhesion molecules
and chemokines are secreted by various cell types, these results alone are insufficient to
pinpoint ECs as the target of resveratrol’s anti-inflammatory effects [54,55].
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NF-κB is well-recognized as a key regulator of inflammation and has been implicated
to be essential for the pathogenesis of atherosclerosis [56,57]. One of the ways in which
NF-κB exerts its proatherogenic effects is by up-regulating the transcription of adhesion
molecules (e.g., VCAM-1 and ICAM-1) and chemokines (e.g., MCP-1) [23]. As mentioned
previously, these proinflammatory adhesion molecules and chemokines are critical in
inducing inflammation due to their involvement in monocyte attraction and adhesion to
the endothelium [35,36,47]. In fact, a previous In Vivo study reported that inhibition of NF-
κB activation in ECs reduced formation of atherosclerotic plaques in atherosclerosis-prone
mouse models [57]. Activation of the NF-κB pathway is mediated by diverse extracellular
stimuli, including cytokines such as TNF-α [19,58]. In a normal unstimulated state, NF-
κB is kept inactive in the cytoplasm by being bound to inhibitors such as IκB-α [23]. In
the classical (canonical) pathway, the stimuli induce a signal transduction pathway that
activates NF-κB by IKK complex-mediated phosphorylation and degradation of IκB-α [59].
As a result, NF-κB p50/65 heterodimers translocate into the nucleus, where they bind
to promoters of NF-κB-induced proinflammatory genes such as MCP-1, TNF-α, and IL-
6 [60]. Our immunofluorescence staining results suggested that resveratrol inhibited
TNF-α-induced NF-κB 65 nuclear translocation in ECs. To the best of our knowledge,
this is the first time that resveratrol at physiologically achievable concentrations is shown
to prevent IκB-α degradation and subsequent NF-κB translocation into the nucleus in
ECs. Immunohistochemical analyses of mouse aorta cross-sections additionally confirmed
resveratrol’s inhibitory effect on NF-κB activation In Vivo. The aortic cross-sections of
mice treated with TNF-α showed the high intensity of NF-κB p65 staining, indicative of
TNF-α-induced inflammation in the aortic vascular wall. Mice given dietary resveratrol
showed greatly reduced expression of NF-κB p65 staining compared to the TNF-α-only
treatment group, suggesting that resveratrol may exert its anti-inflammatory properties
by targeting NF-κB signaling, in line with in vitro results we have previously discussed
above. However, the exact mechanism of how resveratrol interferes with the canonical
NF-κB pathway is still unclear.

F4/80 is a well-characterized murine macrophage marker. In previous studies,
F4/80-positive macrophages were present in elevated levels in highly inflamed mouse aor-
tas, suggesting it may be a potential inflammatory marker [61,62]. Our immunohistochemi-
cal examination showed high abundance of F4/80-positive monocyte-derived macrophages
and elevated VCAM-1 staining in mice aortic cross-sections when treated with TNF-α,
suggesting that TNF-α treatment induced inflammation in aortic walls. However, mice
that were fed dietary resveratrol showed a significant decrease in both F4/80-positive
macrophages and VCAM-1 staining, suggesting that resveratrol may target the vascular
wall to exert its protective effects against inflammation. Based on hematoxylin and eosin
stains, TNF-α triggered extensive structural changes in the intima layer of the artery, im-
plying endothelial injury. However, resveratrol supplementation significantly improved
such structural damages. Verhoeff–Van Gieson staining revealed resveratrol’s ability to
restore disruption of aortic elastin fiber in mice aortas induced by TNF-α. Although the
exact mechanism is unknown, this restorative property may be linked in part to the ability
of resveratrol in down-regulating cytokines and adhesion molecules and inhibiting the
NF-κB signal pathway as discussed above.

In summary, this study demonstrates for the first time that dietary ingestion of resver-
atrol reduces vascular endothelial inflammation in mouse models by inhibiting NF-κB
activation and reducing VCAM-1 and F4/80 expression in aortic tissue after TNF-α stimula-
tion. Resveratrol at concentrations as low as 1 µm significantly suppressed TNF-α-induced
EC-monocyte adhesion and endothelial expression of chemokines and adhesion molecules.
We suggest a possible link between the ability of resveratrol to protect against vascular
inflammation and its down-regulating effect of the NF-κB signaling pathway, but further
studies are required to determine the exact mechanism. Our findings shed light on resvera-
trol as a potential novel therapeutic agent that can provide protection against inflammation
and inflammatory diseases.
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4. Materials and Methods
4.1. Chemicals and Materials

Dulbecco’s modified Eagle’s medium (DMEM), Calcein-AM (Calcein O, O’-diacetate
tetrakis (acetoxymethyl) ester, and RPMI-1640 were purchased from Life Technologies
(Grand Island, NY, USA). Enzyme-linked immunosorbent assay (ELISA) kits for human
and mouse adhesion molecules ICAM-1 (sICAM-1) and VCAM-1 (sVCAM-1) and mouse
chemokines MCP-1/JE and CXCL1/KC were obtained from R&D Systems (Minneapolis,
MN, USA). Goat antirabbit IgG, DyLight™ 488 conjugated secondary antibody and goat
antirabbit horseradish peroxidase (HRP) IgG secondary antibody were purchased from
Thermo Fisher Scientific Inc. (Waltham, MA, USA). Primary antibodies for immunohisto-
chemistry were acquired from Cell Signaling Technology, Inc. for NF-κB p65 and IκB-α
(Danvers, MA, USA), from Santa Cruz Biotechnology for VCAM-1 (Santa Cruz, CA, USA),
and from BMA Biomedicals for F4/80 (Augst, Switzerland). Resveratrol (≥98%, HPLC)
was from the Stanford Chemicals Company (Irvine, CA, USA), and other general chemicals,
including DAPI, were procured from Sigma-Aldrich (St. Louis, MO, USA)

4.2. Cell Culture

EA.hy926 cells (passage 3–5) were cultured in DMEM containing 100 ug/mL strepto-
mycin, 100 U/mL penicillin, and 10% fetal bovine serum (FBS) in a humidified incubator at
37 ◦C in a 95% air/5% CO2 environment. Primary human umbilical vein endothelial cells
(HUVECs, (passage 3–5)) were grown in M199 medium supplemented with endothelial
growth supplement EGM2 and 2% FBS. WEHI 78/24 cells were provided by Dr. Judith
A. Berliner from UCLA and were cultured in DMEM supplemented with 10% FBS. Lastly,
THP-1 cells (passage 3–5) were grown in RPMI-1640 medium with 10% FBS.

4.3. Monocyte Adhesion Assay

Monocyte adhesion to ECs was determined by using THP-1 cells as previously de-
scribed [63]. EA.hy926 cells were grown to confluence in 98-well plates and treated with
various concentrations of resveratrol (1 µm, 5 µm, and 10 µm) for 1 h before the addition of
10 ng/mL of TNF-α. Cells were then incubated in medium containing TNF-α in the contin-
ued presence or absence of resveratrol for 24 h. EA.hy926 cells were gently washed with
serum-free medium and then incubated with calcein-AM-labeled THP-1 cells (1 × 106/mL
RPMI1640 medium containing 1% FBS) for 1 h. In order to discard unbound monocytes,
the EC monolayer was gently washed with medium. Monocyte adhesion was determined
through fluorescence measured using a BioTek Synergy 2 Multi-Mode Microplate Reader
(Winooski, VT, USA) at excitation and emission wavelengths of 496 nm and 520 nm.

4.4. Reverse Transcription and RT-PCR

EA.hy926 endothelial cells were pretreated with various concentrations of resveratrol
(0.25 µm, 0.5 µm, 1 µm, and 2 µm) for 1 h. Ten ng/mL of TNF-α was then added in the
continued presence or absence of resveratrol for 1 h. Trizol reagent was used to extract
total RNA per the manufacturer’s protocol. Complementary DNA was generated by
reverse transcription using 1 µg of total RNA. Each well contained a reaction mixture
of 10 µL of SYBR green, 5 µL of distilled autoclaved H2O, and 2 µL each of forward
and reverse oligonucleotide primers. SYRBR Green RT-PCR Master Mix was used (Life
Technologies, Grand Island, NY, USA). The primers used were ICAM-1 (forward, 5′-
CTCCCTCTCGGGTCTCTCTC-3′;reverse,5′-ACT GTG GGG TTC AAC CTC TG-3′) and
MCP-1 (forward, 5′-CCC CAG TCA CCT GCT GTT AT-3′; reverse, 5′-TGG AAT CCT GAA
CCC ACTTC-3′). The amplification profile was 50 ◦C for 2 min, then 95 ◦C for 10 min,
followed by 40 cycles of 94 ◦C for 15 s and 60 ◦C for 1 min. The average amounts of each
chemokine and adhesion molecule were averaged then normalized to that of the control
housekeeping gene GAPDH.
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4.5. Confocal Immunofluorescence Study of NF-κB p65 Nuclear Translocation

HUVECs were pretreated with 1 µm of resveratrol for 1 h on eight-well chamber
slides. The cells were then incubated with 10 ng/mL of TNF-α for 15 min in the continued
presence or absence of resveratrol. Cells were washed with PBS then fixed with 100%
ice-cold methanol. Blocking was carried out at room temperature for 30 min using 10%
normal goat serum (Sigma, St. Louis, MO, USA). Rabbit anti-NF-κB p65 primary antibody
was added and incubation occurred for 2 h at 4 ◦C. After three consecutive PBS washes,
cells were incubated for 1 h with goat antirabbit IgG DyLight™ 488 conjugated secondary
antibody. After the last wash with PBS, the chamber slides were mounted with Fluroshield
with DAPI mounting medium (Sigma Chemicals, St. Louis, MO, USA), and NF-κB p65
was visualized using an Olympus Fluoview FV5OO/IX81 confocal microscope (Waltham,
MA, USA). The localization of the p65 signal with respect to the nucleus was evaluated to
score as follows: cytoplasm only (score 0); evenly appear in cytoplasm and nucleus (score
1); most appear in nucleus with mild cytoplasm (score 2); nucleus only (score 3). DAPI
was used to determine the approximate location of the nucleus. Score were averaged and
compared with control group.

4.6. Animal and Experimental Design

Male C57BL/6 mice (age 10 weeks) purchased from the Jackson Laboratory were
housed in microisolator cages located in a pathogen-free animal facility. All animal proce-
dures were approved by the Institutional Animal Care and Use Committee and performed
in accordance with the National Institutes of Health Guidelines for the Care and Use of
Laboratory Animals. The mice were randomly separated into three groups (control, TNF-α,
TNF-α + resveratrol), with 6–8 mice per group. Mice were fed an ANI-93G rodent diet or
basal-modified AIN-93G rodent diet containing 0.4% resveratrol (Dyet, Inc., Bethlehem,
PA, USA) depending on their allocated group. The use of resveratrol dosage was based
on previous publications [31–34,64–68]. After one week, the mice were injected intraperi-
toneally (i.p.) with 25 µg/kg/day of TNF-α (PeproTech Inc., Rocky Hill, NJ, USA) for
7 consecutive days. Previous studies have indicated that this dosage of TNF-α resulted
in markedly elevated expression of intracellular adhesion molecules and vascular barrier
dysfunction [69,70]. Control mice were injected i.p. with PBS for the same period of time.
Throughout the i.p. administration process, mice were continually fed with either the
control or resveratrol diet. For the entire duration of the study, body weight and feed intake
were recorded weekly. Two hours after the last i.p. injection, all the mice were euthanized,
and blood samples were collected. The serum was frozen at −80 ◦C for ELISA analysis.

4.7. Ex Vivo Monocyte Adhesion Assay

Aortas were isolated from euthanized mice. The surrounding connective tissue and
fat were removed, and then the aorta was gently washed with ice-cold PBS twice. After
being placed in DMEM at 37 ◦C for 10 min, the aorta was opened longitudinally and fixed
with needles onto 4% agar in 35 mm plates. The aortic strip was placed in 1 mL of DMEM
containing 1% heat-inactivated FBS. WEHI 78/24 monocytes were fluorescently labeled
with calcein-AM by following the manufacturer’s instructions. Fluorescence-labeled WEHI
monocytes (1× 106) were added to the aortic strip and incubated for 30 min. Non-adherent
cells were washed away and the number of bound monocytes were examined using a
confocal microscope. Data was quantified using the Image J software (Version 1.48k, 2013,
National Institute of Mental Health, Bethesda, MD, USA).

4.8. Measurements of Chemokines and Adhesion Molecules

Serum concentrations of adhesion molecules (sVCAM-1 and sICAM-1) and chemokines
(MCP-1/JE and CXCL1/KC) were detected using Quantikine ELISA Kits (R&D Systems,
Minneapolis, MN, USA) and procedures were performed as per the manufacturer’s instruc-
tions. To determine serum concentrations, samples were plotted against standard curves.
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4.9. Histology

The thoracic aorta was isolated, and adherent fat was removed. The aorta was in-
cubated in 10% buffered formalin solution overnight. After overnight fixation, 5 µm of
the proximal artery was sliced off and placed in 200-proof ethyl alcohol for 24 h. The
sectioned aorta was embedded in paraffin and then stained with Verhoeff–Van Gieson stain
for elastin and hematoxylin-eosin. Staining was performed at AML Labs (Baltimore, MD,
USA) while following standard protocol. Aortic sections were visualized under a bright
field EVOS XL microscope (AMG, Bothell, WA, USA).

4.10. Analysis pf VCAM-1, F4/80, and NF-κB p65 in Mice Aortas

Paraffin-embedded tissue sections of 5 µm were deparaffinized in xylene and re-
hydrated through graded concentrations of ethanol washes. Sections were then boiled
in 10 mM sodium citrate buffer (pH 6.0) followed by cooling at room temperature for
30 min. The tissue sections were incubated in 3% H2O2 for 10 min and then placed in
5% normal goat serum (Vector Laboratories) in TBST for additional 30 min. Following
these procedures, the tissue sections were incubated in primary antibodies overnight at
4 ◦C. For VCAM-1, rabbit anti-VCAM-1 primary antibody (1:1000 dilution, Santa Cruz
Biotechnology) and the Vectastain Elite Rabbit IgG kit (Vector Laboratories) were used.
For F4-80, a rat monoclonal anti-F4/80 primary antibody (1:50 dilution, Bachem) and the
Vectastain Elite Rat IgG kit (Vector Laboratories) were used. For NF-κB p65, a rabbit mono-
clonal anti-NF-κB p65 primary antibody (1:50 dilution, Santa Cruz) and the Vectastain Elite
rabbit IgG kit (Vector Laboratories) were used. Afterward, tissue sections were incubated
in corresponding secondary antibodies from the rabbit/rat Vectastain ABC-AP kit (Vector
Laboratories). Immunohistochemistry was visualized using 3,3′-diaminobenzidine (Dako)
and Harris hematoxylin was used to counterstain the nuclei. Photomicrographs of stained
mouse aortas were captured using an AMG EVOS XL digital inverted bright field and
phase-contrast microscope (Bothell, WA, USA). Quantitative analysis of VCAM-1- and
F4/80-positive areas in the aortas was carried out using the Image J software.

4.11. Statistical Analysis

All data are expressed as mean ± SEM. Statistical analyses were performed using
ANOVA and the GraphPad Prism® software (La Jolla, CA, USA). Significant treatment
differences were subjected to Tukey’s multiple comparison tests. The level of statistical
significance was set at p < 0.05.
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