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Here, we analyse the energetics, performance and optimization of flight in a

moving atmosphere. We begin by deriving a succinct expression describing

all of the mechanical energy flows associated with gliding, dynamic soaring

and thermal soaring, which we use to explore the optimization of gliding in

an arbitrary wind. We use this optimization to revisit the classical theory of

the glide polar, which we expand upon in two significant ways. First, we com-

pare the predictions of the glide polar for different species under the various

published models. Second, we derive a glide optimization chart that maps

every combination of headwind and updraft speed to the unique combination

of airspeed and inertial sink rate at which the aerodynamic cost of transport

is expected to be minimized. With these theoretical tools in hand, we test

their predictions using empirical data collected from a captive steppe eagle

(Aquila nipalensis) carrying an inertial measurement unit, global positioning

system, barometer and pitot tube. We show that the bird adjusts airspeed

in relation to headwind speed as expected if it were seeking to minimize its

aerodynamic cost of transport, but find only weak evidence to suggest that

it adjusts airspeed similarly in response to updrafts during straight and

interthermal glides.

This article is part of the themed issue ‘Moving in a moving medium:

new perspectives on flight’.
1. Introduction
The moving atmosphere presents opportunities and challenges alike for the

animals that fly through it. Opportunities for energy harvesting are afforded by

the updrafts that facilitate static soaring, and by the spatio-temporally varying

wind fields that facilitate dynamic soaring. Yet, each opportunity presents its

own challenges. Air that is rising in one place must be replaced by air that is sink-

ing in another, so unfavourable downdrafts are always present in the vicinity of an

updraft. Likewise, the turbulence associated with a varying wind field presents

obvious challenges to flight stability [1]. Even a constant wind field will affect

the optimization of heading and airspeed, which presents further challenges for

sensing the wind, and adjusting velocity appropriately in response [2–6]. None

of these themes is new, but we look at them here with fresh eyes, through the

lens of some new theoretical development, and with the aid of empirical data

collected using state-of-the-art onboard instrumentation.

Whereas the theory of static soaring is simple, the theory of dynamic soaring is

not. Most theoretical developments of dynamic soaring [7–14] have involved

modelling detailed flight trajectories, which requires the use of equations of

motion whose complexity obscures the underlying physics [15,16]. Our approach

here is different, and follows the guiding principle advocated by Taylor & Thomas

[17], which is to make the model as general as possible, so as to identify the key

physical constraints within which natural selection operates. We achieve this by

framing our theoretical analysis of soaring flight in terms of its energetics, rather

than in terms of its dynamics (see also [18,19]). We then use this energetic analysis

to inform an empirical analysis of airspeed optimization in the gliding flight of a

soaring bird.
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Figure 1. Definition sketch of the key vectors, scalars and axis systems used
in the analysis of soaring energetics and gliding. Position vector (x) of bird in
Earth-fixed coordinate system fx, y, zg; path coordinate (s) of bird; time (t).
Local wind velocity (W), relative to ground. Wind speed (W ); updraft speed
(Wu). Air velocity of bird (U), relative to ground. Headwind direction vector
(ĥ). Lift (L), drag (D), weight (mg). Glide angle relative to air (g). See text for
formal definitions.
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Most studies of how birds respond to a moving atmosphere

are necessarily field-based. Previous studies have measured

flight trajectories from the ground using optical techniques or

radar tracking [20–22], or have estimated airspeed and sink

rate from a glider accompanying the bird [23]. More recently,

it has become possible to measure fine-scale flight trajectories

and detailed flight performance using onboard instrumenta-

tion carried by the bird. Most such studies have used either

GPS units [24–30] or accelerometers [28,29], which measure

movement in an Earth-fixed or inertial frame of reference.

However, the miniaturization of such technologies has now

reached the point that a large bird can carry all of the same

instrumentation as an unmanned aircraft, including a full iner-

tial measurement unit (IMU) and a pitot tube for measuring

airspeed [1,31]. This means that onboard instrumentation can

now be used to estimate how a bird is moving relative to the

air, as well as the ground. Our second guiding principle is

therefore to build models that can be parametrized using the

kind of empirical data that are now available from onboard

instrumentation [1,31].

The paper is divided into two parts. In the first part (§2),

we undertake a theoretical analysis of flight in a moving

atmosphere, deriving an equation that expresses all of the

energy flows in soaring (§2a). We next make use of this

equation to analyse the aerodynamic cost of transport in a

moving atmosphere, and to explore how airspeed should be

adjusted with respect to wind velocity if the cost of transport

is minimized (§2b). To facilitate quantitative predictions, we

then elaborate upon the classical theory of the glide polar,

providing a cross-species analysis that compares the predic-

tions of the glide polar under different aerodynamic models

(§2d). Finally, we offer a new presentation of the predictions

of the glide polar, in the form of a glide optimization

chart that can be plotted for any given species of bird (§2e).

In the second part of the paper (§3), we test our theoretical

predictions using empirical data collected using onboard

instrumentation carried by a captive steppe eagle Aquila
nipalensis (§3a). This allows us to test whether and how

airspeed is adjusted in relation to headwind speed (§3b),

updraft speed (§3c) and the combination thereof (§3d). As

these sections are quite self-contained, we conclude with

only a brief discussion at the end (see §4).
2. Theoretical analysis of flight in a moving
atmosphere

We begin by deriving a succinct expression describing all of

the mechanical energy flows associated with soaring flight,

which we then use to explore the optimization of gliding in

an arbitrary wind field.

(a) Energetics of soaring flight
Energy conservation laws hold in an inertial frame of refer-

ence only, but mechanical energy itself can be defined in

either an inertial or a non-inertial frame. The aerodynamically

useful mechanical energy of a bird (E), defined as the mech-

anical energy available to do work on the air, is the sum of

the bird’s potential energy relative to the Earth and its kinetic

energy relative to the air [32]. We may write this as

E ¼ m
2
ðU �UÞ �mg � x, ð2:1Þ
where m is the bird’s mass, U ¼ UðtÞ is its air velocity vector,

x ¼ xðtÞ is its inertial position vector and g is the gravitational

acceleration vector. Each of these vectors is assumed to be

resolved in some non-rotating Cartesian axis system

(figure 1). Differentiating with respect to time (t) gives the

rate of change in the useful mechanical energy as

dE
dt
¼ mU � dU

dt
�mg � dx

dt
, ð2:2Þ

which is also the quantity measured by the total energy vari-

ometer in a sailplane [33]. The time derivative of the bird’s

inertial position is the vector sum of the bird’s velocity rela-

tive to the air, and the air’s velocity relative to the ground,

so we may write the identity dx=dt ¼ U þW , where

W ¼WðxðtÞ, tÞ is the local wind velocity (figure 1). Differen-

tiating with respect to time and rearranging yields the

new identity dU=dt ¼ d2x=dt2 � dW=dt. Substituting both

identities into equation (2.2) and rearranging, we have

dE
dt
¼ m

d2x

dt2
�mg

" #
�U �mg �W �mU � dW

dt
: ð2:3Þ

Equation (2.3) captures all of the mechanical energy flows

associated with soaring flight, and it can be rewritten using

only scalar quantities by making use of the fact that the

scalar product of two vectors is equal to the magnitude

of one vector multiplied by the magnitude of the other’s

projection onto it.

By Newton’s second law, the square brackets in equation

(2.3) comprise the total force acting on the bird (md2x=dt2)

minus its body weight (mg). This is equal to the total aerody-

namic force, of which only the component acting in the

direction of the bird’s air velocity (U) can contribute to the

first scalar product. As this component is equal to the net for-

wards aerodynamic force of thrust T ¼ TðUÞ minus drag

D ¼ DðUÞ, we may rewrite the first scalar product as

ðT �DÞU, where U is the bird’s airspeed. This term measures

the rate at which the net forwards aerodynamic force does

work on the air, and thereby represents the net aerodynamic
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power surplus or deficit. It follows that a gliding bird, with

T ¼ 0, loses useful mechanical energy at a rate �DU, through

a loss of either airspeed or altitude. These losses can be offset

by converting chemical energy into mechanical energy

through flapping, or by harvesting mechanical energy from

the atmosphere through the soaring mechanisms represented

by the other scalar products in equation (2.3).

The second scalar product in equation (2.3) (�mg �W) is

equal to the bird’s scalar body weight (mg) multiplied by the

wind’s vertical updraft component (Wu). This term, which

we may rewrite as mgWu, represents static soaring and predicts

the rate of energy gain in both thermal and orographic updrafts

alike. It measures the rate at which gravitational potential

energy is harvested when flying in an updraft (Wu . 0), or

lost when flying in a downdraft (Wu , 0). This rate is indepen-

dent of the details of the bird’s flight, depending only upon the

strength of the updraft and the weight of the bird, so it is poss-

ible for a bird to gain energy through soaring in both gliding

and flapping flight. The common kestrel (Falco tinnunculus) is

an obvious example of the latter, routinely hover-soaring in

weak updrafts. However, there are many other soaring species,

such as the common crane (Grus grus) [34], European bee-eater

(Merops apiaster) [35], and lesser kestrel (Falco naumanni) [30],

that habitually mix flapping and gliding in weaker thermal

conditions. This presumably allows them to exploit updrafts

that would be unsuitable for sustained soaring on fixed wings.

The third scalar product in equation (2.3) (�mU � dW=dt) is

equal to mU multiplied by the scalar projection of the time

derivative of the wind (dW=dt) onto the headwind direction

vector (ĥ), defined as the unit vector opposite to the bird’s air

velocity vector (figure 1). We will write this projection as

dWĥ=dt, and can therefore rewrite the third scalar product

as mUðdWĥ=dtÞ. It should be noted that the projection of the

time derivative of the wind onto ĥ is not identical to the time

derivative of the projection of the wind onto ĥ, which reflects

the fact that a bird cannot harvest aerodynamically useful

mechanical energy from a constant wind field merely by turn-

ing into the wind. The resulting term mUðdWĥ=dtÞ represents

dynamic soaring, and measures the rate at which useful kinetic

energy is obtained from a time-varying wind field. Because

U . 0, it is clear by inspection that energy will be gained

through dynamic soaring if and only if dWĥ=dt . 0, which is

satisfied when flying in either a strengthening headwind or a

weakening tailwind. The principle of dynamic soaring can

therefore be captured in one very simple rule: fly upwind in a
strengthening wind and downwind in a weakening wind.

It is possible to break this dynamic soaring term down further,

by noting that the time derivative dWĥ=dt could reflect either the

explicit time-dependence of the headwind in a temporally vary-

ing wind field, or the implicit time-dependence of the

headwind seen as a bird progresses through a spatially varying

wind field. These two cases correspond to gust soaring and

shear soaring, respectively, which we can make explicit by restat-

ing the wind locally as W ¼Wðs, tÞ, where s ¼ sðtÞ is a path

coordinate describing the bird’s instantaneous position along its

flight trajectory relative to the ground. Differentiating W with

respect to both variables, and substituting the result into equation

(2.3) with the other identities above, we arrive at the expression

dE
dt
¼ ðT �DÞU

zfflfflfflfflfflffl}|fflfflfflfflfflffl{power surplus=deficit

þ mgWu

zfflfflffl}|fflfflffl{static soaring

þ mU
@Wĥ

@t
þ @Wĥ

@s
ds
dt

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{dynamic soaring

:

ð2:4Þ
The first of the dynamic soaring terms in the square brackets rep-

resents gust soaring and measures the rate at which useful

kinetic energy is harvested or lost in a time-varying wind field.

Gust soaring has been discussed in the context of sea-soaring

Procellariiformes such as petrels and albatrosses [36,37], but is

also used by land-soaring birds that play the wind. For example,

we have observed Eurasian jackdaws (Corvus monedula) that

were gliding into a strong wind suddenly gain several metres

of altitude when blown backwards by a gust, after which

they would fly back downwind at tremendous groundspeed

(G. K. Taylor 2015, personal observation). The second of the

dynamic soaring terms in the square brackets represents shear

soaring and measures the rate at which useful kinetic energy is

harvested or lost in a spatially varying wind field. Shear soaring

has historically been thought to be important in petrels and alba-

trosses flying in the wind gradient low over the oceans [32], but

might also be important to land-soaring birds flying in the shear

layers generated in the lee of a ridge or other obstruction. In any

case, because windspeed usually increases with altitude, the

general rule for dynamic soaring can be restated for shear

soaring as follows: descend downwind; ascend upwind.

Before concluding this section, we should note that it

would have been possible to undertake a complementary

analysis in which kinetic energy was defined with respect to

groundspeed rather than to airspeed. Such an analysis could

appear to lead to different conclusions regarding the mechan-

ism of shear soaring, because the largest gain in kinetic energy

relative to the ground occurs when a bird turns downwind

near the top of the shear layer [13,28], which is not associated

with any gain in kinetic energy relative to the air [15,16]. How-

ever, it is the bird’s airspeed—not its groundspeed—which

determines the aerodynamic force that is produced. Moreover,

the fundamental source of energy in shear soaring is the vari-

ation in wind speed that the bird encounters as it passes

through the shear layer [32]. Hence, while it is possible to use

either formulation to solve for flight trajectories that result in

no net change in mechanical energy over a period of cyclical

ascent and descent [28,38], the mechanism by which useful

kinetic energy is gained must be understood in relation to the

bird’s movement relative to the air, not the ground. This

accords with the original verbal description of the mechanism

by Rayleigh [32].
(b) Aerodynamic cost of transport in a moving
atmosphere

Equation (2.4) is practically useful as a means of evaluating

the net rate of change in the mechanical energy of a bird

(or vehicle) when flying in a given wind field, and can also

be used to explore the optimization of glide speed in relation

to the wind (see also [2–6]). For example, equation (2.4)

shows that a bird gliding in a uniform wind field expends

useful mechanical energy at a rate

dE
dt
¼ �DU þmgWu: ð2:5Þ

If we assume that the bird is gliding at a shallow angle (g)

with respect to the air such that the horizontal component of

its air velocity is U cos g � U (figure 1), then it will cover

ground along its flight path (r) at a rate

dr
dt
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðU �WhÞ2 þW2

s

q
: ð2:6Þ



–Wh
Ws

Wh

Wh Ws
Wh

Ws

Ws

Ws

Wh
Ws

–Wh

–Wh

(b)(a)

(c) (d )

Figure 2. Clock diagrams of wind drift correction for a variety of different wind speeds and directions. The ‘hands’ of the clocks represent the horizontal air velocity
of the bird, as a unit vector on the unit circle. The black double-headed arrows represent the horizontal wind vectors, which are resolved into their headwind (Wh)
and sidewind (Ws) components as appropriate. The diagrams are drawn so that the resultant ground velocity is the vector (not drawn) from the centre of the unit
circle to the tip of the wind vector, and the air velocity vector is directed so that this ground velocity vector always points to 12 o’clock. If the tip of the wind vector
falls inside the unit circle, then the wind is detrimental and will increase the cost of transport. If the tip of the wind vector falls above the unit circle, then the wind
is beneficial and will decrease the cost of transport. (a) Examples of a pure headwind (Wh) and a pure tailwind (�Wh). (b) Examples of a pure crosswind, per-
pendicular to the ground velocity vector (which itself runs along the dashed line). (c) Examples of a pure sidewind (Ws), perpendicular to the air velocity vector. (d )
Arbitrary combinations of a sidewind (Ws) with a headwind (Wh) or a tailwind (�Wh).
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Here, the horizontal projection of the wind velocity vector

(figure 2) has been resolved into its headwind (Wh) and sidewind

(Ws) components pointing opposite to and perpendicular to the

bird’s air velocity vector, respectively.

These definitions of headwind and sidewind in relation to

the bird’s air velocity vector differ from those used in pre-

vious studies [4], which have defined headwind and

crosswind in relation to the bird’s ground velocity vector.

The aerodynamic vector basis that we have used here is natu-

ral in the context of our analysis of soaring energetics (§2a),

and would probably be natural to a bird using visual
feedback from translational optic flow to maintain an

intended direction of travel over the Earth. This is because

the forward translational optic flow that a bird experiences

depends upon the difference between the bird’s airspeed

and the headwind speed, whereas the lateral translational

optic flow depends upon the sidewind speed. When the

bird’s heading is correctly adjusted, the headwind will be

sensed as a retarding tendency via the mismatch between

the bird’s airspeed and the forward translational optic flow.

Any accompanying sidewind will be sensed through the lat-

eral translational optic flow as an assistive tendency to drift
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the bird back towards its desired flight track (figure 2b). This

contrasts with the drift that a pilot attends to when lining up

with a linear feature such as a runway. In this case, it makes

obvious sense to resolve the wind into a headwind com-

ponent parallel to the runway and a crosswind component

perpendicular to it, because it is the crosswind—not the side-

wind—that tends to drift the aircraft away from the line of the

runway (see also figure 2b).

Combining equations (2.5) and (2.6) gives

� dE
dr
� DU �mgWuffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðU �WhÞ2 þW2
s

q , ð2:7Þ

which we may interpret as the aerodynamic cost of transport

in gliding flight (C ¼ �dE=dr), if we assume that the bird is

compensating for wind drift so that it is flying along its

intended track (figure 2). Obviously enough, equation (2.7)

predicts that the cost of transport is decreased by flying in

an updraft (Wu . 0) or a tailwind (Wh , 0), and increased

by flying in a downdraft (Wu , 0) or a headwind (Wh . 0).

Equation (2.7) also shows that the cost of transport is

decreased when flying in a pure sidewind perpendicular to

the bird’s air velocity (Ws = 0, with Wh ¼Wu ¼ 0). This is

a special case, however, because our assumption that the

bird is compensating for wind drift means that, for a given

airspeed, a pure sidewind is only possible for a unique set

of combinations of wind speed and direction relative to the

bird’s intended track (figure 2c). For example, a crosswind

perpendicular to the bird’s ground velocity will always com-

prise an assistive sidewind component (Ws = 0) and a

retarding headwind component (Wh . 0) when resolved in

relation to the bird’s air velocity, and it is clear on geometric

grounds (figure 2b) that their net effect will be to increase the

cost of transport (see also [4]).

A gliding bird that needs to cover a set distance, or to fly as

far as possible, may be expected to adjust its airspeed so as to

minimize its aerodynamic cost of transport. This optimization

can be explored by differentiating equation (2.7) with respect to

airspeed and equating the derivative to zero, but the general

solution is made cumbersome by the dependence of drag

upon airspeed, and by the coupling of the headwind and side-

wind components to airspeed that results from correcting for

wind drift. We present the results of this optimization graphi-

cally later (figure 4), neglecting the effects of sidewinds for

clarity of presentation. For now, we present only a simplified

mathematical analysis, which offers analytical insights into

the problem. We can simplify this analysis by noting that the

cost of transport in still air is equal to the drag (see equation

(2.7)), and is therefore minimized at minimum drag. At glide

equilibrium, the minimum drag (Dmin) is achieved at the best

glide speed (Ubg). We may therefore determine qualitatively

how updrafts and headwinds affect the optimization of air-

speed by evaluating the airspeed derivative of the cost of

transport at the point U ¼ Ubg. This yields

@C
@U U¼Ubg,Ws¼0

¼ DminWh �mgWu

ðUbg �WhÞ2
,

����� ð2:8Þ

where we have set Ws ¼ 0 to avoid coupling the headwind

component to airspeed, and where it is assumed that

Wh , Ubg, so that the bird is always making forward progress.

Evidently, the sign of this derivative is determined only by

the terms in its numerator, because the denominator is

always positive.
It is clear by inspection of equation (2.8) that headwinds

(Wh . 0) and downdrafts (Wu , 0) will both make the cost

of transport an increasing function of airspeed for a bird that

is flying at its best glide speed, so that birds should fly faster

than their best glide speed under these unfavourable wind con-

ditions. The converse applies for tailwinds (Wh , 0) and

updrafts (Wu . 0), so that birds should fly slower than their

best glide speed under these favourable wind conditions.

Comparing terms in the numerator of equation (2.8), it is

clear that the effect of a small downdraft or updraft exceeds

the effect of a similar headwind or tailwind by a factor on the

order of mg=Dmin, which is approximately equal to the lift-

to-drag ratio in a shallow glide. Moreover, it is obvious on

geometric grounds that the effect of a small downdraft or

updraft will exceed the effect of a similar sidewind by an

even greater degree. Other things being equal, airspeed correc-

tion ought therefore to be around an order of magnitude more

important in respect of vertical as opposed to horizontal air

movements—especially for birds of high glide efficiency. Of

course, if the updraft exceeds the sink rate of the bird, then

the aerodynamic cost of transport will be negative (see

equation (2.7)), and it may no longer make sense to treat the

cost of transport as a minimand at all [2,5,6].

To conclude, this entire section can be summarized in one

very simple rule: fly slower in a favourable wind and faster in an
unfavourable wind. It is worth emphasizing that we have

reached this conclusion without making any assumptions

about the aerodynamics, other than that drag has a minimum

at some reasonable airspeed.
(c) Classical theory of the glide polar
The theory in this section is quite classical, but we detail it

here for the sake of clarity and self-containedness. The total

drag that a bird experiences when gliding is a function of

its airspeed, and may be represented as the sum of three dis-

tinct contributions: (i) an induced drag component resulting

from the flow induced by the vortices trailing in the wake;

(ii) a profile drag component resulting from friction drag,

and to a lesser extent pressure drag, on the wings; and

(iii) a parasite drag component resulting from pressure

drag, and to a lesser extent friction drag, on the body and

tail. For reasons that need not concern us here, and which

are well explained elsewhere [37,39], the total drag at

equilibrium is expected to be

D � rU2

2
(bcCDpro

þ SbCDpar
)

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{profile and parasite drag

þ 2km2g2

prb2U2

zfflfflfflffl}|fflfflfflffl{induced drag

, ð2:9Þ

where r is air density, b is wing span, c is wing mean chord

and Sb is body frontal area, and where it is assumed that

the bird is gliding at a shallow angle with respect to the air,

such that lift is approximately equal to body weight. Here,

k, CDpro and CDpar are numerical coefficients characterizing

the induced drag, profile drag and parasite drag, respectively,

which we will treat as constants for the time being. It is clear

from equation (2.9) that whereas profile drag and parasite

drag are expected to increase with airspeed, induced drag is

expected to decrease with airspeed, other things being equal.

We already know that the aerodynamic cost of transport

is minimized by minimizing the drag when gliding in still

air (equation (2.7)). Taking the partial derivative of equation

(2.9) with respect to airspeed (U ), setting the result equal to
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zero to find the minimum U ¼ Ubg, and multiplying by

Ubg=2, we arrive at the expression

rU2
bg

2
(bcCDpro þ SbCDpar )

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{profile and parasite drag

� 2km2g2

prb2U2
bg

zfflfflfflfflffl}|fflfflfflfflffl{induced drag

� 0, ð2:10Þ

which shows that the best glide speed, Ubg, at which the cost

of transport is minimized for a given flight morphology, is

the airspeed at which the induced drag equals the combined

parasite and profile drag. This result holds for any given

flight morphology, and can therefore be adapted to analyse

the effects of variable flight morphology.

Gliding birds are able to vary their planform continuously

in flight, but empirical studies have shown that wing area, Sw,

typically varies linearly with wing span [40,41]. It follows that

wing mean chord (c ¼ Sw=b) must be approximately constant,

which presumably reflects the geometric constraints associated

with the wing morphing mechanisms of birds. Taking the par-

tial derivative of equation (2.9) with respect to wing span (b),

setting the result equal to zero to find the minimum b ¼ b�
and multiplying by b�, we find that

rU2

2
(b�cCDpro

)

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{profile drag

�2
2km2g2

prb2
�U2

� �zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{induced drag

� 0, ð2:11Þ

which shows that the wing span (b�) at which the aerodynamic

cost of transport is minimized for a given airspeed, is the span

at which the induced drag equals half the profile drag. This

conflicts with the outcome of the airspeed optimization

(equation (2.10)), which shows that the induced drag equals

the combined parasite and profile drag if a bird is flying at

the best glide speed (U ¼ Ubg) for its given span. It follows

that U = Ubg in equation (2.11), which means that when a

bird is flying at the wing span b� that minimizes its cost of

transport for a given airspeed, it is not flying at the airspeed

that would minimize the cost of transport for that wing span.

This being so, we should not expect to see any change in

wing span with increasing airspeed until the point at which

the induced drag equals half the profile drag, which will

always be at an airspeed higher than Ubg. Beyond this point,

wing span is expected to decrease with further increases

in airspeed, so as to maintain the same ratio of induced and

profile drag.

Rearranging equation (2.11), we find that the aerodynamic

energetic cost of transport is minimized if wing span varies

according to the following relationship (see also [37,39])

b� � 2
km2g2

pr2U4cCDpro

 !1=3

, ð2:12Þ

at airspeeds high enough that the induced drag would be less

than half the profile drag if the wings remained fully extended.

Thus, if birds adjusted their wing span so as to maximize flight

efficiency, then they would be expected to start reducing span

at some airspeed higher than Ubg according to the proportion-

ality b/U�4=3. In reality, birds tend to reduce wing span over

the full range of airspeeds at which they operate, and do so in

an approximately linear fashion [37]. It follows that the signifi-

cance of the relationship in equation (2.12) is not that it predicts

how a bird typically adjusts its wing span, but rather that it

allows us to place an upper limit on the glide performance

that a bird can possibly achieve by its varying span. This is
the best that we can do in the absence of detailed measure-

ments of how wing span varies with airspeed in a given

species, and we therefore make extensive use of equations

(2.9)–(2.12) to predict flight performance throughout all the

subsequent sections of the manuscript.

It now remains for us to relate the drag curve in equation

(2.9) to the measurable flight performance of the bird. Equation

(2.5) shows that a bird gliding in a constant wind field loses

mechanical energy at a net rate dE=dt ¼ �DU þmgWu.

Because the kinetic energy is constant at equilibrium, it follows

that this change in mechanical energy must be entirely owing

to a change in the gravitational potential energy. Hence, if

the bird is changing altitude at an inertial sink rate Vs with

respect to the ground, where Vs is signed negative when the

bird is sinking, then its gravitational potential energy must

be changing at a rate mgVs. We may therefore write down

the identity mgVs ¼ �DU þmgWu and combine this with

equation (2.9) to yield the inertial glide polar

Vs � �
rU3

2mg
(bcCDpro þ SbCDpar )�

2kmg
prb2U

þWu: ð2:13Þ

The significance of this equation is that it predicts the sink rate

relative to the ground, which is what can be measured on a free-

flying bird using a barometer. To arrive at the aerodynamic

glide polar, which predicts the aerodynamic sink rate (Us),

we need only subtract Wu from both sides of equation (2.13).
(d) Model uncertainty in the glide polar
In order to do anything more quantitative with the theory of the

glide polar, it is necessary to know the values of its numerical

coefficients. Different workers have made different assump-

tions, but the parasite drag coefficient (CDpar
) has proven

especially controversial, with entire papers dedicated to its esti-

mation. In fact, for a given species, the value of CDpar
has been

lowered by as much as 75% between successive versions of

the most widely used aerodynamic model [37,39]. Specifically,

under the current version of Pennycuick’s popular FLIGHT soft-

ware [37], a value of CDpar
¼ 0:1 is assumed for all species,

compared with values in the range 0:25 � CDpar � 0:40 in the

earlier version [39]. Science is supposed to be self-correcting,

of course, and it is appropriate that assumed values be revised

in the light of new experimental data, but this discrepancy

emphasizes the extent of the uncertainty in CDpar
, which is

further compounded by the uncertainty in the body frontal

area that it multiplies.

Body frontal area (Sb) has been measured for only a handful

of species, so is usually estimated from body mass, using an

empirical scaling relationship Sb ¼ 0:00813m0:666 fitted to a

narrow and taxonomically biased sample of n ¼ 10 species of

waterfowl and raptors [42]. The product SbCDpar is known as

the equivalent flat plate area of the body, because a flat plate

with this area would produce the same drag if it blocked the

flow completely. On the pragmatic grounds that neither Sb

nor CDpar is known accurately or independently for most species,

Taylor & Thomas [17] proposed letting SbCDpar
¼ 0:01Swmax

,

where Swmax is the maximum wing area. This approximation

roughly coincides with field estimates of the parasite drag on

diving passerines [43], rounded down to account for the lower

parasite drag expected on the streamlined bodies of larger

birds. Applying this approximation to the morphological data-

set assembled by Taylor & Thomas [17] produces equivalent flat

plate areas that fall between the estimates given by the two
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versions of Pennycuick’s FLIGHT software [37,39] for 368 (82%) of

the 450 species of bird. Under this approach [17], the parasite

drag is assumed to be equivalent to the drag on a flat plate

with 1% of the area of the wings at their maximum extent. Coin-

cidentally, this would make the parasite drag on a 0.14 kg

dollarbird Eurystomus orientalis equal to the flat-plate drag on

a quarter dollar coin, at Swmax
¼ 0:046m2 [17].

A value of CDpro ¼ 0:014 is assumed for the profile drag

coefficient in both versions of Pennycuick’s model [37,39],

but Taylor & Thomas [17] have proposed setting

CDpro ¼ 2:656Re�1=2, which is the classical laminar flow sol-

ution for the friction drag on a flat plate, where Re ¼ rcU=m
is the chord Reynolds number with m as the dynamic viscosity

of the air. This has the effect of making the profile drag coeffi-

cient a function of airspeed, which will, in turn, affect the

optimization of airspeed, but the variation in CDpro within a

species is expected to be small, and can probably be safely

ignored. The induced drag factor (k) has proven less controver-

sial, as it is more easily modelled and less easily measured. It is

generally assumed that k � 1 (but see [22]), with k ¼ 1:1 used

by default in both versions of Pennycuick’s model [37,39].

Taylor & Thomas [17] rounded this down to k ¼ 1, which is

the value for an efficient elliptically loaded wing, but for

reasons of consistency we will assume that k ¼ 1:1 throughout,

which allows for a more straightforward comparison of the

effects of the uncertainty in CDpar and CDpro .

In the light of this uncertainty, it is important to quantify

how the predictions of the glide polar vary in relation to the
assumed values of the drag coefficients. We do this by plot-

ting the glide polar for four species of soaring bird

(figure 3), for each of the three sets of parameters discussed

in the preceding paragraphs [17,37,39], at both maximal

and optimal span (see [46] for a formal uncertainty analysis).

These four species cover most of the variation in body mass,

wing loading and aspect ratio that is found in soaring birds,

whereas the three models cover most of the variation in the

values of the drag coefficients assumed in the published lit-

erature. It is clear that these three models show significant

variation in the aerodynamic sink rate predicted for a given

airspeed, especially at higher airspeeds and for larger birds.

It follows that the detailed quantitative predictions of these

models cannot be taken at face value without careful vali-

dation. In the following sections, we aim to provide just

such a validation using data from an IMU and pitot tube

worn by a captive bird in soaring flight. This will require

us to develop our presentation of the glide polar one step

further, which we do in §2e.
(e) Beyond the glide polar
We have taken a mathematical approach to all of the optim-

ization problems so far, but each has a well-known

graphical interpretation [3,5] in respect of the aerodynamic

glide polar (figure 4a). For example, the best glide speed

(Ubg) corresponds to the point at which a straight line

drawn through the origin is tangent to the curve, because
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this is where the ratio of aerodynamic sink rate (Us) to air-

speed (U ) is minimized (figure 4a). Less obviously, because

the bird’s ground velocity is the sum of its air velocity and

the local wind velocity, the airspeed at which the cost of

transport is minimized in an updraft (Wu = 0) or a headwind

(Wh = 0) can be found by drawing the line tangent to the

curve from an origin displaced downward by Wu and right-

ward by Wh (figure 4a). Unfortunately, although this mode of

presentation is convenient for identifying theoretical optima,

it does not lend itself to displaying multiple solutions simul-

taneously, because every point (U, Us) on the aerodynamic

glide polar is optimal for multiple combinations of updraft

and headwind (Wu, Wh). Furthermore, whereas airspeed

(U ) can be measured using a pitot tube, there is no straight-

forward way to measure the aerodynamic sink rate (Us) using

onboard instrumentation, because barometric or GPS

measurements of altitude only provide information on the

inertial sink rate (Vs). Both limitations can be overcome by

plotting the inertial glide polar instead of the aerodynamic

glide polar (figure 4b). This has two key advantages. First,

it allows us to unpack the glide polar by updraft speed, so

that every point (U, Vs) on the axes corresponds to a

unique optimum for a specific combination of updraft and

headwind (Wu, Wh), allowing multiple solutions to be
displayed simultaneously. Second, it allows empirical data

on airspeed (U ) and inertial sink rate (Vs) to be plotted

directly on the same axes.

Seen in this light, any combination of airspeed and inertial

sink rate (U, Vs) may be optimal for some unique combination

of headwind and updraft speed (Wh, Wu). Thus, if we treat

every point (U, Vs) on the axes of figure 4b as representing

an optimum at which the aerodynamic cost of transport is

minimized under some unique combination of updraft and

headwind (Wu, Wh), then the inertial glide polar for a given

updraft speed (W�
u) represents the line of optima for

Wu ¼ W�
u. Likewise, the locus of points at which the aero-

dynamic cost of transport is minimized for a given headwind

speed (W�
h) represents the line of optima for Wh ¼W�

h

(figure 4c). The meaning of this is best understood with refer-

ence to the resulting glide optimization chart (figure 4d ): for

any given combination of headwind and updraft speed (W�
h,

W�
u), the optimum combination of airspeed and inertial sink

rate is found at the intersection of the lines of optima for

Wu ¼ W�
u and Wh ¼W�

h. In cases where the updraft strength

exceeds the aerodynamic sink rate, the bird will be climbing

(Vs . 0) and therefore gaining mechanical energy at a rate

mgVs while still making progress over the ground. In such

cases, it no longer makes sense to assume that the cost of



Table 1. Morphological measurements of four soaring birds. Maximum wing area (Swmax ) is defined as the total projected wing area, including the area of the
body between the wing bases; maximum wing span (bmax) is measured from tip to tip [39]. Steppe eagle measurements are from the individual used in the
flight tests.

species scientific name mass m (kg) span bmax (m) wing area Swmax (m2) source

European bee-eater Merops apiaster 0.057 0.47 0.027 [44]

Eurasian jackdaw Corvus monedula 0.245 0.65 0.068 [44]

steppe eagle Aquila nipalensis 2.35 1.90 0.54 this paper

wandering albatross Diomedea exulans 8.55 3.01 0.58 [45]
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transport will be minimized (see also §2b), so it is not possible

to make any unambiguous prediction of optimal airspeed.

Specifically, whereas the bird will maximize the rate at which

it harvests mechanical energy while climbing by flying at its

minimum sink rate, higher flight speeds may still be optimal

if there is any advantage associated with horizontal travel.
 50398
3. Empirical analysis of flight in a moving
atmosphere

The theoretical analysis has been kept as general as possible

to this point, but we now change tack to provide as specific

a test of the theory as possible, using empirical data collected

from a captive-bred male steppe eagle A. nipalensis (see

table 1 for morphological measurements) soaring freely

over windward ridges in the Black Mountains, Wales, UK

over the course of 45 separate flights. The bird was released

at one of several sites chosen according to wind direction

on the day of the test, and was left to fly freely until the

end of the flight test, when it was called back by its handler

to feed. Individual flight tests were of variable duration,

and were set up so as to encourage the bird to loiter over a

windward ridge. It is difficult to predict what specific aspects

of its flight performance the bird might have sought to

optimize under such conditions, but the resulting pattern of

flight was typical of what many soaring birds can be

observed doing on a daily basis—soaring back and forth

along a ridge, and making opportunistic use of thermals to

gain altitude.

(a) Methods
The dataset that we analyse here was described previously in

reference [1], so we provide only a brief summary of the exper-

imental methods here. An instrumentation package weighing

less than 0.075 kg with battery (ca 3% body mass) was worn

dorsally on a removable falconry harness (Marshall Direct

Ltd, Lancashire, UK). We used an ArduPilotMega2 board (3D

Robotics Inc., San Diego, CA) running customized software

[31], comprising an MPU6000 IMU measuring three-axis angu-

lar velocity, acceleration and Earth magnetic field data at 50 Hz

(InvenSense Inc., Sunnyvale, CA), an MT3329 GPS unit estimat-

ing position and groundspeed at 10 Hz (MediaTek Inc.,

Hsinchu City, Taiwan), an MS5011 barometer measuring

atmospheric pressure and hence altitude at 10 Hz (Measure-

ment Specialities Inc., Hampton, VA) and an MPXV7002DP

differential pressure sensor attached to a pitot tube measuring

dynamic pressure and hence airspeed at 10 Hz (NXP
Semiconductors Netherlands B.V., Eindhoven). We post-

processed the IMU outputs using an extended Kalman filter

to estimate heading, pitch attitude and bank angle [31].

Here, we consider only the subset of data corresponding to

straight equilibrium gliding flight, for which the estimated

bank angle should be close to zero, and the sensed acceleration

close to g ¼ 9:81 ms�2. (An accelerometer works by sensing

the effective weight of a proof mass, and therefore reads 1 g
when the inertial acceleration of the device is zero.) Practically

speaking, we analysed only those sections of flight for which

the estimated bank angle remained 08+58 for at least 3 s, and

for which the mean acceleration averaged 1 g+0.1 g over the

same interval. This left us with a total of 21 min of data from

36 flights, which we subsampled to give n ¼ 420 non-overlap-

ping 3 s intervals of straight gliding flight. For each 3 s

interval, we calculated the mean airspeed U (0.1 ms21 RMS

error at 16.0 ms21; uncorrelated error model), and mean ground-

speed V (0.1 ms21 RMS error; fully correlated error model). We

also calculated the net change in barometric altitude over the

same interval, and used this to estimate the mean inertial

sink rate (+0.1 ms21 RMS error; uncorrelated error model).

In the analyses that follow, we treat these n ¼ 420 data points

as if they were independent, noting that there is a risk of

non-independence for any strictly consecutive data points.
(b) Adjustment of airspeed in headwinds
For most of the straight glides that we identified, the bird was

experiencing a headwind component opposing its air velocity

vector. In some cases, this was because it was flying directly

into the prevailing wind having climbed away from the ridge

in a thermal, and in this case, we would expect there to have

been no significant updraft or sidewind component. This

being so, we would expect the bird to have flown at an air-

speed U . Ubg on these straight glide sections, if it were

behaving so as to minimize its aerodynamic cost of transport

(see §2b). In other cases, the bird was flying a straight track

along the ridge, approximately perpendicular to the prevail-

ing wind, and was therefore flying in a pure crosswind

relative to its ground velocity vector. In this case, the bird

would again have been experiencing a headwind component

opposing its air velocity vector, but would also have been

experiencing a sidewind perpendicular to its air velocity

vector, as well as the updraft associated with the ridge. In

this case, the predictions of §2b are ambiguous because

whereas the combination of headwind and sidewind com-

ponents in a crosswind will always have the net effect of

increasing the bird’s cost of transport, the effect of an updraft

will always be to reduce it. In reality, the airspeeds recorded
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during these glides were all in the range 10.4–26.3 ms21,

averaging 16.0+ 2.9 ms21 (mean+ s.d.), which is consider-

ably faster than the best glide speed of Ubg ¼ 11 ms21

predicted by all three of the aerodynamic models, even

accounting for the additional mass of the instrumentation

carried by the bird. It is fortuitous that the three models

agree in their predictions for this species (figure 3), but our

finding that the bird flew faster than its best glide speed

under unfavourable wind conditions is therefore robust to

the model uncertainty discussed in §2d.

It is possible to go further than this, by combining the iner-

tial data and airspeed measurements to estimate horizontal

wind velocity [31]. We used the GPS data to estimate the

bird’s track angle and groundspeed, which together gave us

an estimate of the bird’s ground velocity. We then used the

yaw angle estimate from the extended Kalman filter to deter-

mine the bird’s heading, and used the airspeed measurement

from the pitot tube to estimate the bird’s airspeed, which

together gave us an estimate of the bird’s air velocity, assuming

zero sideslip. Finally, we calculated the vectorial difference

between the bird’s ground and air velocities, so as to provide

an estimate of the horizontal wind velocity, and used this

together with our knowledge of the bird’s heading to determine

the headwind component opposite to the bird’s air velocity
vector. We then used the resulting data to test how airspeed

(U) and groundspeed (Vg) varied with headwind speed (Wh).

Although the relationships are noisy (figure 5a), groundspeed

decreased with increasing headwind speed (linear regression:

Vg ¼ 14:2� 0:58Wh; R2 ¼ 0:40, F1,418 ¼ 281:1, p� 0:0001),

whereas airspeed increased with increasing headwind speed

(linear regression: U ¼ 14:0þ 0:29Wh; R2 ¼ 0:18, F1;418 ¼ 92:5,

p�0:0001). These regressions fitted to onboard data from a cap-

tive steppe eagle during straight and interthermal glides are

remarkably similar to the regressions fitted by Spaar & Bruderer

[21] to radar data from migrating steppe eagles during interther-

mal glides (groundspeed: Vg ¼ 15:0� 0:59Wh; R2 ¼ 0:36,

p , 0:0001; airspeed: U ¼ 15:7þ 0:29Wh, n ¼ 52, p , 0:005).

In particular, the slopes of the corresponding relationships are

practically identical, which gives us confidence in both datasets,

demonstrating a remarkably high degree of reproducibility.

These relationships are qualitatively consistent with what

we would expect to see if steppe eagles adjust their airspeed

in response to headwinds so as to minimize their aero-

dynamic cost of transport during straight and interthermal

glides. In the absence of such a response, we would have

expected to see no relationship between airspeed and head-

wind, and would have expected groundspeed to decrease

linearly with headwind with a slope of minus one. As it is,
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the attenuated slope for groundspeed and the existence of a

positive relationship for airspeed are both consistent with

the prediction that birds should fly at a higher airspeed

when the headwind speed is higher (§2b). This in turn

implies that steppe eagles are capable of estimating head-

wind speed—presumably by fusing visual information on

groundspeed with aerodynamic information on airspeed.

(c) Adjustment of airspeed in updrafts
Having shown that our steppe eagle increased its airspeed in

response to headwinds, we now ask whether there is any evi-

dence that it adjusted its airspeed in relation to updraft speed

during straight glides. This is harder to test empirically,

because there is no direct way to measure updraft speed

using onboard instrumentation. Instead, we are left having to

estimate updraft speed from measurements of airspeed and

inertial sink rate by solving the inertial glide polar for the

unknown updraft (equation (2.13)). The resulting estimates of

updraft speed are only as good as our aerodynamic model,

so given the uncertainty surrounding the numerical coeffi-

cients (§2d), it is important that we bracket our estimates by

estimating the updraft speed separately under each of the

different models. Figure 5b–d therefore plots airspeed against

estimated updraft strength for each of the three aerodynamic

models [17,37,39] assuming that span is adjusted optimally

(equation (2.12)). The fitted regression relationships are in the

expected direction, showing a decrease in airspeed with

increasing updraft strength, but show considerable variation

in slope between the different aerodynamic models, and are

too noisy to be taken very seriously (figure 5b [39]:

U ¼ 16:6� 0:57Wu; R2 ¼ 0:04, F1,418 ¼ 16:3, p ¼ 0:0001;

figure 5c [37]: U ¼ 16:8� 0:94Wu; R2 ¼ 0:11, F1,418 ¼ 52:5,

p� 0:0001; figure 5d [17]: U ¼ 16:5� 0:49Wu; R2 ¼ 0:03,

F1,418 ¼ 12:2, p ¼ 0:0005). The regressions for the maximal-

span case are qualitatively similar, but are only statistically

significant for two of the three aerodynamic models

(p ¼ 0:0002, [37]; p�0:0001, [17]). In any case, it is clear that

the very high levels of stochastic noise in these relationships

cannot be attributed to the systematic uncertainty in the under-

lying aerodynamic models. Hence, given that the variation

apparent in figure 5 is an order of magnitude greater than

the measurement error for the various sensors (§3a), we con-

clude that our steppe eagle did not consistently adjust its

airspeed and/or wing span in relation to updraft strength

during straight and interthermal glides. There is therefore no

strong evidence in our data to suggest that steppe eagles are

capable of estimating updraft strength.

(d) Adjustment of airspeed in combined headwinds
and updrafts

It is possible, in principle, that some of the noise in figure 5

might be attributable to the fact that airspeed is expected to

be optimized jointly, rather than separately, in respect of

updraft and headwind strength. This can be crudely tested by

regressing airspeed on headwind and updraft speed together,

which results in models with rather higher predictive power

(0:20 � R2 � 0:34 for the three aerodynamic models [17,37,39]

at maximal and optimal span). This approach offers some evi-

dence that the airspeed is optimized jointly in respect of

headwind and updraft speed, because the variation explained

by updraft speed having first controlled for headwind is greater
than the variation explained by updraft speed alone, and vice

versa. However, a better approach, given the underlying non-

linearities, is to make use of the glide optimization chart that

we developed earlier (figure 4d).

If the bird were adjusting its airspeed so as to minimize its

aerodynamic cost of transport, then every measured combi-

nation of airspeed and inertial sink rate would be expected to

be associated with some unique combination of headwind

and updraft, neglecting the effects of sidewinds. This expected

combination of headwind and updraft speed can be read off

the glide optimization chart directly, or can be solved for ana-

lytically. Either way, the result is an expected headwind that

can be compared with the estimated headwind that was

obtained previously from the bird’s air and ground velocities.

By way of illustration, figure 6 presents this comparison for a

representative aerodynamic model [17] shown here at fixed-

span, plotting each measured combination of airspeed and

inertial sink rate on the glide optimization chart. The chart

itself is coloured by the expected headwind, whereas the data

points are coloured by the estimated headwind. Hence, if the

bird were adjusting its airspeed so as to minimize its cost of

transport as predicted by the model, then the colours of the

plotted points would match the background hue. It is clear

by inspection of figure 6 that the measured and expected head-

winds are broadly similar, but there are some obvious outliers.

Figure 7 plots the estimated versus expected headwind

for all three aerodynamic models, excluding any points for

which the bird was climbing. (The aerodynamic cost of trans-

port is negative in this case, so may no longer make sense as a

minimand.) Interestingly, the measured and expected head-

winds are positively correlated (n ¼ 270, p� 0:001) for all

of the aerodynamic models at both maximal (figure 7a) and

optimal (figure 7b) span. However, there is an obvious sys-

tematic bias in the predictions, because the estimated
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Figure 7. Estimated versus expected headwind for a captive steppe eagle Aquila nipalensis under each of the three published aerodynamic models: light blue [39],
green [37] and dark blue [17]. The expected headwind is predicted under four different sets of assumptions (see panel titles), optimizing airspeed so as to minimize
the cost of transport in relation to headwind and updraft speed (a,b), and in relation to headwind speed only (c,d), at either optimal or maximal span. Black line,
identity line; r, linear correlation coefficient; MSE, mean-squared error between estimated and expected headwinds.
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headwind is typically higher than the expected headwind

(figure 7a,b). This is manifest in the high mean-squared error

between the estimated and expected headwinds. For compari-

son, figure 7c,d, therefore, plots estimated versus expected

headwind assuming that the bird takes no account of updraft

speed—instead behaving as if it were flying in only a horizon-

tal headwind. In this case, the measured and expected

headwinds remain positively correlated (n ¼ 270, p� 0:001),

but the bias in the predictions is largely removed, and the

mean-squared error is greatly reduced. It follows that the

flight data are better explained by assuming that the bird

took no account of the local updraft speed, consistent with

the conclusion of §3c.
(e) Summary
In summary, there is strong evidence that our steppe eagle

adjusted its airspeed in relation to headwind speed during

straight and interthermal glides, and that it did so in a

manner that matches quantitatively what we would expect

to see if it were attempting to minimize its cost of transport.

In contrast, although there is some evidence that our steppe

eagle adjusted its airspeed in relation to updraft speed,

there is no evidence that it did so in a manner that would

be expected to minimize the cost of transport.
4. Conclusion
We have shown here how empirical data obtained from

onboard instrumentation can be used to test and develop the

underlying theory of soaring and gliding flight. We have

shown in particular that our captive-bred steppe eagle adjusted

its airspeed with respect to headwind speed in precisely the

way that the theory predicts, if the aerodynamic cost of trans-

port were being minimized. Moreover, the slopes of the fitted

relationships are practically identical to those fitted to radar

data from migrating steppe eagles during interthermal glides

[21]. These relationships are similar to those found in other

birds [20], in that groundspeed typically decreases (increases)

linearly with headwind (tailwind) speed with a gradient less

than one (see also [6]). In contrast, we have found only weak

evidence that our steppe eagle adjusts its airspeed with respect

to updraft speed. This finding is somewhat at odds with the

radar data from migrating steppe eagles, which do appear to

show a reduction in airspeed when gliding in a straight line

in an updraft [21], but it is possible that updraft speed is

simply a difficult quantity for a bird to estimate and respond

to appropriately.

Perhaps the greatest limitation of the empirical approach

that we have used here is the lack of information on how

wing span is adjusted in flight, coupled with the fact that the

glide polar model (equation (2.13)) takes no account of the
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effects of variable tail span (but see [47]). Obtaining continuous

measurements of wing and tail span in the field presents a dif-

ficult, but not insurmountable technical challenge, which

future work will have to overcome. Nevertheless, variable

span has a smaller effect on the glide polar than might other-

wise be guessed, especially at lower airspeeds (figure 3), and

most of the conclusions that we have drawn are robust to the

uncertainty in wing span. This rather begs the question of

why birds should reduce wing span with airspeed as they do.

We agree with Pennycuick’s general conclusion that this prob-

ably has some advantage to do with speed control rather than

glide optimization [37], and propose that this advantage relates

to keeping the wings at a reasonable angle of attack across

flight speeds. Specifically, in order to move along the glide

polar at fixed span, a bird must decrease its lift coefficient,

and hence its angle of attack, with increasing airspeed. Birds’

wings are highly twisted, so too great a reduction in the overall

angle of attack would be expected to lead to negative loads

being taken on some parts of the wing—particularly when

flying through turbulence [1]. We therefore hypothesize that

birds reduce span with increasing airspeed to attenuate the

reduction in angle of attack that would otherwise occur. This

would lead naturally to a control paradigm in which span

served as the primary speed control, with tail-mediated

changes in angle of attack being used to move along the

glide polar at a given span (see also [47]).

Finally, we note that there is considerable scope to extend

the approaches that we have explored here. In particular, the

general theory of the energetics of soaring flight that we have

developed (equation (2.4)) is ready to use in assessing the rate

of energy harvesting through soaring under theoretical or

field conditions, and allows quantitative predictions to be

made about how birds should respond to different patterns

of variation in wind conditions over space and time (see

also equation (2.7)). For example, given that turbulent air

offers the possibility of gust soaring, we might expect soaring

birds to seek out regions of turbulent air that they can exploit
for energy harvesting. Likewise, the simple observation that

the induced drag equals the combined parasite and profile

drag at best glide speed (equation (2.10)) offers an easy way

to estimate both the induced drag factor (k) and the equival-

ent flat plate area for the combined parasite and profile drag,

if inertial sink rate and airspeed can be measured using

onboard instrumentation in a maximally shallow glide

through still air. The prospects for future research in this

area are bright.
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Kümmeth F, Heidrich W, Vyssotski AL, Bonadonna F.
2012 Flying at no mechanical energy cost:
disclosing the secret of wandering albatrosses.
PLoS ONE 7, e41449. (doi:10.1371/journal.pone.
0041449)

28. Sachs G, Traugott J, Nesterova AP, Bonadonna F.
2013 Experimental verification of dynamic soaring
in albatrosses. J. Exp. Biol. 216, 4222 – 4232.
(doi:10.1242/jeb.085209)

29. Spivey RJ, Stansfield S, Bishop CM. 2014 Analysing
the intermittent flapping flight of a Manx
shearwater, Puffinus puffinus, and its sporadic use
of a wave-meandering wing-sailing flight strategy.
Prog. Oceanogr. 125, 62 – 73. (doi:10.1016/j.pocean.
2014.04.005)

30. Hernández-Pliego J, Rodrguez C, Bustamente J.
2015 Why do kestrels soar? PLoS ONE 10, e0145402.
(doi:10.1371/journal.pone.0145402)

31. Reynolds KV. 2016 Soaring and gust response
in the steppe eagle. PhD thesis, University of
Oxford, UK.

32. Rayleigh L. 1883 The soaring of birds. Nature 27,
534 – 535. (doi:10.1038/027534a0)

33. Pennycuick CJ. 2003 The concept of energy height
in animal locomotion: separating mechanics from
physiology. J. Theor. Biol. 224, 189 – 203. (doi:10.
1016/S0022-5193(03)00157-7)

34. Pennycuick CJ, Alerstam T, Larsson B. 1979
Soaring migration of the common crane Grus
grus observed by radar and from an aircraft.
Ornis Scand. 10, 241 – 251. (doi:10.2307/
3676068)

35. Sapir N, Horvitz N, Wikelski M, Avissar R, Mahrer Y,
Nathan R. 2011 Migration by soaring or flapping:
numerical atmospheric simulations reveal that
turbulence kinetic energy dictates bee-eater flight
mode. Proc. R. Soc. B 278, 3380 – 3386. (doi:10.
1098/rspb.2011.0358)
36. Pennycuick CJ. 2002 Gust soaring as a basis for the
flight of petrels and albatrosses (Procellariiformes).
Avian Sci. 2, 1 – 12.

37. Pennycuick CJ. 2008 Modelling the flying bird.
Amsterdam, The Netherlands: Academic Press.

38. Sukumar PP, Selig MS. 2013 Dynamic soaring
of sailplanes over open fields. J. Aircraft 50,
1420 – 1430. (doi:10.2514/1.C031940)

39. Pennycuick CJ. 1989 Bird flight performance. Oxford,
UK: Oxford University Press.

40. Tucker VA. 1987 Gliding birds: the effect of variable
wing span. J. Exp. Biol. 133, 33 – 58.

41. Rosén M, Hedenström A. 2001 Gliding flight in a
jackdaw: a wind tunnel study. J. Exp. Biol. 204,
1153 – 1166.

42. Pennycuick CJ, Obrecht III , HH, Fuller MR. 1988
Empirical estimates of body drag of large waterfowl
and raptors. J. Exp. Biol. 135, 253 – 264.

43. Hedenström A, Liechti F. 2001 Field estimates of
body drag coefficient on the basis of dives in
passerine birds. J. Exp. Biol. 204, 1167 – 1175.

44. Alerstam T, Rosén M, Bäckman J, Ericson PGP,
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