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Abstract

Background

Mycobacterium tuberculosis cultures of cough-generated aerosols from patients with pul-

monary tuberculosis (TB) are a quantitative method to measure infectiousness and to pre-

dict secondary outcomes in exposed contacts. However, their reproducibility has not been

established.

Objective

To evaluate the predictive value of colony-forming units (CFU) of M. tuberculosis in cough

aerosols on secondary infection and disease in household contacts in Brazil.

Methods

Adult sputum smear+ and culture+ pulmonary TB cases underwent a standard evaluation

and were categorized according to aerosol CFU. We evaluated household contacts for

infection at baseline and at 8 weeks with TST and IGRA, and secondary disease.

Results

We enrolled 48 index TB cases; 40% had negative aerosols, 27% low aerosols (<10 CFU)

and 33% high aerosols (�10 CFU). Of their 230 contacts, the proportion with a TST�10

mm at 8 weeks was 59%, 65% and 75%, respectively (p = 0.34). Contacts of high aerosol

cases had greater IGRA readouts (median 4.6 IU/mL, IQR 0.02–10) when compared to

those with low (0.8, 0.2–10) or no aerosol (0.1, 0–3.7; p = 0.08). IGRA readouts in TST
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converters of high aerosol cases (median 20 IU/mL, IQR 10–24) were larger than those

from aerosol-negative (0.13, 0.04–3; p = o.o2). 8/9 (89%) culture+ secondary TB cases

occurred in contacts of aerosol+ cases.

Conclusion

Aerosol CFU predicts quantitatively IGRA readouts among household contacts of smear

positive TB cases. Our results strengthen the argument of using cough aerosols to guide tar-

geted preventive treatment strategies, a necessary component of current TB elimination

projections.

Introduction

Successful transmission of Mycobacterium tuberculosis results from a complex web of interac-

tions between the source case, the exposed contact and the infecting pathogen within a variety

of environments [1,2]. Together, these factors determine the number and viability of M. tuber-
culosis bacilli contained in cough-generated aerosols, the infectious moiety in tuberculosis

(TB) [3,4]. Yet, despite long standing evidence for the latter, most of the evidence on TB trans-

mission outcomes is based on the visualization of acid-fast bacilli (AFB) in sputum, which is

still regarded as the definitive marker for infectiousness. However, in addition to poorly pre-

dicting transmission, sputa specimens fail to consider the complexities and stresses required

for M. tuberculosis aerosolization, a necessary first step for successful transmission [1,5]

Over the last decade, our group has shown that the number of colony forming units (CFU)

of M. tuberculosis cultured in cough-generated aerosols is a quantitative and more precise

method for measuring source infectiousness and risk of infection in exposed contacts than

sputum AFB smear microscopy. We have observed wide variability in aerosol CFU even

among sputum AFB+ and culture-positive TB patients, [6] and found both qualitative and

quantitative differences in tuberculin skin test (TST) and interferon gamma release assay

(IGRA) readouts between contacts of aerosol-positive and aerosol-negative TB cases [7]. Sig-

nificantly, in a follow-up study, household contacts of high aerosol (�10 CFU) TB patients

were at increased risk of incident TB disease [8]. Taken together, these data suggest aerosol

CFU represent a promising marker of the infecting inoculum (e.g. inhaled dose), and that the

inoculum size is a critical determinant modulating TB outcomes in humans, as observed in

experimental TB models [5,9].

Whereas the aerosol collection method we use is validated [10, 11], the generalizability of

our findings in exposed contacts is unknown. In our initial studies, the predictive value of

aerosols was most evident in household contacts undergoing TST conversion, but less so in

those that were TST-positive at baseline [6–7]. The utility of aerosols in settings with a lower

TB prevalence, different environmental conditions (i.e. ambient humidity and temperature),

and different M. tuberculosis strains is unknown. We conducted this household contact study

to determine the reproducibility of cough aerosols to predict exposure outcomes in contacts of

pulmonary TB patients.

Cough aerosol cultures of M. tuberculosis to predict outcomes after exposure
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Methods

Study population

This study was conducted at the Núcleo de Doenças Infecciosas (NDI) located in Vitória, the

capital city of the State of Espı́rito Santo, Brazil. The NDI has organized a network of five labo-

ratories in the metropolitan region of Vitória that serve a network of 16 TB clinics. The preva-

lence of HIV in the general population is<1%, and 7% in TB cases. The annual TB incidence

in Espı́rito Santo is 38/100,000 inhabitants [12].

Measurements

TB cases. Pulmonary TB patients identified through the NDI clinic network were eligible

to participate, provided they fulfilled the following: 1) age�18 years with cough�3 weeks and

2) new TB episode with�1 sputum specimen with AFB�2+ with subsequent M. tuberculosis
growth in culture. We excluded index cases who were HIV-infected, had a history of TB treat-

ment, or who were too ill to consent, unable to understand, or to comply with the study proto-

col. To minimize differences in exposure time between study households, participating

families were screened and enrolled within the first 2 weeks after the index case first presented

to the municipal TB clinic. We collected clinical information and measured cough severity

using a self-reported visual analog cough scale (VACS) [13], and the Leicester Cough Ques-

tionnaire (LCQ) [14], as reported [15]. We obtained three sputa specimens for AFB smear

(auramine O fluorescent stain) [16], solid media (Ogawa-Kudoh) [17], and liquid (MGIT 960)

cultures. The radiological extent of disease was graded on a four-category ordinal scale (nor-

mal, minimal, moderate and far-advanced) by an experienced radiologist [18]. We cultured

M. tuberculosis from cough aerosols using the cough aerosol sampling system (CASS), as

described [19]. Briefly, patients were instructed to cough into the CASS apparatus for two

5-minute periods separated by a 5-minute rest. CASS agar plates were read weekly for up to 6

weeks to count CFU of M. tuberculosis, the primary CASS outcome. All patients were offered

TB treatment according to Brazilian guidelines [20].

Household contacts. We followed recommendations of the Brazilian National TB Pro-

gram for household contact investigations [20]. Study staff visited dwellings to verify the iden-

tity of contacts, record clinical information, measure individual contact time with the index

case, and to perform an environmental evaluation (crowding and ventilation). We recorded

demographic and clinical characteristics of contacts and evaluated them for M. tuberculosis
infection with both TST and IGRA, according to a predefined testing algorithm (S1 File) [15].

Secondary TB cases. In November 2017, we searched the Vitória TB Control Program

records and the Brazilian National Notifiable Disease Information System (SINAN) database

for the name, address, and date of birth of household contacts enrolled in the study to ascertain

those that had developed subsequent TB; for those identified as TB cases, we registered date of

diagnosis, AFB smear and culture results. We defined microbiologically confirmed TB as sec-

ondary TB cases among contacts with a positive culture for M. tuberculosis.

Statistical methods

Our primary exposure variable was the cough aerosol status of the index TB patient living in

the household. We categorized households into: aerosol negative (0 CFU), low aerosol (1–9

CFU), and high aerosol (�10 CFU). We chose a 10 CFU cut-off because at this point we noted

an increase risk in TST conversion in previous studies [6]. Our primary outcome was TST

�10mm in contacts, using the maximum TST for each individual (e.g. 1st or 2nd TST), and

completed an age-stratified analysis of TST results. We also performed a quantitative analysis

Cough aerosol cultures of M. tuberculosis to predict outcomes after exposure
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of IGRA readouts using standard box plots to represent normalized IGRA values for each con-

tact at 8–12 weeks. Our secondary outcome was microbiologically confirmed TB disease in

contacts; given the small number of secondary TB cases, we categorized the exposure for this

analysis as aerosol negative vs. aerosol positive. We calculated descriptive statistics to identify

clinical and demographic differences between contact groups. To account for clustering within

households, we calculated P values using generalized estimating equations or non-parametric

tests if appropriate (SAS 9.1, SAS Institute, Inc., Cary, NC). Dataset is available in S1 Dataset.

Ethical approvals

The study was approved by the Comitê de Ética em Pesquisa do Centro de Ciências da Saúde

—Universidade Federal do Espı́rito Santo and the Comissão Nacional de Ética em Pesquisa

(CONEP), and the Institutional Review Boards of Boston University Medical Center and

New Jersey Medical School—Rutgers University (formerly UMDNJ). We obtained written

informed consent and assent in Portuguese in accordance with age-specific ethical guidelines.

Results

From April 2013 to June 2015, we screened 53 TB cases, but excluded 5 (10%) of them

(Figure A in S1 File). Also, of the 253 eligible household contacts, 23 (9%) were excluded

because of missing TST results. Therefore, the study population comprised 48 index TB cases

and their 230 household contacts. Excluded contacts were similar to those included in terms of

age (p = 0.35), gender (p = 0.57) and BCG vaccination scar (p = 0.78).

Index TB cases and M. tuberculosis in cough aerosols

Index TB cases were mostly male (75%), with a median [interquartile range, IQR] age of 31

years [22–44], had a median duration of cough of 12 [7–24] weeks, 75% were sputum AFB 3+,

and 69% had advanced disease on chest radiograph Table 1 and Table A in S1 File. Nineteen

(40%) were aerosol-negative, 13 (27%) had low aerosols (1–9 CFU) and 16 (33%) had high

aerosols (�10 CFU); there was significant variability in CFU among aerosol-positive patients

(median 31, range 1–333). Unlike sputum AFB, aerosol CFU was not associated with markers

of pulmonary disease severity or bacterial load in sputum (Table 1).

Household contacts and baseline TST results

Household contacts were young (median age 23 [15–42]), majority female (58%) and 84% had

a BCG scar (Table 1). The number of contacts exposed to aerosol-negative, low, and high aero-

sol cases was 82 (36%), 64 (28%) and 84 (37%), respectively (Figure A in S1 File). At baseline

(Table 2 and Fig 1, Panel A), the frequency of TST�10mm in contacts increased following a

dose-response pattern as aerosol CFU increased: aerosol negative (59%), low aerosol (67%),

and high aerosol (75%), respectively (p = 0.46); these results were unchanged when using a

TST cut-off of 5mm or 15 mm. Similarly, in a quantitative analysis, the median TST diameter

increased in parallel to aerosol CFU. In contrast, when using sputum AFB to risk-stratify the

exposure, neither the proportion of contacts with TST�10 mm nor the TST diameter followed

a dose-response pattern.

TST conversion in contacts

Seventy-six (33%) contacts had TST<10mm at baseline and were therefore at risk of TST con-

version (Fig 1, Panel A). Of these, 34/82 (41%), 21/64 (33%) and 21/84 (25%) were contacts of

aerosol-negative, low and high aerosol TB patients, respectively (p = 0.46). By 8–12 weeks after

Cough aerosol cultures of M. tuberculosis to predict outcomes after exposure
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Table 1. Characteristics of 48 index tuberculosis cases and their 230 household contacts according to the number of colony-forming units of M. tuberculosis in

cough-generated aerosols and sputum acid-fast bacilli smear microscopy results.

Characteristic Total Aerosol negative

(CFU = 0)

Aerosol positive P1 Sputum AFB smear P1

Low aerosol

(<10 CFU)

High aerosol

(�10 CFU)

1+ or 2+ 3+

Index Case Factors

N 48 19 (40) 13 (27) 16 (33) 12 (25) 36 (75)

Age 31 [22–44] 35 [22–50] 31 [22–44] 30 [22–43] 0.71 29 [23–38] 35 [22–45] 0.32

Gender

Male 36 (75) 14 (74) 10 (77) 12 (75) 0.98 10 (83) 26 (72) 0.44

Female 12 (25) 5 (26) 3 (23) 4 (25) 2 (17) 10 (28)

Karnofsky score

80 24 (50) 9 (47) 4 (31) 11 (69) 0.12 6 (50) 18 (50) 1.0

90–100 24 (50) 10 (53) 9 (69) 5 (31) 6 (50) 18 (50)

VACS 7 [5–9] 7 [5–9] 7 [5–9] 7 [5–9] 0.72 5 [4–6] 7 [5–8] 0.09

Cough peak flow2 (mL/min) 270 [150–370] 275 [170–370] 280 [200–400] 245 [120–335] 0.83 290 [230–420] 245 [120–360] 0.20

Chest radiograph 0.74 0.09

Normal/Minimal 3 (6) 2 (11) 1 (8) 0 2 (17) 1 (3)

Moderate 12 (25) 4 (21) 3 (23) 5 (31) 1 (8) 11 (30)

Advanced 33 (69) 13 (68) 9 (69) 11 (69) 9 (75) 24 (67)

Cavitations 0.96 0.24

Absent 7 (15) 3 (16) 2 (15) 2 (13) 3 (25) 4 (11)

present 41 (85) 16 (84) 11 (85) 14 (87) 9 (75) 32 (89)

Sputum volume (mL) 5 [2–10] 3 [1–5] 2 [1–4] 7 [4–10] 0.09 5 [2–5] 5 [2–10] 0.85

Sputum AFB smear 0.78

1+ 3 (6) 2 (11) 0 1 (6) - -

2+ 9 (19) 4 (21) 2 (15) 3 (19) - -

3+ 36 (75) 13 (68) 11 (85) 12 (75) - -

Sputum MGIT culture (DTP) 5 [4–7] 6 [4–9] 5 [4–7] 4 [4–6] 0.30 8 [6–27] 5 [4–6] 0.03

Aerosol CFU

Median [IQR] 2 [0–45] 0 3 [2–5] 72 [45–102] - 1 [0–29] 3 [0–58] 0.50

Mean {sd} 33.1 {65.2} 0 3.3 {2.2} 97 {82.7} - 38.8 {94.7} 31.3 {56.6} 0.73

Range [0–333] [0–0] [1–8] [17–333] - [0–333] [0–203]

Household Contact Factors

N 230 82 64 84 43 187

Age 23 [15–42] 27 [15–48] 23 [15–44] 21 [13–40] 0.06 23 [16–44] 23 [13–41] 0.27

Gender 0.98 0.41

Male 95 (42) 32 (42) 27 (42) 36 (43) 16 (37) 79 (43)

Female 130 (58) 45 (58) 37 (58) 48 (57) 27 (63) 103 (57)

BCG scar N 125 51 45 29 0.31 16 109 0.75

Yes 105 (84) 41 (80) 37 (82) 27 (93) 13 (81) 92 (84)

No/Uncertain 20 (16) 10 (20) 8 (18) 2 (7) 3 (19) 17 (16)

Definition of abbreviations: AFB (acid-fast bacilli), CFU (colony forming units of M. tuberculosis), DTP (Days-to-positive in MGIT 960 culture), VACS (visual analog

cough scale)

Values are median [IQR] or n (%) unless otherwise specified

Missing values (N): MGIT (17), sputum volume (12), contact age (6),
1 P values are Kruskal Wallis and Chi Square for index factors. For contact factors, we used generalized estimating equations (GEE).
2 The highest of 3 peak flow measurements was used for this analysis

https://doi.org/10.1371/journal.pone.0206384.t001
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Table 2. Tuberculin skin test (TST) and interferon gamma release assay (IGRA) in household contacts according to the number of colony-forming units of M.

tuberculosis in cough-generated aerosols and sputum acid-fast bacilli smear microscopy results.

Characteristic Total Aerosol negative

(CFU = 0)

Aerosol positive P1 Sputum AFB smear P1

Low aerosol

(<10 CFU)

High aerosol

(�10 CFU)

1+ or 2+ 3+

Household Contact Factors

N 230 82 64 84 43 187

TST 1 (mm)

Median [IQR] 13 [0–18] 11 [0–16] 13 [0–20] 14 [9–18] 0.46 15 [10–20] 13 [0–17] 0.13

Mean {sd} 11.0 {8.1} 9.8 {7.7} 11.6 {8.5} 12.5 {7.7} 13.4 {7.4} 10.8 {8.0}

Range [0–28] [0–23] [0–25] [0–28] [0–23] [0–28]

< 5mm 66 (29) 28 (34) 20 (31) 18 (21) 0.43 8 (19) 58 (31) 0.29

�5mm 164 (71) 54 (66) 44 (69) 66 (79) 35 (81) 129 (69)

< 10mm 76 (33) 34 (41) 21 (33) 21 (25) 0.33 10 (23) 66 (35) 0.26

�10mm 154 (67) 48 (59) 43 (67) 63 (75) 33 (77) 121 (65)

<15mm 134 (58) 56 (68) 33 (52) 45 (54) 0.35 18 (42) 116 (62) 0.04

�15mm 96 (42) 26 (32) 31 (48) 39 (46) 25 (58) 71 (38)

TST max2 (mm)

Median [IQR] 14 [10–18] 14 [4–16] 14 [0–20] 15 [12–20] 0.22 15 [12–20] 14 [8–18] 0.24

Mean {sd} 12.7 {7.6} 11.3 {7.2} 12.5 {8.3} 14.2 {7.1} 14.1 {6.7} 12.3 {7.7}

Range [0–28] [0–23] [0–25] [0–28] [0–23] [0–28]

< 5mm 49 (21) 21 (26) 17 (27) 11 (13) 0.21 5 (12) 44 (24) 0.21

�5mm 181 (79) 61 (74) 47 (73) 73 (87) 38 (88) 143 (76)

< 10mm 56 (24) 24 (29) 17 (27) 15 (18) 0.41 8 (19) 48 (26) 0.41

�10mm 174 (76) 58 (71) 47 (73) 69 (82) 35 (81) 139 (74)

<15mm 124 (54) 53 (65) 32 (50) 39 (46) 0.22 17 (40) 107 (57) 0.05

�15mm 106 (46) 29 (35) 32 (50) 45 (54) 26 (60) 80 (43)

IGRA max (IU/ml)

N 116 34 22 60 27 89

Median [IQR] 0.3 [0–10] 0.09 [0–3.7] 0.9 [0.01–10] 5.5 [0.01–10] 0.08 0.01 [0–5.8] 0.4 [0.01–10] 0.26

Mean {sd} 4.6 {7.2} 2.9 {5.2} 4.8 {6.2} 8.4 {10.3} 2.7 {4.2} 5.1 {7.5}

Range [0–32] [0–25.1] [0–31] [0–32] [0–10] [0–32]

< 0.35 58 (51) 29 (60) 20 (48) 9 (38) 0.50 10 (63) 48 (49) 0.51

�0.35 56 (49) 19 (40) 22 (52) 15 (62) 6 (37) 50 (51)

<10 81 (71) 41 (85) 27 (64) 13 (54) 0.12 13 (81) 68 (69) 0.43

�10 33 (29) 7 (15) 15 (36) 11 (46) 3 (19) 30 (31)

IGRA delta

N 58 32 12 14 7 51

Median [IQR] 0.01 [0–0.04] 0 [0–0.02] 0.02 [0.01–0.1] 0.03 [0.01–20.1] 0.09 -0.03 [-.01–0.1] 0.01 [-0.03–0.04] 0.14

Mean {sd} 2.3 {8.3} -0.6 {2.7} 2.7 {8.8} 8.5 {12.4} -0.9 {2.6} 2.7 {8.7}

Range [-8.4–30.5] [-8.3–7.2] [-0.03–30.5] [-2.8–28.9] [-6.9–0.7} [-8.3–30.5]

Definition of abbreviations: IGRA (interferon gamma release assay, Quantiferon Gold In-Tube), TST (tuberculin skin testing).

Values are median [IQR] or n (%) unless otherwise specified

Missing values (N): IGRA (114), IGRA delta (172).
1 P values are estimated using generalized estimating equations (GEE).
2 The maximum TST value (TST1 or TST2) was used for each individual

https://doi.org/10.1371/journal.pone.0206384.t002
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enrollment, 16 (21%) contacts had undergone TST conversion. Of these, 7 (21%) were contacts

of aerosol-negative, 3 (14%) of low and 6 (29%) of high aerosol cases (p = 0.52). The median

diameter in TST converters of high aerosol (21 mm [IQR 20–24]) patients was larger than in

those of aerosol-negative (14 mm [IQR 14–16], P = 0.02) patients.

IGRA readouts in household contacts

To examine the possibility of TST confounding by BCG and boosting, we analyzed infection

outcomes according to IGRA. Qualitatively, the proportion of individuals with IGRA+ at

study conclusion (8–12 weeks) followed a similar aerosol dependent dose-response pattern to

that observed with TST results (Table 2). Similarly, quantitative IGRA readouts showed a

strong dose-response pattern according to aerosol CFU, both when measured as mean maxi-

mum IGRA values per contact (Fig 1, Panel B; P = 0.08) or, in TST converters only (Fig 1,

Panel C; P = 0.02). As observed with TST results, these quantitative IGRA differences were not

apparent when using sputum AFB to risk-stratify the exposure (Table 2 and Fig 1).

Age stratified analysis of TST results

To further elucidate the potential effect of BCG on TST and indirectly estimate community-

based transmission, we performed an age-stratified analysis of TST results. The proportion of

contacts with TST� 10 mm was similar across all ages, 0–10 years 26/37 (70%), 11–20 years

42/56 (75%), 21–40 years 54/70 (77%) and> 40 years 46/61 (75%). However, except for young

children (0–10 years) where BCG could be influencing TST results, the prevalence of infection

across contact age groups was consistently lower in contacts of aerosol-negative patients when

compared to contacts of aerosol-positive patients, suggesting TST-positive results in the for-

mer likely reflect cumulative community exposures. Further, TST induration sizes and IGRA

readouts were consistently larger for aerosol-positive HHCs in each age group (Fig 2).

Secondary TB disease in household contacts

After a median follow-up of 3.6 years, 13 of 230 (5.6%) contacts developed secondary TB dis-

ease, of which 9 (4%) were culture-positive cases. Of the latter, 1/82 (1.2%) was in contacts of

aerosol-negative cases and 8/148 (5.4%) in contacts of aerosol-positive cases (p = 0.176). The

Fig 1. TST and IGRA results in 230 household contacts of TB patient according to the number of CFU of M.

tuberculosis in cough-generated aerosols or AFB smear microscopy in the index TB case. (A) Histograms represent

the proportion of contacts with a TST�10mm at baseline (black) and those with TST conversion (grey). The solid line

represents the median TST diameter (mm) for contacts with TST�10mm at baseline (circles) and maximum TST for

those with TST conversion (triangles) for each exposure group. (B) Standard box plots of maximum IGRA readouts in

contacts of smear + culture + TB cases. P = 0.08 for aerosol CFU, p = 0.26 for AFB sputum smear (C) Standard

box plots of IGRA readouts in contacts with TST conversion. P = 0.02 for aerosol CFU, p = 0.33 for AFB sputum

smear.

https://doi.org/10.1371/journal.pone.0206384.g001
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corresponding incidence of culture-proven secondary TB disease was 356 cases per 100,000

(95% CI 50–2,331) and 1,439 (95% CI 719–2,878), respectively. When all 13 secondary TB

cases were included (4/82 [5%] vs. 9/148 [6%]), the association between positive aerosols and

risk of secondary TB disease was weaker (p = 0.73).

Discussion

In this household contact study in a setting with moderate TB incidence, we found that con-

tacts of high aerosol TB patients were more likely to become infected and had larger TST and

IGRA readouts compared to contacts of low and negative aerosol TB cases. Moreover, albeit

limited by a small sample size, most cases of culture-proven secondary TB in contacts clustered

around aerosol–positive index TB cases. Data from this study are consistent with our initial

study in Uganda where contacts of high aerosol cases were also more frequently infected, dis-

played larger TST and IGRA readouts [7], and were at increased risk of incident TB disease

(8). Taken together, these findings confirm that aerosol CFU is a promising marker of trans-

mission risk and strengthens our hypothesis that the inoculum size is important in modulating

TB outcomes after exposure in humans [5].

Fig 2. Proportion of household contacts with a positive (�10mm) tTST and IGRA at study completion (8–12

weeks) by contact age group and CFU of M. tuberculosis in cough-generated aerosols in the index case: Negative

(CFU = 0) or positive (CFU�1). The “N” under each histogram indicates the number of contacts within each age-

exposure category. The stars (�) represent the median TST or mean IGRA readout associated with each group.

https://doi.org/10.1371/journal.pone.0206384.g002
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Close contacts of pulmonary TB cases are known to have increased risk of TB infection and

disease when compared to the general population [2]. However, there is abundant both experi-

mental and epidemiological evidence of marked variability in risk, as most secondary infec-

tions and disease cases cluster around a minority of TB cases [2–4]. Our findings that only a

minority of sputum AFB+ (and culture+) TB cases naturally produce viable aerosolized M.

tuberculosis during cough- is consistent with the existence of disease superspreaders [21]. As

such, measuring cough aerosols allows identification of a subset of individuals at a particularly

high risk of infection and disease, presumably as a result of a larger infectious dose. It follows

that these contacts would benefit most of preventive therapy, while also increasing the effi-

ciency of household contact investigations by redefining the population at highest risk. As we

observed previously, these findings were not apparent through the prism of two standard indi-

cators of infectiousness such as sputum AFB and lung cavitation on chest radiograph suggest-

ing that risk stratification is limited without aerosols, the infectious moiety in TB [3].

In this study, we observed a dose response pattern in prevalent TB infection per aerosol

group, an association that was not observed in Uganda. This suggests the aerosol phenotype is

stable over time, as the 1st TST results reflect the index cases’ infectiousness prior to study initi-

ation. Interestingly, the proportion of aerosol-negative contacts with TST�10 mm at baseline

was 59%, which is above the expected level of community transmission in Brazil [22]–indicat-

ing TST positivity does occur after exposure to aerosol-negative TB disease. However, whereas

there was variability in individual results, the median IGRA in contacts of aerosol-negative TB

patients was close to zero, suggesting that a TST+/IGRA- result in these contacts may be mea-

suring a qualitatively different infection when compared to a comparatively positive TST result

that is also accompanied by a robust IGRA response in contacts of aerosol-positive patients.

Some differences from our initial Ugandan studies [6–8] are noteworthy. First, we found a

higher rate of aerosol production (60% vs 36%) in TB cases from Brazil. We suspect this is

because in this study most patients were sampled prior to initiating antituberculous treatment.

The rapid decrease of culturable organisms in aerosols is consistent with both experimental

and clinical studies showing a marked reduction in infectiousness promptly after chemother-

apy is started, even when sputum AFB smear and culture remain positive [3, 23,24]. Second,

we did not find a significant difference in TST conversion per aerosol groups, but rather

observed the effect of aerosols on TST positivity at baseline. Given the small number of TST

converters in this study (n = 16), our study was likely underpowered to detect differences in

TST conversion. Nevertheless, as observed in Uganda, IGRA readouts among Brazilian TST

converters of high aerosol cases were significantly higher than those of aerosol-negative cases–

suggesting that some conversions in aerosol-negative contacts could be due to TST boosting or

low dose infection, and hence, presumably carry a lesser risk of progression to TB disease. An

alternative explanation is that a delayed IGRA response is due to a less intense infectious expo-

sure [25]. Finally, Ugandan contacts had a higher frequency of TST�10 mm and larger TST

induration sizes, likely reflecting increased community transmission and more advanced dis-

ease in TB cases in the former setting.

We used TST as our primary outcome because it is the most widely used test to diagnose

M. tuberculosis infection in resource constrained settings and to be consistent with our prior

Ugandan study. Although BCG is known to produce false positive TST results, the effect is

minimal after 10 years of age [26]. Further, 75% of HHCs had TST� 10 mm compared with

53% of IGRA� 0.35 UI/ml which is consistent with other household contact studies in devel-

oping countries whereas TST often yields more positive results compared with IGRA [27–28].

We have now accumulated enough evidence to demonstrate that our findings are neither

spurious nor related to the aerosol collector device used [10]. To date, our group has collected

aerosols in more than 25o patients from The United States, Uganda, and Brazil, and others
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have validated the CASS apparatus in South Africa [11]. Taken together, our data confirm the

marked variability in TB transmission described in seminal studies [3] and in multiple epide-

miological studies in both low and high burden settings [29,30]. Future studies should evaluate

the use of exposure-based interventions where targeted preventive therapy is provided based

on the ability of the TB index case to aerosolize M. tuberculosis rather than in the TST/IGRA

status of the contacts and compare the efficacy and cost-effectiveness of such a strategy against

universal preventive therapy, gene signatures blood biomarkers [31] and predictive scores

[32–34].

Our study has limitations. In its current form, the CASS device is designed as a research

tool rather than a point of care test, which limits its ability to be used at peripheral health care

centers in developing countries where most TB cases are concentrated. Future designs should

try to improve its applicability in resources constrained settings and to incorporate polymerase

chain reaction (PCR) technologies to more rapidly identify aerosolized M. tuberculosis,
although this improvement in time-to-result may not adequately reflect bacterial viability in

aerosols [35]. Importantly, in the present study, the number of CFU in aerosols after two

weeks of growth in cultures did not alter the final categorization (e.g. negative, low or high),

suggesting that exposure-based interventions may be implementable in a timely manner. We

had an important number of missing IGRA results in contacts; selection bias may have been

introduced if differential IGRA levels were seen on contacts of high aerosol TB cases. We did

not have access to genotypic testing of M. tuberculosis isolates to confirm that secondary TB

cases originated from the index TB case in the household; however, Vitória is a setting with

moderate TB incidence and thus we expect that most of the secondary TB cases originated

from the household TB index case. Finally, our study was underpowered.

In conclusion, cultures of M. tuberculosis from cough-generated aerosols predict risk of

infection, as measured by both qualitative and quantitative TST and IGRA readouts. Our

results further strengthens the argument of using cough aerosols to implement targeted pre-

ventive therapy, a necessary component for current TB elimination targets.
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