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Abstract

Background

Exposure to beryllium may lead to granuloma formation and fibrosis in those who develop

chronic beryllium disease (CBD). Although disease presentation varies from mild to severe,

little is known about CBD phenotypes. This study characterized CBD disease phenotypes

using longitudinal measures of lung function.

Methods

Using a case-only study of 207 CBD subjects, subject-specific trajectories over time were

estimated from longitudinal pulmonary function and exercise-tolerance tests. To estimate

linear combinations of the 30-year values that define underlying patterns of lung function,

we conducted factor analysis. Cluster analysis was then performed on all the predicted lung

function values at 30 years. These estimates were used to identify underlying features and

subgroups of CBD.

Results

Two factors, or composite measures, explained nearly 70% of the co-variation among the

tests; one factor represented pulmonary function in addition to oxygen consumption and

workload during exercise, while the second factor represented exercise tests related to gas

exchange. Factors were associated with granulomas on biopsy, exposure, steroid use and

lung inflammation. Three clusters of patients (n = 53, n = 59 and, n = 95) were identified

based on the collection of test values. Lower levels of each of the factor composite scores

and cluster membership were associated with baseline characteristics of patients.

Conclusions

Using factor analysis and cluster analysis, we identified disease phenotypes that were asso-

ciated with baseline patient characteristics, suggesting that CBD is a heterogeneous disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0188119 November 16, 2017 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Silveira LJ, Strand M, Van Dyke MV, Mroz

MM, Faino AV, Dabelea DM, et al. (2017) Clinical

tool for disease phenotyping in granulomatous

lung disease. PLoS ONE 12(11): e0188119. https://

doi.org/10.1371/journal.pone.0188119

Editor: Shama Ahmad, University of Alabama at

Birmingham, UNITED STATES

Received: February 21, 2017

Accepted: November 1, 2017

Published: November 16, 2017

Copyright: © 2017 Silveira et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: A limited data set is

available by request from the authors, who can be

contacted at fingerlint@njhealth.org,

maieril@njhealth.org and mrozp@njhealth.org.

Specifically, neither identifiers nor information on

exposure or job classification status can be shared

due to the rarity of the disease and potentially

identifying information contained in the exposure/

job classification data.

Funding: This work was supported by National

Institute of Environmental Health Sciences Grant

number PO1 ES11810-A1 (to LAM) and by the

https://doi.org/10.1371/journal.pone.0188119
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188119&domain=pdf&date_stamp=2017-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188119&domain=pdf&date_stamp=2017-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188119&domain=pdf&date_stamp=2017-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188119&domain=pdf&date_stamp=2017-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188119&domain=pdf&date_stamp=2017-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0188119&domain=pdf&date_stamp=2017-11-16
https://doi.org/10.1371/journal.pone.0188119
https://doi.org/10.1371/journal.pone.0188119
http://creativecommons.org/licenses/by/4.0/
mailto:fingerlint@njhealth.org
mailto:maieril@njhealth.org
mailto:mrozp@njhealth.org


with varying severity. These clinical tools may be used in future basic and clinical studies to

help define the mechanisms and risk factors for disease severity.

Introduction

Chronic beryllium disease (CBD) is caused by inhalation of beryllium particulate that initiates

an immune response in the lung. While many studies have examined beryllium’s ability to initi-

ate an immune response and cause granuloma formation [1–12], there are many questions

remaining regarding CBD clinical manifestations. Currently, there is a lack of understanding of

the determinants of disease progression and a corresponding lack of consensus regarding useful

definitions of severity. Although there have been several genetic polymorphisms and genes

whose expression have been associated with phenotypes consistent with more severe disease

[9–14], there have been no studies to date that have attempted to comprehensively characterize

or define the phenotypes of CBD. Such characterization has the potential to allow development

of individualized strategies of follow-up and care based on disease course and may enable more

thorough examination of risk factors for the different phenotypes of this disease.

In existing studies of CBD disease progression, pulmonary function tests (PFT) and exercise

testing results were used as surrogate indicators of disease severity.[13, 15–17] Because CBD

patients are usually seen at least biennially after diagnosis, physicians can follow disease pro-

gression over time to make decisions regarding treatment. The PFT and exercise testing

obtained are multidimensional: measurements are taken over time, with each one of these

tests consisting of multiple measures. Our current understanding of CBD suggests that

patients may demonstrate different phenotypes over time, with some developing severe airflow

limitation and others severe reduction in gas exchange,[17, 18] but no existing studies have

used the full complement of multiple longitudinal measures to examine these phenotypes.

Objective criteria for characterizing disease phenotypes would allow for consistency in disease

assessment and characterization for clinicians and for researchers. The purpose of this study

was to characterize longitudinal disease phenotypes in CBD using data reduction techniques

to simultaneously consider all the multi-dimensional data available over time and across mea-

sures. Our working hypothesis was that by using longitudinal pulmonary and exercise test

data, we could define different phenotypes in CBD and begin to have definitions of disease

severity that could be evaluated over time.

Methods

Overview of approach

Longitudinal lung function data were used to obtain estimates of the progression of disease for

each study subject. These estimates were used in factor and cluster analysis, in an attempt to

identify new phenotypic measures (factors) or classifications (cluster) of CBD disease. We

examined the consistency among the results of each approach by evaluating associations

between the few known predictors of severity available and the newly-developed factors and

clusters.

Overview of study population, design, and case definition

This was a case-only study. Subjects were patients seen at National Jewish Health (NJH), all of

whom provided informed consent according to a protocol reviewed by the Human Subjects
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Institutional Review Board at NJH (HS2374). A case of CBD had evidence of beryllium sensiti-

zation based on two or more positive blood lymphocyte proliferation test (BeLPT) results as

well as one of the following: 1) granulomas on a lung biopsy, 2) a positive bronchoalveolar

lavage (BAL) lymphocyte proliferation test and BAL lymphocytes percentages greater than

15%, or 3) chest radiography indicating an abnormal profusion score consistent with CBD.

For analysis purposes, diagnosis type was dichotomized, with groups 2) and 3) combined due

to small numbers of each type. We included all CBD cases seen at NJH who consented for

research and who had at least 3 visits to allow estimation of linear slopes (trajectories) over

time.

SSP-PCR determination of the HLA-DPB1 alleles

Genomic DNA was prepared from peripheral blood cells. HLA-DPB1 genotyping was per-

formed with blinding to the subject’s disease status using single specific primer polymerase

chain reaction (SSP-PCR) methodology developed by Welsh and Bunce. Based on alleles, a

subject was classified as Glu69 positive or negative.

Outcome definitions

Clinical evaluations were completed on initial assessment as well as during follow-up over

time at NJH. These evaluations included pulmonary function and exercise physiology testing,

as well as chest radiography. We included the following measures: forced expiratory volume in

one second (FEV1), forced vital capacity (FVC), diffusion capacity(DLCO), total lung capacity

(TLC), partial pressure of oxygen at rest (PaO2r) and maximal exercise (PaO2m), Arterial-alve-

olar gradient for oxygen at rest ((A-a)O2rest) and at maximal exercise((A-a)O2max), oxygen

consumption at maximal exercise (VO2m), and maximum workload(WLM). Descriptions of

procedures for these tests have been previously published.[17, 18] Per clinical practice, after

having two positive BeLPTs, patients normally are evaluated on an annual or biennial basis as

part of a surveillance program prior to diagnosis, and on an annual basis after a CBD diagno-

sis. All CBD subjects’ data available prior to and after diagnosis were included in this study.

Patient data

Information from medical records, such as steroid use and general demographic information,

was extracted along with all longitudinal results from clinical evaluations. Steroid use was

coded as “Ever” if the subject had ever been prescribed steroids for CBD and “Never” if they

had not. Subjects’ most recent chest x-ray images were used in this analysis and were coded

“Abnormal” if the subject’s International Labor Organization (ILO) classification of chest

radiograph’s profusion score was 0/1 or higher and “Normal” otherwise. For BAL lymphocyte

percentage, we compared the lymphocytes from the subjects’ first visit and last visit in order to

assess whether subjects’ BAL lymphocyte percentages at different time points were associated

in any way with our disease severity measures.

Statistical analysis

Population characteristics were summarized using means and standard deviations for continu-

ous variables; counts and frequencies were used to summarize categorical variables. To capture

longitudinal information on disease course, we estimated longitudinal trajectories of several

clinically-relevant lung-function variables using linear mixed-effects models [19]. Patient-spe-

cific slopes (trajectories over time) and intercepts (starting values at first beryllium exposure)

were estimated via random intercept and slope terms. The time variable was defined as the
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interval from first beryllium exposure to most recent visit date. Covariates for age at testing

(time-varying), sex, and race were also included in the model. Time-specific predicted values

for each subject were calculated for each lung-function variable using the fitted estimates from

the model for that variable; the primary time point of interest was 30 years since first exposure

since it captures both the patient starting point (intercept) and trajectory (slope) estimates.

The longitudinal models were fit using SAS 9.2.[20]

To attempt to identify distinct groups of patients, or phenotypes, demonstrating a similar

pattern of lung function at 30 years after exposure within each group, cluster analysis was

performed on all the predicted lung function values at 30 years. We used the “kError”

method, which accounts for the fact that these 30-year time points are not observed, but

rather, predicted values.[21] To estimate quantitative summary measures of the lung func-

tion values, linear combinations of the 30-year values that define underlying patterns of lung

function were calculated based on a factor analysis. In contrast to a cluster analysis, which

assigns each individual to one cluster, factor analysis produces a quantitative estimate for

each factor for each person. Factor analysis reduces a set of variables to a smaller set of fac-

tors in an attempt to better represent the data for more effective reasoning, relevant insights,

or better visualization. Conceptually, each person is placed on a continuum for each of the

factors rather than forcing assignment to a particular group. After the initial extraction of

factors using the “factanal”function (https://www.rdocumentation.org/packages/FAiR/

versions/0.4-15/topics/Factanal R version 3.1.1); which uses maximum likelihood estima-

tion) in R, a varimax rotation was chosen to simplify interpretation by creating orthogonal

(independent) factors.

Examination of the impact of using predicted values (i.e. estimated rather than known) on

identification of factors was evaluated through simulation since there is no analogous method

to directly account for the uncertainty as is available in the kError method for cluster analysis.

We simulated 25 replicates of multivariate normal data using the means, standard errors and

correlation structure observed in our data among the 30-year predicted values to determine

the consistency of the factors identified across data sets of similar structure. We similarly simu-

lated 25 replicates generated with random covariance matrices (i.e. ignoring the observed

correlation structure among lung function variables) but retaining the observed means and

standard errors. We conducted the factor analysis for each replicate.

We tested for association between cluster group membership or factor composite scores

with demographic, clinical and exposure characteristics measured at baseline using chi-

squared tests for cluster membership and ANOVA for factor composite scores.

Finally, to compare the results of the factor analysis and cluster analysis to associations we

would observe by testing each lung function or exercise test separately, we constructed models

to test whether steroid use was associated with the longitudinal trajectory of each lung function

variable and whether steroid use was significantly associated with both Factor composite score

and Cluster membership. We similarly tested for an association between each longitudinal tra-

jectory and having a job as a beryllium machinist (a surrogate measure for higher exposure).

These models were the same as described above, with the addition of the specific explanatory

variable.

Results

Two factors associated with lung function measures

Table 1 displays the characteristics of the 207 participants; we observed an average of 8 follow-

up visits for each patient (mean of 8.6, standard deviation 5.6). Two factors, or underlying

combinations of variables that captured covariation among all the 30-year lung function
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and exercise test variables, were identified in the factor analysis [22, 23] of the standardized

individual estimates of each lung function and exercise test measure at 30 years from first

exposure; 39% of the covariation in the data was explained by Factor 1, while 29% of the

covariation in the data was explained by Factor 2 (Table 2). The factor loads, or coefficients for

each lung function or exercise test variable, provide information on the relative importance

and directions of effect for each measure that contributed to the factor. The factor composite

score for each individual was the linear combination of the 30-year estimates using the factor

loads; a lower value for the factor reflected more severe disease. The composite score for Factor

1 predominately reflected PFT measures as the coefficients are largest for those measures, and

is related to airflow and lung volumes and their correlation with exercise, including both

VO2m and WLM. The composite score for Factor 2 consisted of exercise test measures that

reflect gas exchange. Of note is the stronger relationship of VO2m and WLM with the PFT

measures than with the other exercise variables. These results were highly consistent in terms

of the number of Factors, the variables contributing to them and the average coefficients

for each variable in the data simulated to have the same structure as our data. In contrast, in

replicate data sets that ignored the observed correlation structure among lung function vari-

ables, there were no factor structures that were the same as those observed in our data. These

results indicate that the Factor analysis findings are reproducible and driven by the correlation

between the lung function variables.

Table 1. CBD patient population demographics and clinical results (N = 207).

Characteristic Number (%)

Male n (%) 162 (78.3%)

Caucasian n (%) 166 (80.2%)

Smoking Status–Ever Smoker n (%) 100 (48.3%)

Mean (SD)

Age at diagnosis 53.6 (10.6)

Diagnosis Number (%)

By granulomas on biopsy n (%) 164 (79.2%)

By positive BAL LPT/>15% lymphocytes n (%) 38 (18.4%)

By radiography n (%) 5 (2.4%)

PFT and Exercise Outcomes at Baseline Mean (SD)

FEV1% predicted 90.4 (17.7)

FVC % predicted 88.1 (15.4)

TLC % predicted 103.1 (14.8)

DLCO % predicted 92.7 (21.5)

PaO2r (mmHg) 70.6 (8.9)

PaO2m (mmHg) 75.4 (10.9)

(A-a)O2 rest (mm Hg) 11.1 (7.3)

(A-a)O2 max (mmHg) 17.9 (13.4)

WLM—Maximum work Load Achieved (watts) 164.9 (50.0)

VO2 m (Liters/minute) 1.9 (0.53)

Exposure and Visit Characteristics Mean (SD)

Time from first exposure to diagnosis 22.8 (10.9)

Average exposure years* 15.2 (10.3)

Average number of visits 7.3 (5.6)

*If exposure end date unknown, estimated as date of diagnosis

https://doi.org/10.1371/journal.pone.0188119.t001
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Factors associated with granulomas on biopsy, exposure, steroid use

and lung inflammation

We next examined associations between the Factors for each person and demographic, clinical

and genetic features (Table 3) measured at baseline. Patients diagnosed with granulomas on

biopsy had lower Factor 2 (exercise test) composite scores on average (p = 0.001), indicating

poorer exercise gas exchange, compared to those diagnosed by lavage or radiography. Higher

exposure to beryllium was also associated with lower Factor 2 (exercise test) composite scores

on average (p = 0.003). Both Factor 1 (PFT, VO2m + WLM) and Factor 2 (exercise test) com-

posite scores were lower on average (p = 0.0001 Factor 1, p<0.0001 Factor 2) for patients who

had ever been treated with steroids compared to those who had never been treated. Similarly,

patients who had abnormal chest x-rays had lower composite scores on average (p<0.0001,

Factor 1, p<0.0001 Factor 2) compared to those with a normal chest x-ray. Finally, baseline

and most recent BAL lymphocyte percentages were negatively associated with Factor 2 (exer-

cise test) (p<0.0001); higher BAL lymphocyte percentage was associated with lower Factor 2

composite scores on average.

Three clusters identified

Using the same individual estimates in the factor analysis for lung function and exercise test

measure at 30 years from first exposure, three clusters were identified that minimized the

within-cluster variance.[23] There were 53 subjects in Cluster 1, 59 subjects in Cluster 2, and

95 subjects in Cluster 3; these cluster assignments were consistent in 25 replicates of the analy-

sis using random initial assignments of each person to a cluster. The characteristics of each

cluster are shown in Table 4; as expected, the mean of each of the individual 30-year estimates

differed across the three clusters (all p<0.0001). Tests of association between cluster member-

ship and lung function variables demonstrate worse lung function for those in Cluster 1 com-

pared to the other clusters. The average 30-year estimates were significantly lower for most

PFT and exercise test parameters, except A-a gradient, which was higher (indicative of worse

disease), in Cluster 1 compared to Cluster 3 (all p<0.0001). Two of the exercise test parameters

(VO2m and WLM) were statistically different between Clusters 2 and 3 (both p<0.0001); these

Table 2. Factors and loadings for standardized outcome estimates at 30 years.

Measure Factor 1 Coefficient * PFT,

VO2max +WLM

Factor 2 Coefficient *
Exercise Test

FEV1 0.872 -

FVC 0.980 -

TLC 0.772 -

DLCO 0.640 -

PaO2r -* 0.687

PaO2 m - 0.885

(A-a)O2rest - 0.696

(A-a)O2max - 0.892

VO2 m 0.621

WLM 0.632

% co-variation explained by factor

across all measures

0.39 0.28

*Coefficients less than 0.50 were excluded to focus factor development; indicated by “-”on strongest

distinguishing variables.

https://doi.org/10.1371/journal.pone.0188119.t002
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are the same two measures that were more correlated with the PFT measures than the exercise

test measures in the factor analysis. Individuals in Cluster 1 had significantly lower Factor 1

(PFT + VO2max and WLM) and Factor 2 (exercise test) composite scores on average com-

pared to Clusters 2 and 3 (p<0.0001, <0.0001), and Cluster 3 had significantly lower Factor 1

composite scores compared to Cluster 2 (p<0.0001) (Fig 1).

Baseline characteristics of individuals as predictors of cluster

membership

Individuals in Cluster 1 and Cluster 2 were more likely to be diagnosed based on having granu-

lomas on biopsy compared to Cluster 3 (Table 4; p = 0.01). Cluster 1 also had a significantly

higher proportion of patients who had been treated with steroids and had more abnormal

Table 3. Association between patient characteristics and factor composite scores.

Factor 1

PFT, VO2m + WLM*
P-Value Factor 2

Exercise Test *
P-Value

Sex 0.71 0.93

Male 0.04 (3.5) 0.01 (2.5)

Female -0.15 (2.9) -0.04 (3.4)

Race 0.56 0.96

Caucasian 0.02 (3.4) -0.005 (2.6)

Other -0.09 (3.1) 0.02 (3.4)

Age of Diagnosis -0.04 0.58 -0.01 0.84

Diagnosis Type 0.36 0.001

By biopsy granulomas -0.02 (3.5) -0.11(2.8)

By bronchoalveolar lavage or chest x- ray 0.48 (2.3) 1.3 (1.7)

Ever Smoked

Yes -0.21 (3.3) 0.38 -0.02 (2.3) 0.91

No 0.20 (3.4) 0.02 (3.1)

Steroids Ever

Yes -1.58 (3.5) 0.0002 -1.82 (3.3) 0.0005

No 0.48 (3.2) 0.60 (2.3)

Lymphocyte Percent§

Closest to Diagnosis -0.10 0.16 -0.31 <0.0001

Most Recent -0.10 0.20 -0.36 <0.0001

Abnormal CXR

Yes -3.0 (3.2) <0.0001 -4.4 (3.5) <0.0001

No .35 (3.2) 0.56 (2.0)

Exposure

Years 0.12 0.12 -0.02 0.77

Machinists -0.09 (2.6) 0.89 0.17 (2.7) 0.68

Non-Machinists -0.16 (3.5) -0.03 (2.8)

High exposure -0.27 (3.2) 0.21 -0.18 (2.9) 0.003

Low Exposure 0.58 (4.4) 1.1 (1.8)

High-Risk E69 Allele 0.83 0.92

Have an E69 allele -0.12 (2.3) -0.05 (2.8)

No E69 alleles 0.12 (4.5) -0.12 (3.5)

*Mean (SD) of factor composite score for categorical group or correlation between measure and composite score.
§Natural logarithm transformed

https://doi.org/10.1371/journal.pone.0188119.t003
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chest x-rays, than Clusters 2 and 3 (p<0.0001, p<0.0001). The third measure, BAL lymphocyte

percentage, was higher on average at diagnosis in Cluster 1 compared to Cluster 3, but not

cluster 2 (p<0.0001, p = 0.17). Baseline lung function also differed across Clusters based on

FEV1, FVC, TLC and DLCO (Table 5; all p< 0.0001); Cluster 1 had the lowest baseline lung

function, followed by Cluster 2 and then Cluster 3.

Longitudinal models with severity covariates included

Having a job as a beryllium machinist (a surrogate measure for higher exposure),was only

marginally significantly different between clusters and was not associated with either factor

(Table 6). The results from the individual longitudinal trait analyses were consistent with the

cluster and factor analyses that considered all of the lung function variables jointly; steroid use

was associated with worse trajectories over time for individual outcomes just as it was associ-

ated with clusters and factor values that represent poorer lung function. These results indicate

that the composite measures (factors and clusters) give information similar to individual mea-

sures while greatly reducing the number of variables that need to be considered in a statistical

analysis or disease severity summary for a clinician.

Discussion

The purpose of this study was to use data reduction techniques to comprehensively character-

ize CBD disease phenotypes using longitudinal information. Factor and cluster analyses were

performed with longitudinal exercise test and PFT model estimates to reduce the number of

outcome measures evaluated individually, and to determine if joint analysis of the results from

Table 4. Association between patient characteristics and clusters [n(%) or Mean (SD)].

Cluster 1

(n = 53)

Cluster 2

(n = 59)

Cluster 3

(n = 95)

P-valueΩ

Demographics

Male 43 (81.1%) 47 (79.7%) 72(75.8%) 0.72

Caucasian 43 (81.1%) 49 (83.1%) 74(77.9%) 0.58

Age of Diagnosis (years) 53.4 (12) 54.7 (10) 53.1(10) 0.65

Ever Smoked 22 (41.5%) 31 (52.5%) 54(56.8%) 0.20

Diagnosed by Granulomas 48 (98.0%) 54 (91.5%) 77(81.9%) 0.01

Lymphocyte Percent§

Closest to Diagnosis 3.14 (0.13) ξ 3.0 (0.12) 2.72(0.10) 0.03

Most Recent 3.0 (1.0) 2.9 (0.80) 2.8(1.0) 0.39

Abnormal Chest X-ray 18 (34.6%)*ξ 2 (4.0%) 3(3.0%) <0.0001

Treatment Ever 25(47.2%)*ξ 6 (10.2%) € 18(19.3%) <0.0001

Exposure

Years of Exposure 13.9 (9.7) 16.5 (12.0) 15.3(9.7) 0.42

Machinist vs. Non 9 (17.7%) 6 (12.0%) 25(28.1%) 0.06

High vs. Low 45 (88.2%) 38 (76.0%) 78(87.6%) 0.13

High-Risk E69 43 (89.6%) 45 (90.0%) 76(90.1%) 0.99

Ω Comparisons were ANOVA or Pearson’s chi-square tests
§Natural logarithm transformed

*Cluster 1 significantly differed from Cluster 2 (p<0.0001)
ξ Cluster 1 significantly differed from Cluster 3(p<0.0001)
€ Cluster 2 significantly differed from Cluster 3 (p<0.0001)

https://doi.org/10.1371/journal.pone.0188119.t004
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these longitudinal measures would produce a more comprehensive understanding and assess-

ment of CBD severity. The factor and cluster analyses provide complimentary information to

the characterization of CBD phenotype. The factor analysis identified underlying processes

being measured by the lung function variables. The cluster analysis grouped the patients in

terms of similarity across the measures of lung function in an attempt to find subgroups of

patients with similar physiologic characteristics.

We identified two unique underlying factors contributing to the covariance of the multiple

measures of lung function among patients with CBD; one factor included all the PFT measures

along with two exercise measures, and the other included the rest of the exercise test measures

of gas exchange. Patient-specific values for these factors were associated with membership in

one of three distinct groups of patients that were identified via clustering of the patients based

on similarity across the multiple measures of pulmonary physiology. In addition, both the fac-

tor and the cluster membership were associated with traditionally-held markers of CBD sever-

ity. Using both of these methods, we found that both the PFT data and exercise test data gave

unique and meaningful information towards the characterization of CBD.

We found some key differences in the patient characteristics that predicted the factors and

different clusters in our population of CBD subjects. Factor 1 (PFT + VO2max and WLM)

Fig 1. Comparison of factors between clusters. Cluster 1 had significantly lower composite scores than Clusters 2 or 3 (p<0.0001). Cluster 3 had

significantly lower PFT, VO2m + WLM composites than Cluster 2 (p<0.0001).

https://doi.org/10.1371/journal.pone.0188119.g001
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included the PFT plus two exercise test measures and these measures were the distinguishing

characteristics between two of the clusters of patients. These results might suggest that that

these physiologic abnormalities help define exercise capacity to a greater extent than the abso-

lute measures of gas exchange during exercise. It is interesting that DLCO, an assessment of

gas exchange, was not related with the exercise determination of oxygen levels and Alveolar-

arterial gradient, suggesting that it assesses other aspects of lung function. We also found that

there were proportionally more patients who worked as machinists and who were on cortico-

steroids in Cluster 3 compared to Cluster 2, supporting our current concepts of more severe

disease among those who are on treatment and those who tend to have higher beryllium expo-

sure. The variable “working as a machinist” is a surrogate of exposure and it is worth noting

that when evaluating high and low measures of exposure, both of these clusters had higher

exposure, although not statistically significantly different. There were even more patients on

treatment in Cluster 1, the cluster with the highest proportion of patients with an abnormal

chest x-ray (the most severe group). It is possible that these results could be an indication that

treatment is ineffective since Cluster 1 had more severe gas exchange abnormalities.

Our findings also indicate that both the PFT and exercise measures helped to differentiate

between the clusters, and that both types of lung physiology tests added unique information to

the characterization of CBD. These data support other CBD and sarcoidosis studies suggesting

that exercise tests may determine early physiologic abnormalities[24] as well as determine dis-

tinct abnormalities in disease.[25] Due to the physical requirements and the need to place an

arterial line, some patients are reluctant to complete the exercise testing. However, these results

may encourage patients to see the benefits of exercise physiology in disease diagnosis and

Table 5. Association between lung function and clusters.

Cluster 1 Mean (SD) (n = 53) Cluster 2 Mean (SD) (n = 59) Cluster 3 Mean (SD) (n = 95) P-value

Factors

Factor 1 PFT,+ VO2m + WLM -4.8 (2.3) *ξ 4.7(1.6) € -0.11(1.4) <0.0001

Factor 2 Exercise Test -2.7 (3.3) *ξ 0.56(1.9) 1.1(1.7) <0.0001

Estimate at 30 Years from First Exposure

FEV1 (liters) 1.86 (0.40)*ξ 3.11 (0.34)€ 2.6 (.32) <0.0001

FVC (liters) 2.34 (0.51) *ξ 4.03 (0.43) € 3.2 (0.34) <0.0001

TLC (liters) 4.75 (0.92) *ξ 6.46 (0.67) € 5.7 (0.63) <0.0001

DLCO (mL/min/mmHg) 15.3 (4.2) *ξ 29.5 (6.7) € 22.7 (4.7) <0.0001

(A-a)O2 rest (mmHg) 15.4 (5.1) *ξ 10.9 (3.15) 10.2 (3.3) <0.0001

(A-a)O2 max (mmHg) 29.6 (16.8) *ξ 17.2 (7.7) 14.2 (7.6) <0.0001

PaO2r (mmHg) 66.1 (5.8) *ξ 71.6 (4.5) 72.5 (4.33) <0.0001

PaO2m (mmHg) 67.0 (10.5) *ξ 76.9 (7.6) 78.5 (6.4) <0.0001

VO2m (liters/minute) 1.11 (0.2) *ξ 1.81 (0.27) € 1.38 (0.23) <0.0001

WLM (watts) 83.6 (20.5) *ξ 158.0 (27.1) € 118.5 (22.2) <0.0001

Baseline Value

FEV1% predicted 76.5 (15.0)*ξ 99.7 (14.7) 92.3 (16.1) <0.0001

FVC % predicted 76.5 (13.8)*ξ 97.2 (13.8)€ 89.0 (13.1) <0.0001

TLC % predicted 93.7 (14.7)*ξ 110.9 (12.3)€ 103.7 (13.4) <0.0001

DLCO % predicted 80.2 (24.4)*ξ 102.0 (19.2) 92.8 (18.5) <0.0001

*Cluster 1 significantly differed from Cluster 2 (p<0.0001),
ξ Cluster 1 significantly differed from Cluster 3 (p<0.0001),
€Cluster 2 significantly differed from Cluster 3 (p<0.001)

https://doi.org/10.1371/journal.pone.0188119.t005
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phenotyping. Future studies, with permutations of these models, may predict patient prognosis

based on intermittent exercise testing with more routine lung function data.

In a cross-sectional study of sarcoidosis patients,[26] three measurements from the PFT

testing were associated with a sarcoidosis disease severity score developed in that study. More

recent studies have evaluated other disease phenotypes with the use of longitudinal measures

to better understand disease etiology. In a study of Cystic Fibrosis (CF), longitudinal FEV1

percent predicted estimates at age 20 were the best at differentiating between severe and non-

severe groups of patients with Cystic Fibrosis using logistic regression and ROC curves.[27]

Other longitudinal Cystic Fibrosis studies have also used FEV1 or FVC to identify severe dis-

ease.[28] In our study, we included multiple PFT and exercise test measures, since it is our

clinical experience that there are different physiologic abnormalities that result from CBD

based on different types of lung impairment. For example, CBD may manifest as an isolated

airflow limitation, or a gas exchange abnormality[18, 24] and using multivariate techniques

enables better characterization of these and other clinically distinct phenotypes of disease.

CBD has historically been thought to be a homogeneous disease, although our studies suggest

heterogeneity of disease phenotype. Certainly, CBD is much less heterogeneous than sarcoido-

sis with only lung involvement evident in contrast to sarcoidosis in which multiple organs can

be involved; thus current paradigms for phenotyping sarcoidosis that address other organ

involvement besides lung are not applicable to CBD. It appears that the factors and clusters are

at least as sensitive at indicating disease severity as examining the longitudinal variables sepa-

rately. In the future, the possibility of using these developed clinical tools to evaluate associa-

tions with disease severity in large datasets with many predictors will decrease the complexity

Table 6. Longitudinal models of lung function and current severity proxies.

Severity Proxy Outcome Measure Time Slope Estimate (SE) P-value*

Treatment (Yes vs. No)

FEV1 0.40 (0.002) 0.0003

FVC 0.31 (0.15) 0.03

TLC 0.22 (0.18) 0.23

DLCO 3.58 (1.4) 0.01

VO2m 0.14 (0.03) <0.0001

WLM 19.8 (2.7) <0.0001

(A-a)O2r -4.22 (0.51) <0.0001

(A-a)O2m -9.4 (0.88) <0.0001

PaO2m 8.8 (0.86) <0.0001

PaO2r 4.4 (0.62) <0.0001

Machinist (Yes vs. No)

FEV1 -0.005 (0.12) 0.97

FVC 0.03 (0.16) 0.87

TLC 0.007 (0.004) 0.74

DLCO 0.38 (1.5) 0.79

VO2m 0.06 (0.03) 0.10

WLM 4.5 (3.0) 0.13

(A-a)O2rest -1.0 (0.58) 0.07

(A-a)O2max -0.47 (1.0) 0.64

PaO2m -0.47 (0.99) 0.63

PaO2r -0.19 (0.69) 0.78

*All models adjusted for age, sex and race

https://doi.org/10.1371/journal.pone.0188119.t006
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of the analyses and also reduce the number of adjustments for multiple comparisons. This may

be especially important as we define genetic and genomic risks for chronic beryllium disease.
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