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Abstract

Background: HP1 proteins are highly conserved heterochromatin proteins, which have been identified to be structural
adapters assembling a variety of macromolecular complexes involved in regulation of gene expression, chromatin
remodeling and heterochromatin formation. Much evidence shows that HP1 proteins interact with numerous proteins
including methylated histones, histone methyltransferases and so on. Cbx3 is one of the paralogues of HP1 proteins, which
has been reported to specifically recognize trimethylated histone H3K9 mark, and a consensus binding motif has been
defined for the Cbx3 chromodomain.

Methodology/Principal Findings: Here, we found that the Cbx3 chromodomain can bind to H1K26me2 and G9aK185me3
with comparable binding affinities compared to H3K9me3. We also determined the crystal structures of the human Cbx3
chromodomain in complex with dimethylated histone H1K26 and trimethylated G9aK185 peptides, respectively. The
complex structures unveil that the Cbx3 chromodomain specifically bind methylated histone H1K26 and G9aK185 through a
conserved mechanism.

Conclusions/Significance: The Cbx3 chromodomain binds with comparable affinities to all of the methylated H3K9, H1K26
and G9aK185 peptides. It is suggested that Cbx3 may regulate gene expression via recognizing both histones and non-
histone proteins.
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Introduction

The family of Heterochromatin protein 1 (HP1) proteins is a

family of highly conserved heterochromatin-associated non-

histone chromosomal proteins [1], which has important functions

in nucleus. These functions include gene activation or repression

[1,2,3,4], regulation of binding of cohesion complexes to

centromere [5,6,7], sequestration of genes to nuclear periphery

[8], and heterochromatin formation and propagation [9,10].

Orthologs of HP1 proteins have been indentified in yeast,

nematode, insects, chicken, mammals and plants [11]. In

mammals, there are three paralogs of HP1, HP1a, HP1b and

HP1c (also named as Cbx5, 1 and 3, respectively) [11]. Members

of the HP1 family are characterized by a typical domain

architecture, comprising of an N-terminal chromodomain

(CHD) and a C-terminal dimerization chromo shadow domain

(CSD) separated by a poorly conserved hinge region (H) [11],

which is different from the Polycomb subfamily of proteins (Cbx2,

4, 6, 7, and 8 in human) [12,13]. HP1 proteins function as

structural adapters which assemble a variety of macromolecular

complexes via either N-terminal chromodomain or C-terminal

chromo shadow domain [14].

To date, chromodomain has been found in a number of other

non-HP1 proteins [1]. In mammals, chromodomain-containing

proteins are responsible for gene regulation related to chromatin

remodeling and formation of heterochromatin [15]. It has been

reported that HP1 proteins mediate gene silencing by dynamic

association of the chromodomain with methylated histone tails

[16,17]. Recently, several structures of chromodomains of human

HP1 homologues in complex with methylated histone peptides

have been solved. Structural analysis of these Cbx proteins

indicates that human Cbx1, -3, and -5 preferentially recognize
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H3K9me3 in a similar manner, which has been observed in

Drosophila HP1 [12]. In addition to methylated histone H3, HP1

proteins have also been found to interact with numerous other

proteins. Some of these HP1 interacting partners are histone

methyltransferase Clr4/Suv39 [9], inner nuclear membrane

proteins [18], DNA methyltransferase DIM-2 [19], methyl CpG

binding proteins [20], and the origin recognition complex protein

ORC2 [21]. In addition, recent studies have shown that HP1

proteins can directly bind to not only methylated Lys26 of histone

H1 [22] but also automethylated Lys185 of histone methyltrans-

ferase G9a via its chromodomain [23]. Lys26 in histone H1.4 is di-

methylated next to a phosphorylation site at Ser27 [24]. Though it

has been reported that HP1 proteins are involved in methyl-

H1K26- and G9a-HP1-mediated gene silencing [25,26], the

molecular mechanisms are still unknown.

In this study, we determined the two crystal structures of the

human Cbx3 (HP1c) chromodomain in complex with methylated

histone H1 peptide and histone methyltransferase G9a peptide to

elucidate the structure basis for the recognition of Cbx3 to those

two proteins. Our structural analysis and biochemical data

unveiled that Cbx3 chromodomain binds to H1K26me2 peptide

and G9aK185me3 peptide via a conserved recognition mecha-

nism with comparable binding affinities compared to the reported

structure of Cbx3-H3K9me3 complex [12]. However, significant

differences were still observed, especially for the conformation of

H1K26me2 peptide. Thus, our results provided structural

evidences that Cbx3 may regulate gene expression via recognizing

both histones and non-histone proteins.

Results

Cbx3 chromodomain recognizes methylated peptides
from histone H1 and G9a

Chromodomain has been identified to be a methyl-lysine

binding motif involved in transcription regulation [27,28]. Many

chromodomain-containing proteins, such as HP1 proteins and

Polycomb group proteins, were reported to recognize methylated

histone tails [12,13,17,29]. Besides methylated histone H3K9,

Cbx3, also known as HP1c, can also bind to methylated Lys26 of

histone H1 and methylated Lys185 of G9a [12,22,23]. To

elucidate the binding affinity of Cbx3 chromodomain to these

two methylated sites, isothermal titration calorimetry (ITC) assay

was performed using histone H1K26 and G9aK185 peptides

bearing different lysine methylation states as substrates. As

expected, we found that Cbx3 chromodomain did not exhibit

detectable binding to either the H1K26 or G9aK185 peptide

without modification (Table 1 and Fig. 1). However, Cbx3

chromodomain was found to possess strong binding affinity to

both di- and tri-methylated H1K26, with a stronger binding

affinity for the tri-methylated mark (Kd values of 21 mM for

H1K26me3 compared to 52 mM H1K26me2) (Table 1 and

Fig. 1A). On the other hand, Cbx3 chromodomain can bind to

G9aK185 peptides with comparable binding affinity regardless of

their methylation states (Table 1 and Fig. 1B). Furthermore, we

found that Cbx3 chromodomain binds to both methylated H1K26

and G9a peptides with comparable dissociation constant values

compared to tri-methylated H3K9 peptides (Kd = 15 mM) [12]

(Table 1).

Overall, our binding assay demonstrated that Cbx3 chromo-

domain binds with comparable affinity to all of the methylated

H3K9, H1K26 and G9aK185 peptides. Kaustov, L. et al have

proposed that chromodomain from Cbx proteins appear capable

of binding to an alternative ‘‘ARKS/T’’ motif [12], which is

shared in all the H3K9, H1K26 and G9aK185 peptides. It seems

that Cbx3 chromodomain binding to these methylated sites is

driven by the ‘‘ARKS/T’’ motif, and molecular mechanism of the

interaction should be conserved.

Structure basis for Cbx3 binding to methyl-histone
H1K26 and -G9a-K185

To unveil the molecular mechanism of the Cbx3 chromodo-

main interacting with methylated histone H1K26 and G9aK185,

Cbx3 chromodomain (residues 29–86, referred to as Cbx3) in

complex with histone H1K26me2 (residues 18–29) peptide and

G9a-K185me3 (residues 179–190) peptide were crystallized,

respectively. The crystals were diffracted to 1.8 Å and 2.4 Å

resolution, respectively. The structures were solved by molecular

replacement method using the structure of Drosophila Polycomb

chromodomain (PDB code: 1PDQ) as template. The quality of the

X-ray diffraction data and the structure refinement parameters are

shown in Table 2.

The overall structures of Cbx3 in complex with histone

H1K26me2 peptide and G9a-K185me3 peptide are shown in

Fig. 2A and 2C, respectively. Both structures adopt canonical

chromodomain fold and bind methyl-lysine containing peptides in

a manner similar to Drosophila HP1. Six amino acid residues of

both peptides, ‘‘KKAR(K26me2)S’’ of histone H1 and

‘‘HRAR(K185me3)T’’ of G9a (referred to as binding motif), are

buried in the binding groove of Cbx3 (Fig. 2A and 2C). In this

region of both peptides, the carbonyl groups of H1K22 and

G9aH181 form hydrogen bonds with Val32 of Cbx3, respectively.

The imidazolyl group of residue G9aH181 forms an additional

hydrogen bond with Asp68 of Cbx3 in Cbx3-G9aK185me3

complex. Residue H1K23 forms both main-chain and side-chain

hydrogen bonds and salt bridges with Glu29, Asp68 and Cys69

(Fig. 2B). H1A24 is anchored in the groove by Glu29 and Phe30 of

Cbx3 through main chain hydrogen-bond interactions (Fig. 2B).

Similarly, G9aA183, the counterpart of H1A24 is tethered in the

same way (Fig. 2D). Besides, the side chains of both alanine

residues are buried in a small hydrophobic pocket formed by

Phe48 and Leu49, the size of which is only sufficient to

accommodate a methyl group, consistent with the observation

from the structure of Cbx3-H3K9me3 (Fig. 2A and 2C) [12]. In

addition, H1R25 and H1S27 (corresponded to G9aR184 and

G9aT186 in binding motif) form several hydrogen bonds and salt-

bridges with Asn66 and Glu62 of Cbx3, respectively (Fig. 2C and

2D).

In the structure of Cbx3-H1K26me2 complex, the dimethyl-

ammonium of K26 is accommodated in a hydrophobic pocket

formed by three aromatic residues, Phe30, Trp51, and Phe54. The

side chain of dimethylated Lys26 is stabilized by cation-p and van

der Waals interactions within the aromatic cage (Fig. 2B). In

Cbx3-G9aK185me3 complex structure, the side chain of tri-

methylated Lys185 is anchored in the same aromatic cage. In

addition to cation-p and van der Waals interactions found in the

Table 1. Peptide binding specificity of human Cbx3
chromodomain.

Kd peptide (mM)

Peptide sequence unmodified me1 me2 me3

H1.4(18–29) TPVKKKARK26SAG N/B* N/B 52 21

G9a(179–190) KVHRARK185TMSKP N/B 28 9.0 14

*N/B: No binding was detected.
doi:10.1371/journal.pone.0035376.t001
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complex structure of Cbx3-H1K26me2, the tri-methylated lysine

residue of G9aK185me3 in Cbx3-G9aK185me3 complex forms

salt bridge with Asp58 on the other side of the methyl-lysine

binding pocket (Fig. 2D). Generally, we conclude that Cbx3

chromodomain specifically bind methylated histone H1K26 and

G9aK185 peptides through a conserved mechanism: 1) The side

chain of the methyl-lysine residue is positioned in a cage consisting

of three aromatic residues, which is similar to other methyl-lysine

binding modules [30,31,32]; 2) Residue alanine at the 22 position

of the methylated peptide is anchored in the binding groove

through main-chain interactions with Cbx3. Moreover, the side

chain of the alanine is buried in a small hydrophobic pocket,

which is a strict requirement for the recognition between Cbx3

and its binding partner; 3). The remaining residues of the peptide

interact with the chromodomain binding groove via hydrogen

bonds, salt bridges and van der Waals interactions.

Comparison of three structures of Cbx3 chromodomain
binding to methylated histone H3, H1 and G9a peptides

We then compare the two structures of Cbx3 in complex with

methylated histone H1 and G9a peptides with the structure of

Cbx3-H3K9me3 complex (PDB code: 2L11) [12]. Binding of both

histone H1 and G9a peptides do not induce significant

conformational change of the binding site of the chromodomain

compared to the structure in complex with H3K9me3 peptide

(Fig. 3A). The root-mean-square deviations (RMSD) are 0.7 Å and

Figure 1. Human Cbx3 chromodomain binds to methylated histone H1K26 and G9aK185. ITC data for Cbx3 chromodomain binding to (A)
H1K26 peptides (residues 18–29) and (B) G9aK185 peptides (residues 179–190). Lower panel show fit to a one-site binding model to the binding
isotherms.
doi:10.1371/journal.pone.0035376.g001

Table 2. X-ray Data collection and refinement statistics.

PDB Code 3TZD 3DM1

Data collection

Crystals Cbx3-H1K26me2 Cbx3-G9aK185me3

Space group I23 P3221

Cell dimensions

a, b, c (Å) 92.2, 92.2, 92.2 83.7, 83.7, 110.3

a, b, c (u) 90, 90, 90 90, 90, 120

Wavelength (Å) 1.5418 1.2827

Resolution (Å) 40.00-1.81(1.86-1.80)a 40.00 – 2.40(2.49 – 2.40)

Rmerge (%)b 8.6(51.2) 8.8(83.6)

I/sI 13.9(7.6) 15.1(4.4)

Completeness (%) 98.3(82.7) 99.9(100.0)

Redundancy 20.7(19.6) 10.5(10.4)

No. unique reflections 12066 18022

Refinement

Resolution (Å) 40.00-1.81 39.10 – 2.40

No. reflections 11,460 17,856

Rwork
c/Rfree

d 19.9/23.1 22.0/26.7

No. atoms

Protein 1,225 2,019

Water 19 91

Average B-factors (Å2)

Protein 18.8 43.3

Water 24.8 44.5

R.m.s. deviations

Bond lengths (Å) 0.019 0.021

Bond angles (u) 1.629 1.826

Ramachandran plote 95.0 94.2

Most favored regions (%) 5.0 5.8

Additionally allowed regions (%) Outliers (%) 0.0 0.0

aThe values in parentheses refer to statistics in the highest shell.
bRmerge = |Ii2,I.|/|Ii| where Ii is the intensity of the ith measurement, and ,I.is the mean intensity for that reflection.
cRwork =Sh|Fo(h)2Fc(h)|/ShFo(h), where Fo and Fc are the observed and calculated structure factor amplitudes, respectively.
dRfree was calculated with 10% of the reflections in the test set.
eCategories were defined by MolProbity.
doi:10.1371/journal.pone.0035376.t002
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1.8 Å for the aligned Ca atoms of the complex structures of Cbx3-

H1K26me2 and Cbx3-G9aK185me3 relative to Cbx3-H3K9me3,

respectively. The conformations of the binding motifs,

‘‘KKAR(K26me2)S’’ of histone H1 and ‘‘HRAR(K185me3)T’’ of

G9a, are also very similar to their counterpart, ‘‘QTAR(K9me3)S’’

of H3, in the complex structure of Cbx3-H3K9me3, with an

RMSD of 0.47 Å and 0.02 Å, respectively (Fig. 3A).

In spite of the overall conformational similarity among the

structures of Cbx3 in complex with methylated histone H3, H1,

and G9a peptides, there are still variations around the interface

where peptide substrate interacts with chromodomain. In contrast

to H3K9me3 peptide in the structure of Cbx3-H3K9me3

complex, both of the methylated histone H1 and G9a peptides

do not form b strand (Fig. 3A). In the structure of Cbx3-

H1K26me2 complex, the main chain of Lys22 at position 24 of

the binding motif adopts a rotation of about 90u relative to the

structures of both the G9a peptide and H3 peptide. So that the

side chain of Lys22 can be precisely inserted into the binding

groove (Fig. 3A and 3B). As a result, the conformation of amino

acid residues before the ‘‘KKAR(K26me2)S’’ of the methylated

histone H1 peptide shifts from the positions of its counterparts in

histone H3 peptide (Fig. 3B). The hydrogen bond formed by the

side chain of Tyr18 of histone H1 peptide with Glu29 of Cbx3

stabilizes such conformation (Fig. 2B). When compared with

Cbx3-H3K9me3 complex, the a helix (residues 70 to 79) of Cbx3

in the structure of Cbx3-G9aK185me3 complex moves 4.9 Å

away from the position of its counterpart in Cbx3-H3K9me3

complex, which may result from crystal packing artifact (Fig. 3C

and 3D). Because there are four Cbx3-G9aK185me3 complex in

one asymmetric unit and the a helices from the four protomers

assemble into a four-helix bundle (Fig. 3C). Thus, we concluded

that though Cbx3 chromodomain binds to H1K26me2 peptide

and G9aK185me3 peptide similarly to H3K9me3, significant

differences were still observed, especially for the conformation of

H1K26me2 peptide.

Discussion

Though HP1 was firstly identified to be transcriptional

repressor, more and more studies have uncovered HP1 as a

functionally multifaceted protein involved in not only heterochro-

matin formation and gene silencing, but also transcriptional

elongation, centromeric sister chromatid cohesion, telomere

maintenance and DNA repair [10,33,34]. Numerous biomacro-

molecules, including proteins and nucleic acids, have been

identified to be HP1-binding partners [33]. Tri-methylated lysine

9 residue of histone H3 (H3K9me3) is one of the most intensely

studied binding sites of HP1. Recent research indicated that

binding of HP1 to H3K9me3 marks provided a platform for a

number of interacting partners which would directly/indirectly

read out the information coded by H3K9me3 [23,35,36].

Figure 2. Structure basis for Cbx3 binding to methylated histone H1K26 and G9aK185 peptide. (A and C) Electrostatic surface depiction
of human Cbx3-histone H1K26me2, and Cbx3-G9aK185me3 complex. Peptide substrates are shown in a stick mode. Surfaces with positive
electrostatic potential are blue, and negative potential are red. The side chain of residue H1A24 (G9aA183) inserts into the small hydrophobic pocket
formed by Phe48 and Leu49 of human Cbx3. The size of the pocket is only sufficient to accommodate a methyl group but not other residue side
chains. (B and D) Binding of histone H1 peptide and G9a peptide in the binding groove of Cbx3 chromodomain, respectively. Hydrogen-bonds are
shown as dashed lines. Yellow: histone H1 peptide; Gray: Cbx3 chromodomain in Cbx3-histone H1K26me2 complex. Cyan: G9a peptide; Green: Cbx3
chromodomain in Cbx3-G9aK185me3 complex.
doi:10.1371/journal.pone.0035376.g002
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It is interesting that Cowell, I. G. et al found that HP1 was able

to tethered to chromatin regions lacking of methylated H3K9 [35].

The observations suggested that the association of HP1 with such

chromatin regions does not require H3K9me3. To explain the

observations, methylated lysine 26 residue of histone H1 was

considered to be required for the binding of HP1 [22]. Histone H1

is a linker histone which binds to the ‘‘nucleosome’’ from outside

and facilitates further compaction of chromatin [37]. In humans,

there are about 10 variants of histone H1, and many variants of

histone H1 follow a cell type or tissue specific expression pattern

[37,38]. Lysine 26 is present in all somatic H1 subtypes as well as

testis specific H1 histone H1t, though the N termini of histone H1

are poorly conserved. However, only H1.4 is methylated at lysine

26 and shares the ‘‘ARK26S/T’’ motif [25,39]. Thus we proposed

that specific binding of Cbx3 chromodomain to H1K26me2

should play an important role in H1K26me2 dependent gene

regulation, and even development and differentiation.

Among HP1-binding partners that function in the stability of

the higher-order structure of heterochromatin and gene silencing,

many of those are histone methyltransferases (HMTases). HP1

firstly bound to methylated H3K9 to establish a platform which in

turn recruits more histone H3K9 methyltransferase. This

propagation path of heterochromatin formation is called ‘‘self-

sustaining loop’’ [10]. Several histone H3K9 methyltransferases

have been reported to directly interact with HP1, including Clr4,

SUV39H1 and G9a [9,23,40]. However, interaction between G9a

and HP1 is different from that between other HMTases and HP1

[9,23,40]. Consistent with previous reports [23], our research

provided structural evidence that Cbx3 chromodomain interacts

with automethylated K185 of G9a in a similar molecule

mechanism compared with H3K9me3.

In summary, we determined the structures of Cbx3 chromodo-

main in complex with two different methylated peptides,

H1K26me2 and G9aK185me3 respectively. Our structural data

showed that Cbx3 chromodomain bound to both the methylated

peptides in a conserved molecule mechanism with comparable

binding affinity compared to H3K9me3 peptide.

Materials and Methods

Protein expression and purification
The chromodomain of Cbx3 (29–86) was subcloned into a pET-

28a-MHL vector. The protocol for protein expression and

purification is similar to that described before [41]. The N-

terminal histag was cleaved from Cbx3 chromodomain by the

addition of 0.05 mg of TEV protease per milligram of Cbx3,

followed by dialysis at 4uC for 12 h to remove imidazole. The

sample was then passed through a Ni-NTA column and the flow-

Figure 3. Comparison of three structures of Cbx3 chromodomain binding to methylated histone H3, H1 and G9a peptides. (A)
Superposition of human Cbx3 chromodomain in complex with methylated histone H1 peptide (yellow), histone H3 peptide (orange), G9a peptide
(cyan), Cbx3 chromodomains are colored as magenta, gray and green, respectively. (B) Superposition of histone H1 peptide (yellow), histone H3
peptide (orange). (C) Structure of Cbx3-H3K9me3 complex (magenta) was superposed to one protomer of the tetramer of Cbx3-G9aK185me3
complex (green) formed in one asymmetric unit. (D) The a helix (residues 70 to 79) of the chromodomain in the structure of Cbx3-G9aK185me3
complex (green) shifts 4.9 Å away from its counterpart in the structures of Cbx3-H3K9me3 (magenta).
doi:10.1371/journal.pone.0035376.g003
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through was collected and further purified by size exclusion

chromatography (Superdex 75, GE Healthcare). Purified Cbx3

chromodomain was collected and concentrated to 26 mg/ml in

50 mM Tris–HCl, pH 8.0 and 100 mM NaCl and 1 mM TCEP.

Isothermal titration calorimetry
Isothermal titration calorimetry measurements were performed

as reported previously [42]. Experiments were carried out by

injecting 60 ml of peptide solution (1–2 mM) into a sample cell

containing 40–100 mM protein of Cbx3 chromodomain in

20 mM Tris–HCl, pH 7.5, 150 mM NaCl. The ITC measure-

ments were fit to a one-site binding model using Origin Software

(MicroCal Inc.)

Protein crystallization, X-ray diffraction data collection
and structure determination

CBX 3 (26 mg/ml) and the trimethylated lysine peptide were

mixed in the ratio 1:1.2 and incubated overnight at 4uC and the

hanging drop was set up against the well solution of 40% PEG

550MME at 298 K at 1:1 ratio. Crystals appeared after 4 days and

were flash frozen in liquid nitrogen and the data was collected to

2.4 Å and 1.8 Å, respectively.

The data was processed with HKL2000 and scaled with

Scalepack [43]. Results can be found in the files den_out.pdf and

scale_log.pdf attached. The data integrated and scaled in the space

group P3221 was converted to mtz using the programs truncate

and unique. Molecular replacement was then performed using the

program Amore [44] using a model of the structure of Drosophila

Polycomb chromodomain (PDB code: 1PDQ). A good solution

with four molecules in the asymmetric unit was obtained. The

program RESOLVE [45] was used to improve the phases

obtained with the refined Amore model and ARP_WARP [46]

built 95% of the molecule.

CBX3 structure was obtained by molecular replacement and

traced by ARP_WARP [46]. Model building, model completion

and validation were then performed using the program Coot [47].

A final validation was done using MolProbity [48].
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