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In science in general and in the context of single-case experimental designs, replication of the
effects of the intervention within and/or across participants or experiments is crucial for esta-
blishing causality and for assessing the generality of the intervention effect. Specific develop-
ments and proposals for assessing whether an effect has been replicated or not (or to what
extent) are scarce, in the general context of behavioral sciences, and practically null in the single-
case experimental designs context. We propose an extension of the modified Brinley plot for
assessing how many of the effects replicate. To make this assessment possible, a definition of
replication is suggested, on the basis of expert judgment, rather than on statistical criteria. The
definition of replication and its graphical representation are justified, presenting their strengths
and limitations, and illustrated with real data. A user-friendly software is made available for
obtaining automatically the graphical representation.
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Replication in science in general and in
single-case experimental designs (SCEDs) in par-
ticular is crucial, as widely acknowledged in the
main SCED textbooks (e.g., Kazdin, 2020;
Kennedy, 2005; Ledford & Gast, 2018; Morley,
2018; Riley-Tillman et al., 2020; Sidman, 1960;
Tate & Perdices, 2019; U.S. Department of
Education, 2020) and in the What Works
Clearinghouse standards (Kratochwill et al.,
2013; U.S. Department of Education, 2020).
Replication has also been recently emphasized in
journal articles, both in the SCED context
(e.g., Hantula, 2019; Kazdin, 2021; Lanovaz
et al., 2019; Nikles et al., 2021; Tincani &
Travers, 2019; Walker & Carr, 2021) and in
other research contexts related to the behavioral

sciences (Dixon & Glover, 2020; Hedges, 2019;
Hillary & Medaglia, 2020). Specifically, relying
on the principles of SCED research instead of
statistical significance and the nomothetic
approach1 has been mentioned among the possi-
ble ways to deal with the replication crisis
(Hillary & Medaglia, 2020; Iversen, 2021;
Tincani & Travers, 2019), although there are
many possible reasons for this crisis, in relation
to the data-analytical decisions that researchers
continuously make (Laraway et al., 2019).
Following Sidman’s (1960) classification,

direct replication is designed to identify the
reliability of a finding, whereas systematic
(sometimes also called conceptual) replication is
designed to identify its generality (Tincani &
Travers, 2019; Walker & Carr, 2021). Direct
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replication usually takes place within the same
study, and it can be either an intrasubject
replication (e.g., an ABAB or an alternating-
treatments design) or an intersubject replica-
tion, as in a multiple-baseline design (Riley-
Tillman et al., 2020). Systematic replication
entails introducing planned modifications of
the original study by altering features of the set-
ting, the behavior, the participant(s), or some
component(s) of the intervention, as well as the
research team carrying out the study (Horner
et al., 2005; Tate & Perdices, 2019). In that
sense, systematic replication usually takes place
across studies (Kennedy, 2005).
Thus, replication is relevant both for internal

and external validity. For generalization or
external validity, several pieces of information
regarding the participant, the intervention, and
the setting are relevant when assessing the
degree to which an effect observed in one study
or in a set of studies can be expected to general-
ize beyond the existing studies (Hitchcock
et al., 2015; Maggin, 2015). Further, several
replications are necessary for identifying when,
where, and with whom an intervention is and
is not likely to be effective (Walker &
Carr, 2021).
As an additional use, replication is impor-

tant to help resolve the uncertainty that can
arise if different visual criteria and different
statistical analytical options lead to different
conclusions in the context of a single study
(Kazdin, 2020). That is, if the study is repli-
cated and a positive effect of the intervention
is observed repeatedly, the degree of uncer-
tainty will be reduced. Replication is not only
relevant in applied domains (e.g., replication
of intervention effects), but also when carrying
out methodological studies on SCED data
analytical procedures (e.g., Bishara et al.,
2021; Falligant et al., 2020). Thus, it is
important to have an objective way of defining
whether the results of different replications
agree or not.

Developments Needed for Assessing
Replications

Given the importance of replication, it is rele-
vant to consider how it has been suggested to be
assessed both in the SCED field and in the wider
scientific context. An initial data analytical
approach to replication has consisted of question-
ing the usefulness of p-values (Cumming, 2008;
Sanabria &Killeen, 2007).More recently, Schauer
et al. (2021) stated that, “Greater effort should be
devoted to ensuring that any proposed analysis
method aligns with clear and justifiable definitions
of replication” (p. 18). Thus, it is important to first
define replication in a manner that is consistent
with the research aims. Another recommendation,
in relation to replication was made by Maggin
(2015), who suggested that increased access to data
visualization tools might serve an important pur-
pose in effectively communicating results across
several replication attempts. He pointed at the
need to actively develop and refine methods for
coding, organizing, and presenting the informa-
tion drawn from a series of replication attempts. In
the current text, we propose a definition of direct
replication and a graphical way of assessing the
degree to which basic effects (i.e., A-B compari-
sons; Horner &Odom, 2014) are replicated in the
SCED context.
Previous proposals for the assessment of rep-

lication have taken place outside of the SCED
context and have been based on inferential sta-
tistics, including more complex technical details
and assumptions to determine whether required
sampling distributions are adequate. On the
one hand, Killeen (2005) proposed the proba-
bility of replication (labeled prep) as an alterna-
tive to the typically used p-values (i.e., the
probability of observing such an extreme result
as the one observed, or a more extreme one, in
case the null hypothesis is true). The probabil-
ity of replication (prep) quantifies, after a posi-
tive effect has been observed, the probability
that another positive effect would be obtained,
where the term “positive” is related to a
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pre-established minimum effect size. Further
details were provided by Sanabria and
Killeen (2007), also in the context of examples
with comparing groups. On the other hand,
the homogeneity test (Q-statistic referred to a
chi-square distribution) from the meta-analysis
context has been suggested (Hedges, 2019;
Hedges & Schauer, 2019b). When the
Q-statistic is used, it is necessary to define a
negligible heterogeneity that would not be con-
sidered as evidence against replication. Further-
more, it is necessary to consider several aspects:
(a) whether the burden of proof lies with repli-
cation or with failure to replicate (i.e., how the
null hypothesis is structured and whether the
evidence for replication would require accepting
or rejecting the null hypothesis); (b) when rep-
lication is defined as exact or approximate; and
(c) whether the studies are conceived as a fixed
set or a random sample from a population
(Hedges & Schauer, 2019b). After reviewing
several options, “the major conclusion about
testing hypotheses about replication is that dif-
ferent tests are possible and the choice among
them is not automatic, but a principled analytic
decision that requires some care” (Hedges,
2019, p. 11). Although none of these options
is a direct antecedent for the proposal made
here, they do refer to two important consider-
ations including: (a) establishing a priori how
much of an effect is desired, and (b) esta-
blishing a priori how much variability in effects
is acceptable, both of which are applicable to
the current proposal.

Aim and Organization of the Text

The aim of the current text is to propose a
simple visual descriptive tool for assessing the
degree to which an effect has been replicated
within a study or across studies. This tool
requires expert judgment for its definition,
rather than an arbitrarily pre-established
numerical cut-off. In that sense, the aim was to
avoid statistical inferential procedures and the

assumptions they require. Consequently, the cur-
rent proposal circumvents null hypothesis testing
whichmay not be of interest for a behavior analyst
using a SCED (e.g., Hartgerink et al., 2017).
Moreover, it also does not entail potentially prob-
lematic comparisons of p-values and the need to
be concerned with statistical power (Schauer
et al., 2021). Finally, it does not require using
more sophisticated options such as Bayesian anal-
ysis (Etz & Vandekerckhove, 2016), which can be
harder to learn (Natesan, 2019) and are not likely
to be included in courses for applied researchers
(Wolfe &McCammon, 2022). Thus, the applica-
tion of the proposal does not require applied
researchers to learn complex statistical analyses or
software (Brown et al., 2019).
In pursuit of this aim, the text is organized as

follows. First, a graphical representation called
the modified Brinley plot (Blampied, 2017) is
presented, with its main features, strengths, and
limitations. Second, the proposal is based on the
modified Brinley plot, including its methodolog-
ical framework, rationale, and examples. Limita-
tions and challenges related to the proposal are
also identified. Third, we explain, step-by-step,
how software developed for implementing the
proposal can be used. Finally, a discussion of the
implications of the proposal is presented.

The Modified Brinley Plot

Main Features
A modified Brinley plot (Blampied, 2017)

allows representation of an effect (i.e., a com-
parison between an A condition, such as a base-
line, and a B condition, such as an active
intervention) as a dot, whose coordinates are
defined by the Phase A mean and the Phase B
mean. An identity line (diagonal with inter-
cept = 0, slope = 1) is included to represent
the lack of difference between means. The dots
above the line indicate that the Phase B means
are greater than the corresponding Phase A
means, whereas dots below the line indicate
that Phase B means are smaller than the
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corresponding Phase A means. On such a plot,
several effects can be represented, within and
across participants. Raw data are not represen-
ted, but only summaries such as within-phase
means. It is also possible to include additional
visual aids for representing the desired magni-
tude of intervention effectiveness and a cut-off
point representing the normative range of the
target behavior (Blampied, 2017). The modified
Brinley plot is similar to the L’Abbé plot
(L’Abbé et al., 1987) used in meta-analysis for
visually assessing the consistency of effects across
studies (Anzures-Cabrera & Higgins, 2010).

Usefulness for Representing Effects
Within and Across Studies
Within-Study Example: Multiple Baseline
Design
Dorminy et al. (2009) used a multiple-baseline

design across four participants and across two

Figure 1
Raw Data for the Percentage of Correctly Filed Items Across
Four Children, Gathered by Dorminy et al. (2009)

Figure 2
Modified Brinley Plot for Dorminy et al. (2009)

Note. Each dot represents an A-B comparison, with the x-
axis coordinate defined by the baseline mean and the y-
axis coordinate defined by the intervention phase mean.
The green horizontal dotted line represents the desired
postintervention level, whereas the red vertical dotted rep-
resents whether this level was already present during the
baseline phase. The grey dashed diagonal line represents
the desired amount of change from the baseline level.
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behaviors to teach organizational skills to children
diagnosed with autism spectrum disorder and
Asperger’s syndrome. Figure 1 shows the time-
series line graph for the percentage of correctly
filed items, whereas Figure 2 shows the modified
Brinley plot for the same data. The relatively sta-
ble baseline and intervention levels suggest that
using means, as in the modified Brinley plot, is
reasonable.We did not depict the second behavior
(number of seconds it took students to locate spe-
cific items) in the same modified Brinley plot, as it
was expressed in different measurement units.
In Figure 2, each dot is an A-B comparison, and

the dots have four different colors, as they belong
to four different participants. The y-axis represents
the mean of the measurements in Phase B, whereas
the x-axis represents the mean of the measurements
in Phase A. All dots are above the solid diagonal
identity line, indicating that the intervention phase
average level (Phase B, y-axis) is higher than the
Phase A average level (Phase A, x-axis) for all partic-
ipants. Additionally, we added a green horizontal
line representing a supposed desired post-
intervention level of 90. Three of the Phase B
means are above this line. There is also a red vertical
line which indicates whether any Phase A means
were already above 90 even before the intervention
(i.e., to the right of the red vertical line), which is
not the case for these data. Finally, we added a grey
dashed diagonal line representing a supposed
desired improvement of 33% over the Phase A
level. The desired amount of improvement, speci-
fied as a percentage increase, entails that for higher
preintervention (Phase A) values, the amount of
change required after the intervention (Phase B) is
larger. For a Phase A mean of 55 (which is similar
to the Phase A mean for three of the participants),
this would entail requiring an intervention mean
of at least 55þ55�0:33¼ 55�1:33¼ 73:15.
All three participants with a Phase A mean of
approximately 55 had higher Phase B means
than 73.15. For the participant with a Phase A
mean of 74, the required level was 98.42 and it
was not achieved (the rightmost dot is below
the grey dashed line).

Within-Study Example: (Replicated) Alter-
nating Treatments Design
Thirumanickam et al. (2018) performed a

comparison between video modeling and video
self-modeling interventions to develop conver-
sational behaviors with four adolescents with
autism spectrum disorder who used augmenta-
tive and alternative communication. The data
for the comparison phase in which the two
interventions were alternated are presented in
Figure 3. It should be noted that the graph
reproduces the one by Thirumanickam
et al. (2018), not including a specific order for
the two conditions in each session (i.e., for each
measurement occasion there is one measure
that belongs to each condition). This makes
the direct vertical comparison between mea-
surements belonging to different conditions
easier.2 The raw data do not show a clear supe-
riority of either condition for all four partici-
pants. Although the later measurement
occasions for Sam and Dan suggested clearer
differentiation, the condition that is superior in
these final measurement occasions is not the
same for both participants.
The modified Brinley plot is represented in

Figure 4, with dots of the same color
corresponding to the same participant. There
are nine dots per participant, as there are that
many comparisons between the two conditions
(i.e., there are nine alternations of the A and B
conditions). The impression of a lack of superi-
ority of one of the conditions is also reflected
here, considering where the dots are located
with respect to the solid diagonal identity line.
Specifically, for Participant 1 (marked in red;
with most dots above the solid diagonal line),
condition B is superior, for Participant 2 (mar-
ked in green; with most dots below the solid
diagonal line), condition A is superior. For

2For data analytical options applicable to different kinds
of alternating treatment designs the interested reader can
consult Manolov and Onghena (2018) and Manolov,
Tanious, and Onghena (2022).
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Participant 3 (marked in blue; with dots
scattered around the solid diagonal line) there
is no clear superiority of either condition. For
Participant 4 (marked in yellow; with dots in
the lower left corner), there are some compari-
sons with superiority of condition B and some
overlapped dots with the same values for both
conditions (i.e., dots on the solid diagonal line).
For illustrative purposes, the current authors
added a horizontal green dotted line marking a

supposed desired postintervention level of 60.
Given that it is not directly clear which condi-
tion should be superior, we also added a dashed
grey diagonal line representing a supposed
desired increase of 50% (left graph of Figure 4:
video self-modeling superior to video modeling)
or decrease of 50% (right graph of Figure 4:
video modeling superior to video self-model-
ing). Few dots are above the grey dashed diago-
nal line or above the green horizontal line and

Figure 3
Raw Data for the Percentage of Conversation Behavior, Gathered by Thirumanickam et al. (2018)
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to the left of the red vertical line in the left
graph of Figure 4a, suggesting that any poten-
tial superiority of condition B (video self-
modeling) is not a replicated effect. Similarly,
only one dot is below the grey dashed diagonal
line, below the green horizontal line and to the
right of the red vertical line, suggesting very lit-
tle evidence of any potential superiority of con-
dition A (video modeling). Therefore, there is
no clear evidence about the superiority of either
condition.
The application of the modified Brinley plot

is made easier when only two conditions are
being compared. Therefore, in case the
researchers are willing to compare two interven-
tions and include a nonintervention condition
(e.g., Skinner et al., 2021), there would be a
need for a separated modified Brinley plot for
each comparison between pairs of conditions.
The use of the modified Brinley plot for alter-
nating treatment designs is also more straight-
forward when there is the same number of
measurements per condition, as is the case for
block randomization (Manolov & Tanious,
2022; Onghena & Edgington, 2005).

Across-Studies Example: Replicated Reversal
Design
Feeney and Ylvisaker (2003, 2006, 2008)

carried out a series of studies using context-
sensitive cognitive-behavioral supports to reduce
aggressive behaviors in young children with trau-
matic brain injury. In each of three studies, they
used an ABAB design, replicated across two par-
ticipants. The raw data for the three studies are
represented in Figure 5, whereas the modified
Brinley plot is represented in Figure 6. Thus,
Figure 6 contains data from three studies, two
participants per study, and two effects (A-B com-
parisons) per participant, given that an ABAB
design was followed for each participant. The
modified Brinley plot entails omitting the
B1-A2 comparison that is possible in an
ABAB design (i.e., performing only the A1-B1
and A2-B2 comparisons, which agrees with
previous suggestions from the SCED context
(e.g., Parker & Vannest, 2012; Tanious
et al., 2020). Each dot represents an effect and
thus there are 3�2�2¼ 12 dots. There are
two dots of the same color, and they belong to
the same participant.

Figure 4
Modified Brinley Plot for Thirumanickam et al. (2018)

Note. Each dot represents an A-B comparison, with the x-axis coordinate defined by the baseline mean and the y-axis
coordinate defined by the intervention phase mean. Dots of the same color belong to the same participant. The green
horizontal dotted line represents the desired postintervention level whereas the red vertical dotted line represents whether
this level was already present during the baseline phase. The grey dashed diagonal line represents the desired amount of
change from the baseline level: left panel - expected increase; right panel - expected reduction.
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Figure 5
Time-series Line Graph for Feeney and Ylvisaker (2003, 2006, 2008)
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We represented, via a dotted horizontal
green line, a supposed desired postintervention
level of a maximum of five aggressive behaviors.
This is met by all Phase B means, except for
two. We also represented, via a grey dashed
line, a supposed desired amount of change con-
sisting of a reduction of 50% of the Phase A
level. All comparisons meet this criterion.

Advantages of the Use of the Modified
Brinley Plot
First, we refer to the importance of graphical

representations and visual analysis in general.
Visual inspection has a long history in the
SCED context (e.g., Miller, 1985; Parker
et al., 2006) and is considered important and
necessary even with the current abundance of
statistical techniques (DeRosa et al., 2021;

Ferron et al., 2017; Kipfmiller et al., 2019;
Ledford, Barton, Severini, & Zimmerman,
2019; Maggin et al., 2018; Ninci, 2019; Wolfe
et al., 2019). This is consistent with the training
received by certain professionals (Wolfe &
McCammon, 2022), with applied researchers’ pri-
orities when analyzing data (Byiers et al., 2021),
and within actual practice (Dowdy et al., 2021).
Moreover, visually inspecting data has been empha-
sized as indispensable when performing classical
statistical analyses outside the SCED context (Fife
et al., 2021). Extensions of existing methods for
displaying information visually have recently been
proposed both in the SCED context (Snodgrass
et al., 2022) and in a broader research context
(Fern�andez-Castilla et al., 2020).
Second, in terms of the advantages of the

modified Brinley plot in relation to the com-
mon time-series line graphs, several aspects

Figure 5
(Continued)
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need to be addressed. First, the agreement
between visual analysts inspecting time-series
plots has been found to be insufficient (see
Ninci et al., 2015, for a meta-analysis, and also
Bishara et al., 2021; Tarlow et al., 2021). Sec-
ond, the modified Brinley plot is not affected
by graphical features such as the ratio between
x-axis and the y-axis (x:y ratio; Kubina
et al., 2017), given that it is square by defini-
tion. Similarly, if the aim was to merely check
whether there is an improvement for all A-B
comparisons, this would be visually evident
because of the diagonal line representing lack
of change, regardless of the x:y ratio and the
data points per x:y ratio. A great variety in these
two ratios has been found in time-series line
graphs, leading to potential distortions when
performing visual analysis (Kubina et al., 2017;
Ledford, Barton, Severini, Zimmerman, &

Pokorski, 2019; Peltier, McKenna, et al., 2022;
Peltier et al., 2021; Peltier, Muharib, et al.,
2022). Third, the confounding between slope
and scale (Kinney, 2022) is also not likely for
modified Brinley plots, given that they are
square. Finally, the modified Brinley plot is
efficient in that it makes possible representing
the results (e.g., within-phase means and mean
differences) for several comparisons within par-
ticipants and across participants on the same
plot, as was illustrated previously in the text.
Moreover, visual aids such as the solid diagonal
line (indicating which condition is associated
with better results), the green horizontal dotted
line (indicating if a desired postintervention
level has been achieved), and the grey dashed
diagonal line (indicating if the amount of dif-
ference between conditions is sufficiently large)
allow for a fast evaluation of multiple aspects.

Limitations Using the Modified
Brinley Plot
Loss of Information About Time
Raw measurements are not represented on

the modified Brinley plot. In contrast, the
time-series line graph allows for the representa-
tion of all raw measurements in a temporal
order. For instance, the fact that differentiation
is achieved for later measurement occasions for
two participants in the Thirumanickam
et al. (2018) study, as per Figure 3, is not
reflected in the corresponding modified Brinley
plot (Figure 4). However, it should be noted
that raw measurements are primarily important
for formative analysis (Barton et al., 2016;
Fahmie & Hanley, 2008; Ledford, Barton,
Severini, & Zimmerman, 2019) and for study-
ing the process and relevant mediators of the
intervention effect (Caneiro et al., 2019; Hayes
et al., 2019). In contrast, the extent to which
effects are replicated, which is the focus of the
current text, is mainly a summative analysis
once the data collection is completed.

Figure 6
Modified Brinley Plot for Feeney and Ylvisaker (2003,
2006, 2008)

Note. Each dot represents an A-B comparison, with the x-
axis coordinate defined by the baseline mean and the y-
axis coordinate defined by the intervention phase mean.
Dots of the same color belong to the same participant.
The green horizontal dotted line represents the desired
postintervention level, whereas the red vertical dotted rep-
resents whether this level was already present during the
baseline phase. The grey dashed diagonal line represents
the desired amount of change from the baseline level.
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Loss of Information About Variability
A mean does not directly represent the num-

ber of measurements from which it is com-
puted, and thus certain effects (mean
differences) may be based on an insufficient
amount of data, as per current standards
(e.g., Tate et al., 2013; U.S. Department of
Education, 2020). For instance, in the reversal
designs used by Feeney and Ylvisaker (2003,
2006, 2008) some of the initial A-B compari-
sons were based on more data, as seen in
Figure 5. To address this first issue, it is possi-
ble to make the dots on the modified Brinley
plot proportional to the number of measure-
ments (Manolov et al., 2021).
However, the mean may not be a good rep-

resentation of the data (Parker et al., 2011). To
address this second issue, it is possible to repre-
sent on the modified Brinley plot, the degree to
which the mean represents the data via hori-
zontal and vertical lines, denoting the variabil-
ity around the mean line in the Phase A and
Phase B, respectively (Manolov et al., 2021).
Thus, these lines can be understood as error
bars and this variability is quantified via the
mean absolute error (Hyndman & Koehler,
2006; Tanious et al., 2020). For instance, for
the Feeney and Ylvisaker (2003, 2006, 2008)
data, for Cases 3 and 6 from Figure 5, the
mean does not represent the data well enough.
In contrast, the means seem to be good repre-
sentations of the Dorminy et al. (2009) data
and a change in level seems to represent the
kind of effect observed (Figure 1).
Referring to both issues, Figure 7 illustrates

how the number of measurements used to
compute a mean difference and the degree of
lack of fit of the means to the data can be rep-
resented on the modified Brinley plot. The
larger the dots and the shorter the vertical and
horizontal lines, the more reliable that these
dots can be considered, understanding reliable
as being based on more measurements (size of
the dot) and representing the raw measure-
ments (shortness of the lines around the dots).

The Mean is Not the Only Possible Summary
A comparison in level is not the only way to

assess the presence of an effect, given that other
data features such as trend, variability, immedi-
acy, and overlap are also relevant (Kratochwill
et al., 2013; Lane & Gast, 2014; Ledford
et al., 2019). Accordingly, in the modified
Brinley plot, it is possible to represent other
summary measures beyond the mean, for
instance, an estimate of slope, the standard
deviation, or the immediate effect (Manolov &
Tanious, 2022). For instance, Figure 8 repre-
sents the ordinary least squares estimates of
trend on the modified Brinley plot. Most of
the dots are near the diagonal line, indicating
similar trends in adjacent phases, except for
three of the comparisons for which the Phase B

Figure 7
Modified Brinley Plot for Feeney and Ylvisaker (2003,
2006, 2008)

Note. Each dot represents an A-B comparison, with the x-
axis coordinate defined by the baseline mean and the y-
axis coordinate defined by the intervention phase mean.
Dots of the same color belong to the same participant.
The colored polygon represents effects with sufficient
improvement and with a desired postintervention level of
the target behavior. The size of the dot is proportional to
the number of measurements in the A and B phases that
are compared in the specific effect. The horizontal lines
represent the lack of fit of the within-phase mean to the
baseline data. The vertical lines represent the lack of fit of
the within-phase mean to the intervention phase data.
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trend is more negative (improving to a greater
degree) than the previous Phase A trend.
When there is excessive variability or trends,

the mean should not be used as the main sum-
mary measure when quantifying effects. More-
over, the mean is sensitive to outliers and a
more resistant central tendency measure such as
the median could theoretically be used. The
illustrations in the current text are based on
means because this is the original summary
used in the modified Brinley plot (Blampied,
2017) and also because level is typically the
object of SCED data analysis (Tanious &
Onghena, 2021). However, this does not nec-
essarily suggest that the mean is the optimal
summary of central tendency (e.g., in the con-
text of visual analysis, medians are commonly
recommended; Lane & Gast, 2014).
Deciding what to quantify (e.g., change in

level, change in slope, change in variability;
immediate or delayed effect) must be related
to the type of effect expected. This recommen-
dation is commonly made in the context of
randomization tests (Heyvaert & Onghena,
2014; Levin et al., 2017, 2021; Michiels
et al., 2017), but also in general in terms of
SCED data analysis (Manolov, Moeyaert, &
Fingerhut, 2022).

The Modified Brinley Plot Should Not Be a
Stand-Alone Graph
Despite the previously mentioned possibili-

ties for the modified Brinley plot (i.e., to repre-
sent the lack of fit of the mean line, to
represent trend, to reflect which comparisons
are based on more measurements), the current
authors advocate for the use of this graphical
representation alongside the typical time-series
graphs. There are several reasons for such a rec-
ommendation, when assessing the degree of
replication of effects within a study or across
multiple studies. First, the time-series line
graph must be included, at minimum for the
sake of transparency (Aydin & Yassikaya, 2022;
Tate et al., 2013). Second, although the

modified Brinley plot can efficiently represent a
summary for several individuals (across several
studies), a time-series plot can be useful for
assessing how well these summaries
(e.g., means, slopes of trend lines) fit the data.
Third, the time-series plot can inform about
how change unfolds over time, whereas the
modified Brinley plot allows for a more static
image, which could be more useful for assessing
consistency across and within participants
(Manolov & Tanious, 2022).
If the results of multiple studies are to be

integrated quantitatively as in a meta-analy-
sis, an additional graphical representation
that can be used are the commonly employed
forest plots (Fern�andez-Castilla et al., 2020).
The modified Brinley plot, as described here
(with the original data, not standardized
data), can be used when all target behaviors
are measured in the same units, to represent
both the preintervention and the post-
intervention level for each A-B comparison.

Figure 8
Modified Brinley Plot for Feeney and Ylvisaker (2003,
2006, 2008)

Note. Each dot represents an A-B comparison, with the x-
axis coordinate defined by the ordinary least squares esti-
mate of the baseline trend and the y-axis coordinate
defined by ordinary least squares estimate of the interven-
tion phase trend. Dots of the same color belong to the
same participant.
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Complementing this graphical information,
the forest plot can be used to represent a
standardized measure of the size of the inter-
vention effect in each study, alongside the
confidence interval built around this effect
size and the weight of the study in the overall
summary measure.

The Proposal

Main Features: The Two Necessary
Elements
In the current text we propose to use two

previously mentioned graphical aids, represen-
ted on the modified Brinley plot, as building
blocks for assessing the degree to which effects
replicate. Specifically, the desired postinter-
vention level (green dotted horizontal line on
Figures 2, 4, and 6) and the desired amount of
change after introducing the intervention (grey
dashed diagonal line) define an area of the
modified Brinley plot in which the dots should
be placed if all meet both requirements (repre-
sented by a polygon).
The basis of the current proposal is that the

two desired aspects (improvement and post-
intervention level) should be definable
according to applied rather than statistical
criteria (Kazdin, 2020). In the SCED context,
the desired postintervention level3 can be speci-
fied a priori, as suggested in the context of the
percentage of goal obtained (Ferron et al.,
2020). Once criteria are available for what is
desired, this would enable agreement in the
interpretation of the results of the studies by
authors. A dot within the polygon would be a
desired effect and a dot outside of the polygon
would be an insufficient or undesired effect. In

general, the polygon can be used as a descrip-
tive criterion regarding whether the basic effects
are sufficiently replicated.

Defining the Polygon Via Applied
Criteria and Expert Judgment
The operative definition of “approximate

replication,” “almost the same effect,” or “neg-
ligible difference” in effects is a matter of scien-
tific judgment that is likely to be domain-
specific (Hedges & Schauer, 2019b). The defi-
nition of the polygon is related to applied sig-
nificance, which can be related to aspects such
as social comparisons (i.e., falling within a nor-
mative range), no longer meeting diagnostic
criteria, or departure from dysfunctional behav-
ior (Kazdin, 2020). Specifically, the desired
postintervention level can be understood as
falling within a normative range, whereas the
desired amount of change can be understood
as a sufficient departure from dysfunctional
behavior, considering that this latter aspect has
sometimes been assessed using quantitative/
statistical criteria such as the reliable change
index (Jacobson & Truax, 1991) and standard
deviations (Kazdin, 2020). The need for both
criteria can be related to the requirement of
ending at an adequate level of the target behav-
ior and having evidence that such level was not
achieved before the intervention, but that there
was a sufficient change associated with the
introduction of the intervention.
The need for expert judgment is not a limita-

tion, given that expert judgment is necessary when
using a benchmark outcome or mastery criteria
(Branch, 2014; Hagopian, 2020; Imam, 2021;
Kazdin, 1977; McDougale et al., 2020;
Perone, 1999; Shepley et al., 2020). Likewise,
structured criteria for visual analysis do not substi-
tute clinical judgment (Roane et al., 2013) and
judgment is necessary when effect sizes are used to
complement or substitute p-values (Cortina &
Landis, 2011). Thus, it has been recommended to
interpret or label effect sizes in relation to the

3When visually inspecting the raw data in a time series
plot, it can also be useful to depict the desired amount of
progress until the final level is reached (Wolfe
et al., 2021), equivalent to a goal line (Riley-Tillman
et al., 2020). However, this option is not used for the cur-
rent proposal, as the modified Brinley plot works with
summaries rather than with raw data.
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context of the study using expert judgment, both
in the SCED context (Manolov et al., 2016;
Vannest & Sallese, 2021) and outside of it
(e.g., Dunst &Hamby, 2012; Durlak, 2009). Sim-
ilarly, there is evidence that applied researchers are
not fond of inspecting visually graphed data in the
absence of context (Ford et al., 2020).
Specifically in relation to replication, even

quantitative benchmarks for what is considered
“almost the same” for effect are still social con-
ventions among scientists (Hedges, 2019). In
contrast to using domain-specific knowledge,
mindless application of statistical rituals is to be
avoided (Gigerenzer, 2004). Thus, the exact
way in which the Brinley polygon is defined is
a matter of such domain-specific knowledge,
rather than an (impossibly) universally valid
rule of thumb. This is not necessarily a limita-
tion, but rather a distinctive feature of a scien-
tific way of proceeding.

Numerical Examples
In the current section, we will focus on the

Feeney and Ylvisaker (2003, 2006, 2008) data
for showing how the polygon is defined by
specifying different values for the two necessary
elements. The first example shown in Figure 6
included a desired postintervention level of a
maximum of five aggressive behaviors and a
minimum reduction of 50% with respect to
the Phase A level. The corresponding polygon
is represented on the left graph of Figure 9. Its
upper side is defined by the maximal post-
intervention level of 5. Its lower side is defined
by the minimal possible postintervention level
of 0. Its right side is defined by the supposed
maximal Phase A level4 of 25. Its left side is
defined by a vertical line that would mark a
Phase A level of 5 (on Figure 6 this is the red
vertical line). If such a desired level is to be
attributed to the intervention it should not take
place already during Phase A. Therefore, the

polygon is defined to the right of this vertical
line. Finally, the diagonal line that cuts the
rectangle and makes it a polygon of irregular
shape is the grey dashed line from Figure 6 that
marks the desired amount of change. For
instance, for a Phase A level of 5, the desired
50% reduction would correspond to an inter-
vention level of 2.5, whereas for a Phase A level
of 10, the desired 50% reduction would corre-
spond to an intervention level of 5. These are
the two coordinates that define the diagonal
side of the polygon. In terms of assessing repli-
cation with this polygon, 10 out of the 12 dots
are within the polygon defined by the desired
reduction and postintervention level, so the
degree of replication is 10/12 = 83% (consid-
ering all effects depicted, within and across
participants).
Using the modified Brinley plot from

Figure 10, it can be verified that the effects not
included in the polygon are denoted by 1.1.1
and 2.2.1, which means that they refer to
Study 1, Participant 1, first A-B comparison,
and Study 2, Participant 2, first A-B compari-
son. The researcher can identify who these
individuals are according to how the data file is
organized, and also in relation to Figure 5. In
that sense, the result of the assessment of repli-
cation is the proportion of effects within the
desirable polygon. In summary, for each effect,
a dichotomous decision is made regarding
whether or not it is in the polygon. However,
for all effects considered together, the decision
is not dichotomous (effects replicated or not),
but it is rather a quantification of the percent-
age of effects that are replicated, in the sense
that they fall within the desired limits.
To better understand the construction of the

polygon, another example is provided. Suppose
that the maximal desired postintervention level
is 10 and that the desired amount of change is
five points (in absolute terms, not as a percent-
age). The corresponding polygon is represented
in the right graph of Figure 9. Its upper side is
defined by the maximal postintervention level

4Alternatively, the largest value (or mean) observed in
either phase could be used.
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of 10. As with the previous example, its lower
side is defined by the minimal possible post-
intervention level, 0, and its right side is
defined by the supposed maximum Phase A
level of 25. The diagonal line that cuts the rect-
angle and makes it a polygon of irregular shape
is the desired amount of change. For instance,
for a Phase A level of 10, the desired reduction
of five points would correspond to an interven-
tion level of 5, whereas for a Phase A level of
15, the desired reduction of five points would
correspond to an intervention level of 10.
These are the two coordinates that define the
diagonal side of the polygon in Figure 9b. In
terms of assessing replication with this polygon,
eight of the 12 dots are within it, suggesting a
replication of 66.67%.

Graphical Advantage of the Polygon
It was previously mentioned that the modi-

fied Brinley plot is not affected by the x:y ratio
(Kubina et al., 2017), as it is square by defini-
tion. Moreover, the number of data points per
x:y ratio (Radley et al., 2018) is also not critical

Figure 9
Modified Brinley Plots for Feeney and Ylvisaker (2003, 2006, 2008)

Note. Each dot represents an A-B comparison, with the x-axis coordinate defined by the baseline mean and the y-axis
coordinate defined by the intervention phase mean. Dots of the same color belong to the same participant. The colored
polygons represent effects with sufficient improvement and with a desired postintervention level of the target behavior.

Figure 10
Modified Brinley Plot for Feeney and Ylvisaker (2003,
2006, 2008)

Note. Each sequence of three digits represents an A-B
comparison, with the x-axis coordinate defined by the
baseline mean and the y-axis coordinate defined by the
intervention phase mean. The first digit represents the
study, the second digit represents the participant within
the study, and the third digit represents the A-B compari-
son within the participant. The colored polygons repre-
sent effects with sufficient improvement and with a
desired postintervention level of the target behavior.

1011Assessing Replication of Effects



when a visual aid such as the polygon is used
for assessing replication, because this polygon
(when printed sufficiently large) allows a visual
inspection of the dots that are and are not
included. Thus, these elements of graphical dis-
play, which can be potentially distorting for
time-series graphs, are not expected to affect
the replication polygon.

Methodological Framework: In-depth
Description and Rationale for the
Proposal
Similar Assessment of Replication Within
and Across Studies
The polygon represented on the modified

Brinley plot allows for the assessment of repli-
cation at three levels: (a) within a participant
for an ABAB design (and extensions of it), an
alternating treatments design, or a multiple-
baseline design across behaviors or settings;
(b) across participants in a multiple-baseline
design across subjects; and (c) across studies.
This is well-aligned with Schauer et al. (2021)),
who state that “Patterns used to describe repli-
cation across multiple findings should be some-
what consistent with the definitions used to
define replication for a single finding” (p. 18).

Preserving the Individual Level of Analysis
The proposal for assessing replication is well-

aligned with Hagopian’s (2020) recommenda-
tion to examine findings within and across par-
ticipants in a manner that preserves the analysis
of individual outcomes. Specifically, the modi-
fied Brinley plot with the polygon plots each
individual case as a distinct data point, rep-
resenting outcomes across the collective and
documenting their distribution, as suggested.
Similarly, the result of the evaluation of replica-
tion is in accordance with another recommen-
dation made by Hagopian, namely, that
outcomes across participants are described in
terms of the percentage of cases where certain
outcomes were obtained rather than averages.

Approximate Replication and Conceptualiza-
tion of Variability
From a methodological perspective, the pro-

posal can be used for both intra- and inter-
subject replications, taking place within or
across studies. The modified Brinley plot is
applicable to direct replications as opposed to
systematic replications, because varying certain
variables (and not merely replicating with dif-
ferent participants) is likely to entail greater var-
iability in the effects and the need to consider
moderating effects, which is not possible in the
context of the modified Brinley plot. In that
sense, from a meta-analytical across-studies per-
spective, the modified Brinley plot can be
applied to represent a fixed-effect model
(assuming all studies estimate the same popula-
tion effect) rather than a random-effects model
(assuming different studies estimate a different
population effect).
From a quantitative perspective, the focus is

placed on approximate replication (or practical
equivalence) instead of exact replication
(i.e., effects that are equal in magnitude). Thus,
the variability of the dots within the polygon
would be conceptualized as negligible differ-
ences (Hedges & Schauer, 2019a) or negligible
heterogeneity (Hedges & Schauer, 2019b).
Within this polygon, there is no qualitative dis-
agreement between the effects (Hedges &
Schauer, 2019a). Similarly, it must be
highlighted that variability is a natural and
expected phenomenon that does not preclude
generalization (De Luca Picione, 2015).
It should be noted that the variability is not

summarized as a single value. Options for single-
value summaries include the Mean Euclidean
Distance between all pairs of data points (like the
study of diversity of groups, conceptualized as
separation; Biemann & Kearney, 2010;
Harrison & Klein, 2007), as well the p-value
resulting from the Q-test commonly used in
meta-analysis (Hedges & Schauer, 2019a,
2019b). However, it is not only important how
similar the effects are, but around which values
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they are similar, as the polygon focuses on the
specific values that are considered of applied or
practical relevance. Similarly, interindividual dif-
ferences are not treated solely as departures from
the overall mean. Instead, all effects for all indi-
viduals are depicted in the modified Brinley plot
and thus individual summary data (but not raw
measurements) are readily available in the modi-
fied Brinley plot.

There is No Specific Target Study and No
Putative Population of Studies
The current proposal does not follow the

framework of target study versus replication
due to its limitations (Hedges & Schauer,
2019b). In contrast, it allows for the assessment
of the variability of effects in a body of evi-
dence, instead of validating one result. There-
fore, the proposal can be understood as a
groupwise rather than a pairwise method
(Schauer et al., 2021). However, focusing on
the data available is consistent with a fixed-
effect framework (Hedges & Schauer, 2019a;
Hedges & Vevea, 1998). What is studied is the
similarity in (or agreement between) the observed
studies, which are considered the whole popula-
tion of interest.

Limitations and Challenges when Using
the Proposal
What the Proposal is Not About
The current proposal is not intended to be

used, and cannot be used, to determine how
many replications are necessary (Hitchcock et al.,
2015; Kratochwill et al., 2013; Lanovaz &
Rapp, 2016; Lanovaz & Turgeon, 2020) or
whether any replications at all are necessary in a
given context (Lanovaz et al., 2019). Moreover,
we do not make any specific quantitative pro-
posals for how much improvement should be
considered necessary, when defining the polygon
or whether this improvement should be expressed
in absolute terms (e.g., number of behaviors,
points in an inventory) or in relative terms

(e.g., 25% increase or 50% reduction in compari-
son to the Phase A level). As stated previously,
this is a matter of domain-specific expert judg-
ment, and it cannot be superseded by an arbitrary
statistical criterion imposed from outside of the
domain in absence of a wide consensus.
Due to the way in which the polygon is

defined, the proposal is mainly focused on the
magnitude of effect when comparing a baseline
(Phase A) to an intervention Phase (B). In that
sense, the modified Brinley plot does not include a
representation of (or information about) mainte-
nance or generalization. In general, an effect that is
replicated, according to the Brinley polygon, is not
necessarily an effect that is socially valid. Thus, just
as visual inspection of a time-series line graph can-
not substitute for the assessment for social validity,
we do not propose the Brinley polygon as a substi-
tute for assessing the multiple different aspects
related to social validity (see Horner et al., 2005).
We only propose the polygon for assessing replica-
tion. However, it must be highlighted that the
Brinley polygon is related to two of the aspects rel-
evant for social validity. The desired post-
intervention level is potentially related to
normative comparisons (Snodgrass et al., 2018).
However, the desired amount of change from the
Phase A level is related to having an effect of suffi-
cient magnitude for achieving social importance
(Spear et al., 2013).

Applied Criteria May Be Difficult to Derive
Regarding establishing the desired post-

intervention level, a definition of a normative
range is not always easy and diagnostic criteria
may not always be susceptible to being translated
to simple cut-off points (Kazdin, 2020). More-
over, the polygon (or any other statistical or visual
tool, for that matter) may not necessarily reflect
the subjective evaluation by the participant
regarding whether the intervention introduced a
change in their life (Kazdin, 2020).
Regarding establishing the desired amount of

change from the Phase A, a priori, it is equivalent
to specifying the minimum difference criterion in
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the technically more complex and inferential prob-
ability of replication (Sanabria & Killeen, 2007).
This step may not always be straightforward. In
certain situations, it would make sense to first
familiarize oneself with the Phase A level
(i.e., gather data), before determining howmuch of
a change would be sufficient. Deciding the desired
intervention level according to the observed Phase
A level and variability is recommended for chang-
ing criterion designs (Hartmann & Hall, 1976).
However, in the context of the polygon, the desired
amount of change cannot be determined individu-
ally for each A-B comparison according to the
Phase A data, because this would entail multiple
polygons. The alternative is to rely on previous
research, for identifying the amount of change
(e.g., as a percentage) that has been deemed suffi-
cient. This would be a better alternative than esta-
blishing arbitrary amounts such as 25%, 33%, or
50%, without any justification. In the event the
researcher is unable to define any desired amount
of change, it is possible to take an extreme stance
and consider any nonzero difference (e.g., 1%) in
the expected direction as sufficient. This would be
analogous to the initial definition of replication in
the framework of the probability of replication:
“Define replication as an effect of the same sign5 as
that found in the original experiment”
(Killeen, 2005, p. 346). It would also approximate
a reductionist interpretation of the questions
included for systematic protocols for the visual
analysis of time-series graphs, for instance, “Is there
an overall level change between baseline and treat-
ment phases?” (Maggin et al., 2013, p. 56) and “Is
there an immediate change from the last 3-5 data
points in baseline to the first 3-5 data points in
treatment?” (Wolfe et al., 2019, p. 495). In these
questions, the undefined word “change” can be
interpreted as any kind of change. Such a definition
of the desired amount of change from the Phase A
would make the polygon mostly dependent on the
desired postintervention level.

Avoiding Questionable Research Practices
Ideally, the polygon must be defined prior to

gathering or inspecting the data (mean levels in
case of the modified Brinley plot), in accordance
with the principles of preregistration and trans-
parency (Ariens et al., 2020; Johnson &
Cook, 2019; Porcino et al., 2020) and the
importance of a priori decisions in data analysis
(Manolov, Moeyaert, & Fingerhut, 2022).
However, an exception could take place in situa-
tions in which it might be required to know the
Phase A level first. In any case, the definition
must be accompanied with a justification, just
as justifications are required when choosing an
option for the main quantitative analysis of the
data (Tate et al., 2013).

The aim of such a priori documented
decisions is to avoid questionable research
practices (Laraway et al., 2019), such as
defining the polygon a posteriori, once all
the data are available and depicted on the
modified Brinley plot. The requirement for
an a priori specification of the polygon is
similar to defining mastery criteria (Shepley
et al., 2020) or the rules for shifting phases
(Kazdin, 2020) before data collection. The
main issues that can arise in terms of ques-
tionable research practices are: (a) if there is
no preregistration of the two elements deter-
mining the polygon, or (b) if the researchers
consider that it is impossible to define these
two elements beforehand. Either of these
issues would be a problem only if researchers
purposely manipulated the polygon after the
data were gathered to achieve a replicated
effect. However, such a problem taking place
would require assuming intentional bad
research practice, combined with capacity to
justify a posteriori the definition of the
desired postintervention level and the desired
amount of change from the Phase A level. In
contrast, in the presence of certain criteria
for assessing the social validity of the inter-
vention effect (e.g., sufficient magnitude of
change, normative range), these same criteria

5Meaning in the same direction (i.e., that one condi-
tion is always superior to the other).
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can be used for defining the polygon a priori
and avoiding questionable research practices.

Software Use
Preparing the Data File
A free user-friendly website can be used for

obtaining the polygon (https://manolov.
shinyapps.io/Brinley/) and it was used for
obtaining all modified Brinley plots presented

in the current text. To use the software, it is
necessary to prepare a data file (e.g., via a pro-
gram such as Microsoft Excel) with the struc-
ture illustrated on the website itself. Figure 11
contains the characteristics of the data file and
the steps required for using the website.
We contend that the amount of effort

required of applied researchers for obtaining
the replication polygon is rather low once the
desired postintervention level and the desired

Figure 11
Task Analysis for Using the Developed Software

I. Prepare the data file, per 

columns with names as specified 

in bold. Column numbers should 

not be specified; they only mark 

the suggested order 

1. Tier: participant identifier 

2. Id: A-B comparison per 

participant 

3. Time: consecutive 

number for session 

4. Phase: A marked with 0, 

B marked with 1 

5. Score: measurements of 

the target behavior 

Examples: 

Replicated ABAB (Feeney and 

Ylvisaker, 2003, 2006, 2008):  

https://osf.io/n7xgs/

Multiple-baseline design 

(Dorminy et al., 2009): 

https://osf.io/nbkhd/

Replicated alternating 

treatments design 

(Thirumanickam et al., 2018):  

https://osf.io/83rdf/ 

II. Click on the website 

1. Load the data file (.txt) 

2. Choose column separator 

3. Aim: choose increase or reduce target 

behavior

4. Design: choose alternating treatments vs. 

multiple-baseline or reversal 

5. Choose summary measure: mean of all 

within-phase data, means of parts of the 

data, trend, or variability 

6. Specify number of studies included 

7. Specify number of participants per study, 

separated by commas 

8. Specify the minimal and maximal 

possible values for the target behavior 

9. If desired, modify the height of the time-

series plot 

10. For the desired amount of change, 

specify whether it will be expressed in 

relative (%) or absolute terms

11. Specify the amount of desired change 

from baseline to intervention 

12. Specify the desired postintervention 
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amount of change from the Phase A level are
determined. To obtain any graphical represen-
tation of SCED data, it is necessary to organize
the data in a data file, thus, this is not an added
difficulty. Afterwards, to use the website, it is
not necessary to download, install, or learn to
use any new software. The researcher makes
choices by clicking or by writing a few numbers
but nothing else is required. The software is an
application built via Shiny, as for other data
analytical approaches (e.g., Declercq
et al., 2020; Kranak et al., 2021), which makes
training of users to construct the graphs for
themselves following multiple steps unnecessary
(e.g., Dixon et al., 2009; Lehardy et al., 2021;
Mitteer et al., 2018).

Discussion

The purpose of the current paper is to pre-
sent and justify a visual approach towards
assessing whether or not the results of different
replications of A-B comparisons agree. To the
best of our knowledge, this is the first proposal
dealing specifically with the assessment of repli-
cation within and across SCED studies, in
terms of how it can be objectively performed,
while giving priority to expert judgment over
arbitrary statistical criteria. This visual assess-
ment is guided by a priori criteria on the
desired effect of the intervention, and it is aided
by introducing graphical elements to the modi-
fied Brinley plot (Blampied, 2017). The assess-
ment of the degree of replication can be
performed both within the context of a single
study (e.g., when there are several participants, as
in a multiple-baseline design) or across studies
(e.g., in similar situations to the ones in which a
fixed-effect meta-analysis is performed). In con-
trast to other possible approaches to studying
replication (e.g., prep by Killeen, 2005, or Q-test,
Hedges & Schauer, 2019b), the proposal is sim-
ple, visual, and focused on the magnitude of
effect, which is especially relevant when working

with few participants, making inferential statis-
tics not applicable.

Implications of the Use of the Polygon
In relation to the way in which the polygon

is defined, it is compulsory that applied
researchers establish (and report) criteria for a
successful intervention prior to gathering the
data. This is well-aligned with current recom-
mendations for avoiding confirmation bias
(Laraway et al., 2019; Levin et al., 2017; Man-
olov, Moeyaert, & Fingerhut, 2022). The mod-
ified Brinley plot and the superimposed
polygon allow for a wider perspective on the
effect of the intervention, across A-B compari-
sons and across participants. This perspective
retains part of the information from the raw
measurements and does not entail a reduction
to a mere average or standard deviation
(Normand, 2016).
The emphasis for establishing intervention

generality should not be solely on counting the
number of successful replications of an inter-
vention effect or on requiring a 3:1 ratio of
effects to noneffects (Cook et al., 2015).
Instead, the focus can be placed on the similari-
ties and differences in successful and unsuccess-
ful replications (Maggin, 2015). Researchers
can be encouraged to include homogeneous
studies in terms of participants, interventions,
and study characteristics, for which replication
of the effect can be logically expected. How-
ever, once an effect that is not within the poly-
gon representing the desired effect is present, it
is possible to investigate the reasons for this
failure to replicate results to understand for
whom and why the results did not replicate or
generalize (Kazdin, 2020). Researchers should
review that study to see whether there is any
study, participant, or intervention characteristic
that differs from the other studies. Thus, looking
at moderator variables6 as the sources of

6For a review of commonly used moderator variables in
meta-analysis, consult Moeyaert et al. (2021)
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variability or lack of replication is important to
understand better the behavioral processes
(Barton et al., 2016) and what works for whom
(Ledford et al., 2016; Tincani & Travers, 2018).
Such an endeavor is possible, even when working
with summaries such as means instead of raw
measurements.
Finally, it should be noted that although the

assessment of the degree of replication is appar-
ently performed in a purely visual way, there are
several underlying quantifications. The desired
change and the desired goal are quantities that are
represented via the polygon. However, the dots
and their additional graphical elements (i.e., size
and error bars) are based on quantifications. This
is well-aligned with: (a) the emphasis on the com-
plementarity between visual and quantitative anal-
ysis (Harrington & Velicer, 2015; Karazsia, 2018;
Maggin et al., 2019), (b) the inherent use of quan-
tifications when performing visual analysis
(Lane & Gast, 2014), and (c) the fact that even
visual aids such as the conservative dual criterion
(Fisher et al., 2003) and the two-standard devia-
tions band (Pfadt &Wheeler, 1995) are based on
statistical probability models.

Additional Graphical Elements:
Less is More?
Overall, it could be argued that additional

graphical elements such as the size of the dot
and the presence of error bars add noise or com-
plexity to the modified Brinley plot. If there are
many effects represented and an unclear inter-
twining of errors bars, this could certainly be the
case. Nonetheless, there are two aspects to con-
sider: (a) the software implementation of the
proposal (https://manolov.shinyapps.io/Brinley/)
includes both graphical representations without
these additional elements (as Figure 9) and with
them (as Figure 7), and (b) these elements are
informative and can indicate whether more cau-
tion is needed when interpreting some of the
effects. Specifically, in the event the effects
(i.e., dots) are included in the replication

polygon, but their error bars cross the borders of
this polygon, this would suggest that the vari-
ability surrounding the summary measures
(means, converted to dots) sheds some doubt on
the researchers’ confidence that the effects are
clearly replicated. Thus, such additional ele-
ments can help provide more nuanced
interpretations.
In terms of the informative value of the addi-

tional graphical elements, in the example of
Figure 7, it is noteworthy that the two dots
that are outside of the replication polygon are
the ones associated with more error (or less pre-
cision) in terms of how the Phase B mean rep-
resents the data from this phase. In contrast,
the dots that are included in the replication
polygon show much smaller error vertical and
horizontal error bars. In that sense, the fact that
most of the dots are (descriptively) within the
polygon can be trusted to a greater degree than
the fact that there are two dots outside of the
polygon. Moreover, the rightmost dot that is
just above the upper border of the polygon is
based on relatively fewer measurements and
this adds further caution to the conclusion that
this effect is not replicated.
In terms of the informative value of the addi-

tional graphical elements in general, one of the
advantages of visual analysis is the possibility to
take into consideration several data aspects at
the same time (Parker et al., 2006), as is com-
monly recommended (Kratochwill et al., 2013;
Ledford, Barton, Severini, & Zimmerman,
2019; Maggin et al., 2018). Even visual aids
entail more than one data aspect. For instance,
the conservative dual criterion (Fisher
et al., 2003) involves representing mean and
trend, and the application of statistical process
control (Callahan & Barisa, 2005; Pfadt &
Wheeler, 1995) involves representing mean and
variability. Similarly, a proposal for making the
functional analysis of behavior automatic also
entails multiple data features (Kranak
et al., 2021). Additionally, in a forest plot as a
graphical representation commonly used in
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meta-analyses, the size of the dot or square rep-
resenting an effect reflects its precision and is
related to the number of measurements that it is
based on (Anzures-Cabrera & Higgins, 2010).
In that sense, the current proposal to represent
variability around the mean and the number of
measurements that an effect is based on is well
aligned with current practices. Extending com-
mon visual representations has also been topic
of recent research (e.g., Fern�andez-Castilla
et al., 2020; Snodgrass et al., 2022).

Future Research
The main limitations of the proposal were

already outlined previously. Regarding the cur-
rent text, we focused on presenting the exten-
sion of the modified Brinley plot and provide a
rationale for it, in relation to the recent devel-
opments and the importance of replication. We
also provided an illustration with real behav-
ioral data, but we did not perform a field test
or a comparison with alternative ways of
assessing replication. In that sense, a potential
line for future research is to include a set of
studies on the same target behavior with the
same intervention (e.g., as identified in a
research synthesis or a meta-analysis) and to
compare the conclusions drawn thanks to the
polygon with other possible criteria for evaluat-
ing whether each A-B comparison can be con-
sidered to represent an effect and regarding the
degree to which these effects replicate (i.e., fall
in the same category). Some of these possible
criteria for assessing each A-B comparison
could be: (a) empirically based interpretative
benchmarks for quantifications of effect
(e.g., Harrington & Velicer, 2015; Parker &
Vannest, 2009); (b) subjective evaluation of the
participants or their significant ones, as part of
the assessment of social validity (Snodgrass
et al., 2018); or (c) whether the confidence
interval for each effect includes zero or not.
Another possible line of future research is to
test the proposal with applied researchers. Such

a test would inform about the degree to which
researchers consider that the tool provides use-
ful information and the degree to which it is
easy to use.
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