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Identifying drivermutation is important in understanding diseasemechanism and future application of custom tailored therapeutic
decision. Functional analysis of mutational impact usually focuses on the gene expression level of the mutated gene itself. However,
complex regulatory network may cause differential gene expression among functional neighbors of the mutated gene. We suggest
a new approach for discovering rare mutations that have real impact in the context of pathway; the philosophy of our method is
iteratively combining rare mutations until no more mutations can be added under the condition that the combined mutational
event can statistically discriminate pathway level mRNA expression between groups with and without mutational events. Breast
cancer patients with somatic mutation andmRNA expression were analyzed by our approach. Our approach is shown to sensitively
capturemutations that change pathway level mRNA expression, concurrently discovering importantmutations previously reported
in breast cancer such as TP53, PIK3CA, andRB1. In addition, out of 15,819 genes considered in breast cancer, our approach identified
mutational events of 32 genes showing pathway level mRNA expression differences.

1. Introduction

Cancer starts from normal cells, acquires mutations, and
evolves to be malignant cancer cells metastatic and/or resis-
tant to therapy. Recent development of next generation
sequencing technology has revealedmany somatic mutations
from individuals; most of them are rare and lack functional
information.

Mutation information provides crucial hints in cancer
medicine. For example, KRAS mutation is a test recom-
mended for targeted drug response of colon cancer therapy
[1]. EGFR activation mutations and resistant mutations are
another recommended gene mutation check for targeted
therapy of nonsmall cell lung cancers [2]. However, only a few
mutations are known to be clinically actionable, and most of
less frequent mutations remain obscure.

Mutation information in conjunction with mRNA path-
way level alteration can help to customize a patient’s
medicine. In the study of Jones et al. [3], a patient had
metastasized tumor in lung after surgery of his primary site.

Biopsy from his lung tumor had sequenced for mutation and
transcription profiling. Pathway analysis based on differen-
tially expressed genes, in addition to integrated CNV and
mutation information, helped doctor’s decision to change his
drug, which stabilized his disease for three months.

To measure the pathway level impact of rare muta-
tions from an individual sample, a method should mea-
sure individual’s pathway level aberrance. Several researches
have tackled this issue. PARADIGM is a tool that infers a
pathway status by using a known functional structure [4].
PARADIGMmodels functional structure of pathway as a set
of interconnected variables where variables are omics objects
like DNA,mRNA, and protein. Interaction between variables
describes functional status of pathway. PARADIGM might
perform better to quantify pathway level withmultiple omics;
it utilizes known functional relationship between genes’ and
intergenes’ DNA to protein. Hence, the performance in a
single layer omics data, handling only mRNA microarray,
may not be promising.
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Drier et al. proposed a personal pathway deregulation
score (PDS) representing the distance of a single cancer
sample from median of normal samples on the principal
curve [5]. To calculate PDS,Drier et al. reduce the dimensions
by PCA and find the best principal curve, utilizing entire
cohort samples which contain both normal and different
stages of cancers. Drier et al.’s method performs well in
the mRNA only data sets, brain, and colon cancer, than
PARADIGM does.

In our unpublished previous study [6], we proposed
pathway statistics to reflect individual’s pathway aberrance
(individualized pathway aberrance score, iPAS) bymodifying
existing pathway statistics that can further be categorized as
overrepresenting analysis approach (ORA) or functional class
scoring (FCS) [7].

ORA typically apply an arbitrary threshold (e.g., fold-
change > 2 or 𝑃 value < 0.05) on gene expression to assess
if the number of genes beyond threshold is significantly
over- or underrepresented in the given pathway. There are
two drawbacks known for ORA. First, it only uses the most
significant genes and discards the others, thus resulting in
information loss of marginally significant genes. Second, it
only considers the number of genes and does not consider
extent of expression changes, thus causing another informa-
tion loss of importance of genes (e.g., genes fold-change = 2.01
and fold-change = 4 are considered equally). Unlike ORA,
FCS methods do not discard genes with arbitral threshold
but use all available genes showing improvements over ORA.
Method based on pathway topology has been known to
compensate common limitations of ORA and FCS reporting
false positive gene sets, due to the set of overlapping genes.

The key idea of our previous study [6] is comparing a
single tumor sample to many reference normal samples to
provide gene level statistics for FCS and ORA analysis. The
approach demonstrated that it not only captures previously
known biological knowledge but also reveals pathway based
sample clusters that show clinically important associations
such as cancer differentiation and patient survival. In this
paper, we adopt the best-performing pathway statistic of
the previous study for summarizing an individual patient’s
pathway expression level.

We suggest an integrated analysis of mutation and gene
expression to discover a combination of rare mutations that
causes pathway level gene expression changes. We applied
our method to the cancer genome atlas (TCGA) [8] breast
cancer data providing both somatic mutation and mRNA
expression data from the same patients (𝑛 = 513). Assuming
that combination of functionally related rare mutations can
influence the pathway of mRNA expression, we consider
multiple rare mutations to be counted as a single mutational
event. At the first step of Algorithm 1, we assess if pathway
level mRNA expression is significantly different between
groups with and without mutational events. If it is different,
we add another mutation site to be counted as a single
mutational event and then assess if the new event can still
differentiate pathway level mRNA expression. We iterate this
procedure until no more rare mutation can be added into
mutational event under the certain significance threshold
for pathway level gene expression difference. The identified

mutations can be biologically interpreted as a set ofmutations
that influence the pathway level gene expression, and thus the
mutations can be considered functional in cancer, which can
be further prioritized as cancer drivers.

Our empirical study demonstrated that highly frequent
single gene mutations on TP53 or PIK3CA are strong enough
to show pathway level mRNA expression difference between
mutated and nonmutated groups, respectively.We also found
combinations of less frequent mutations having impact on
pathway level gene expression. Most of the mutations in
our discovery did not show gene level expression difference
between mutated samples and wild type samples, suggesting
that pathway level gene expression change is beneficial to
discover mutations with functional impact. It is important
to note that our discovery is concordantly capturing the
TP53, PIK3CA, andRBmutations that have been importantly
discussed in breast cancer pathways [8]. This suggests that
our approach is useful to discover potential cancer driver
mutations.

2. Materials and Methods

2.1. Mutation and Gene Expression Data. Somatic mutation
(WUSM mutation calling) and normalized gene expression
(UNC Agilent G4502A 07, level 3) data of breast cancer are
downloaded from TCGAwebsite (The Cancer Genome Atlas
Network, 2012). The level 3 TCGA mRNA data provide gene
level summary of mRNA expression, which is standardized
by mean and standard deviation of entire dataset. Samples
having both mutation and gene expression data (𝑛 = 513)
are used for analysis. Missing gene expressions are replaced
by the mean of gene expression of normal tissues. This
replacement means that the replaced missing value will give
no contribution in a positive way or negative way in pathway
level gene summary; literally its value becomes zero after it is
standardized by the mean and standard deviation of normal
samples.

2.2. Pathway Data. Pathway gene sets are downloaded from
molecular signature database. Total 583 gene sets from
BioCarta, NCI cancer pathway, and KEGG pathway are used
for our analysis. We also manually defined additional gene
sets to assess raremutations’ impact on pathways that include
more than one drug target; we defined 16 receptor tyrosine
kinase (RTK) genes which have more than one approved
targeted drugs. Associated drug information is retrieved from
Ingenuity (www.ingenuity.com). For each of RTK genes,
we expanded the gene set by adding its first neighbors by
adopting protein-protein interaction data in HipathDB [8].
Through this annotation process, we obtained gene sets
representing 16 RTK pathways. Summary of RTK pathways
used in our study is provided in Table 1.

2.3. Individualized Pathway Statistic. Standardizing gene
expression by mean and standard deviation from data set
is often used for microarray analysis [9–13]. A vector 𝑧 =
(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) denotes expression status of a pathway where

𝑧
𝑖
symbolizes the standardized expression value of the 𝑖th
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(1) In the given pathway, define a “gene list”
(2) gene list: gene names in the given pathway
(3)
(4) for each gene in the “gene list” (𝑖 in 1 ∼ size of gene list)
(5) “candidate list” = “gene list” − gene[𝑖]
(6) while (no more genes in the “candidate list” or
(7) no more significant mutational event) {
(8)
(9) update: gene(s) name(s) to be considered as mutational event
(11) 𝑥: a vector containing pathway statistics of patients with mutational event
(12) 𝑦: a vector containing pathway statistics of patients without mutational event
(13)
(14) do t-test on 𝑥 and 𝑦
(15) if (𝑡-test 𝑞-value < threshold) {
(16) add one more gene for mutational event
(17) }

(18) update the number of total iteration (this is used for 𝑞-value calculation)
(19) remove the gene from the “candidate list”
(20) }

(21) }

Algorithm 1

Table 1: Curated drug target centric pathways.

Target Drugs First neighbors

EGFR
cetuximab, AEE 788, panitumumab, BMS-599626, ARRY-334543,
XL647, canertinib, gefitinib, HKI-272, PD 153035, lapatinib,
vandetanib, erlotinib

125

PDGRFB dasatinib, sunitinib, pazopanib, axitinib, KRN-951, tandutinib,
imatinib, sorafenib, becaplermin 61

ERBB2 trastuzumab, BMS-599626, ARRY-334543, XL647, CP-724,714,
HKI-272, lapatinib, erlotinib 59

MET crizotinib 55
ERBB4 BMS-599626 44

KIT dasatinib, sunitinib, pazopanib, KRN-951, OSI-930, telatinib,
tandutinib, imatinib, sorafenib 38

FLT4 sunitinib, pazopanib, CEP 7055, KRN-951, telatinib, sorafenib,
vandetanib 36

PDGFRA sunitinib, pazopanib, axitinib, telatinib, imatinib, becaplermin 35
TEK Vandetanib 35
RET sunitinib, vandetanib 30
FGFR1 Pazopanib 29
EPHA2 Dasatinib 22
FGFR3 Pazopanib 18
FLT3 CHIR-258, tandutinib, sorafenib, lestaurtinib, CGP 41251 14
FGFR2 Palifermin 13

gene, where the number of genes that belong to the pathway
is 𝑛. In our settings, standardization is performed by mean
and standard deviation (s.d.) of data set from normal tissue
of cancer patients.Thus, avg(𝑧)/𝑛 is indicating howmuch the
given individual cancer sample’s overall gene expression of
the pathway deviates from the center of normal tissue data
set.

2.4. Iterative Assessment of Mutation Impact on Pathway.
In our analysis, multiple rare mutations on the gene(s) are
defined as a single mutational event; in other words, we
consider multiple mutations on the single gene as a unit
of mutational event. Initially, our algorithm calculates a
single gene’s mutational impact in the pathway level mRNA
expression change. In the loop, it iteratively adds genes
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Figure 1: Clustering 513 TCGA breast cancer cases by individualized pathway score. Each row represents a pathway, each column represents
a sample.

to mutational event while the mutational event induces
significant difference between the two groups, with mutation
and without mutation. As the iteration continues, the overall
number of significance tests is recorded and used to calculate
the q value. The algorithm generates a set of genes as an
output. The output can be interpreted as a set of rare muta-
tions from a (several) gene(s) that have significant pathway
level gene expression difference. Pseudocode description
of our procedure is as follows. Algorithm after the “for”
loop (5∼20) is schematically described in Supplementary
Figure 1 ( see Supplementary Material available online at
http://dx.doi.org/10.1155/2014/171892).

3. Results

Individual pathway score based clustering of 513 breast cancer
samples revealed 5 sample clusters. Sample cluster represents
mRNA expression based subtype of breast cancer. Luminal A
subtype is dominant at sample subgroup s4 and s5. Basal-like
subtype is enriched at sample subgroup s1 and s2. Basal-like
subtype in subgroup s4 can be distinguished by ER-, PR-, and

HER2-. Sample cluster s3 is enriched by luminal B subtype
(Figure 1). Sample cluster s3 shows the most unfavorable
outcome when it is compared to other subtypes (Figure 2:
𝑃 = 0.015 for s3 versus s1, 𝑃 = 0.015 for s3 versus
s2, 𝑃 = 0.001 for s3 versus s4, and 𝑃 = 0.018 for s3
versus s5). This finding is concordant with the previously
reported biological knowledge that luminal B subtype has
the worst outcome among mRNA expression based subtypes
of breast cancer [14]. The representation of mRNA based
cancer subtype by clustering the pathway scores indicates that
our individualized pathway scoring method indeed captures
the clinical characteristic of each cancer samples. The result
satisfied us to further utilize our approach to assess rare
mutations’ impact on pathway level gene expression.

To evaluate whether our method can sensitively capture
the impact of mutation event on the pathway level gene
expression, we analyzed breast cancer data set from TCGA
having paired somatic mutation and expression data (𝑛 =
513). Mutation event of single gene is described in Figure 3.
Mutations that change gene expression level of the mutated
genes (FDR q value < 0.1) are shown in blue. Mutations that
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Figure 2: Survival difference by sample cluster subtype of pathway score based clustering.

do not change gene level expressions but change pathway level
mRNA expressions (FDR q value < 0.1) are shown in red.
In the latter case, there were three mutated genes causing
pathway level difference in 24 pathways. The three chosen
genes are TP53 (187 are mutated out of 513 samples, 36.4%),
PIK3CA (173/513, 33.7%), and RB1 (11/513, 2.1%), reported in
breast cancer [14].

It is noteworthy that the pathways of the three genes
are addressed as crucial. The three pathways (PI3K, TP53,
and RB pathways) are considered as representative pathways
for breast cancer [14]. We discovered that mutations on
TP53, PIK3CA, and RB1 have significant impact on pathway
level mRNA expression, without any prior knowledge, but
solely by analyzing the mutation and mRNA expression data.
This finding indirectly proves that our approach is sensitive
enough to capture the important biological features; thus, it is
proper to use our approach to measure pathway level impact
of a somatic mutation.

Twenty-four pathways showeddifferentialmRNAexpres-
sion between groups with and without mutations of TP53,
PIK3CA, and RB1 mutations (Figure 4). TP53 and PIK3CA
are not mutually exclusive in the observation of TCGA breast
cancer data, which is concordant with the previous report
[15]. Heatmap visualization of unsupervised clustering of
pathway level characteristics shows distinguishing subgroup
pattern between “TP53 mutated and PIK3CA non-mutated
samples enriched” subgroup (C and D) and “TP53 non-
mutated and PIK3CA mutated samples enriched” subgroup
(A and B). This characteristic might be explained based on
previous findings that TP53 gene product regulates PIK3CA
in a transcriptional level [15, 16].

Astanehe et al. [17] demonstrated that direct binding of
TP53 reduces the expression of PIK3CA thus decreases the
expression of PIK3CA expression. In our analysis, sample
cluster of C and D, representing the unmutated samples
on PIK3CA, keeps this mRNA deregulation functionality of
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Figure 3: Single gene’s mutational influence on mRNA expression
at gene level (X axis) and pathway level (Y axis). X: averaged gene
expression difference of mutation having group minus nonhaving
group). Y : averaged pathway level difference of mutation having
groupminus nonhaving group). Z: −log10p score, where p is from t-
test of pathway statistics betweenmutated group versus nonmutated
group. Red: mutation event where its influence on pathway level is
significant (FDR q value < 0.1). Blue dots: mutation event where its
influence on gene level is significant (FDR q value < 0.1) but not
significant at pathway level.

PIK3CA, showing pathway level downregulation in PIK3CA
related pathway cluster P1. Unlike sample clusters C and D,
PIK3CA mutation enriched sample cluster of A and B might
have TP53 mediated regulation of PIK3CA gene product,
showing pathway level upregulation in the pathways P1.

Mutations on RB1 are enriched at sample groups C and
D, indicating that it is coupled to TP53 mutation status.
Subgroup having mutations on both of RB1 and TP53
has unfavorable outcome when it is compared to others.
This observation is concordant with the known biological
knowledge that breast cancer subpopulation having retained
activity of the major tumor suppressors, RB1 and TP53, has
better prognosis than subpopulation of abnormal activity.

In the analysis of impact of single gene mutation on
the pathway level mRNA expression change, rare mutations
having less than 11 mutated samples were not reported as
significant at q value < 0.1. To further analyze combinational
rare mutation genes in the pathway level mRNA expression,
we iteratively combine mutated genes belonging to the
pathway so that multiple mutational events onmultiple genes
can be considered into one mutational event. By combining
rare mutational events, we can expect an effect of increasing
the sample size of group withmutational event. To reveal rare
mutation genes that only work in a combined manner, we
did not consider single genemutations significantly changing
pathway level gene expression.This is to avoid false discovery.
If a rare mutation with strong influence on the pathway level
gene expression is combined with little influence, the latter

might be falsely called as significant, due to its influential
partner, while it is not truly contributing to the pathway level
gene expression change.

Through our additive combination of rare mutations into
one event, we have found 15 mutational events causal on
pathway level at the cut of FDR q value < 0.1. Figure 5 depicts
the relationship of pathway levelmRNAexpression difference
between groups with andwithoutmutational events (X-axis),
number of samples having mutational events (Y-axis), and
the significance of impact of the mutational event (Z-axis).

Among 15,819 genes with somatic mutations reported
in 513 breast cancer samples, 32 genes were shown to have
pathway level impact whenmutations on genes are combined
as a single mutational event. Gene ontology analysis of these
genes using g:Profiler [18, 19] showed significant functional
enrichment of these genes into cancer related signalling
pathways in biological processes like “fibroblast growth factor
receptor signalling pathway” (𝑃 value = 5.56e−14), “regula-
tion of MAPK cascade” (𝑃 value = 3.46e−13), “neurotrophin
TRK receptor signalling pathway” (𝑃 value = 2.62e−13), and
“ERBB signalling pathway” (𝑃 value = 1.92E-09). The most
significantly enriched gene ontology are “Fc-epsilon receptor
signalling pathway” (𝑃 value = 9.25E−16) for biological
process, “Cytosol” (𝑃 value = 2.21e−07) for cellular com-
partment and “phosphotransferase activity, alcohol group as
acceptor” (𝑃 value = 1.93e−09) for molecular function. The
gene ontology term enrichment analysis provides supportive
information that our method does not just coincidentally
pick rare mutation genes, but it rather sensitively reveals the
additive impact of rare mutations in the context of pathway
level mRNA expression change.

GeneMANIA [20] analysis reveals functional relation-
ships among 32 genes (Figure 6). Two US FDA approved
drugs (Sorafenib and Arsenic trioxide) are associated with
gene network from 32 genes. Sorafenib has been known
to interact with multiple intracellular genes (CRAF, BRAF,
and mutant BRAF) and cell surface kinases (KIT, FLT-3,
VEGFR-2, VEGFR-3, and PDGFR-𝛽). It is a RAF kinase and
MAPK pathway inhibitor [21, 22]. A recent study reported
sorafenib benefited patients with RAS and BRAF mutations
[23]. According to clinicaltrials.gov, twenty-five clinical trials
are on-going for sorafenib treatment on breast cancer in
the US. The collected information is supportive of the 32
genes prioritized by our method is functionally important in
cancer; thus, it should be clinically considered for targeted
therapeutics.

The 32 genes are compared to the lists of significantly
mutated genes from the previous breast cancer sequencing
studies. The TCGA study yielded 23 significantly mutated
genes from 509 patients [14]. Ellis and Perou used the same
data to define 28 significantly mutated genes important in
therapeutic consideration in breast cancer [24]. Banerji et al.
studied 103 breast cancer patients inMexico andVietnam and
reported 6 significantly mutated genes [25]. Among the 32
genes we discovered, there are 5 overlaps to the previously
reported genes (Supplementary Figure 2, Supplementary
Table 1), and 27 genes do not belong to any gene list from the
previous breast cancer studies. In the previous studies, signif-
icantly mutated genes were defined as mutations observed at
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Figure 4: Normalized heatmap illustrating top pathway-influencing mutations (PIK3CA, TP53, and RB1, q value < 0.1).

higher frequency than expected at random. In our analysis,
we find a list of genes particularly with mutational events
significantly changing the pathway level mRNA expression.
We think that, due to this methodological difference, the
findings of our study should be interpreted with a different
biological point of view. In other words, the discovered genes
have a unique interpretation in the context of pathway level
mRNA change that has not been addressed in other studies.

Based on these results, we suggest the 32 genes, along
with 3 genes that showed single gene’s mutational influence
on pathways as potential tumor driver mutations, to have
more functional importance than the other 15,750 somatic
mutations. Table 2 providesmutational events of 32 genes that
have shown pathway level impact in a combinatorial manner.

We further investigated pathway level impact of somatic
mutations against gene networks with actionable drugs.
Among 19 receptor tyrosine-kinase related pathways, three
pathways have shown pathway level difference with two
mutational events (Table 3).

LYN is a member of src kinase superfamily and is
known to be involved in the regulation of cell activation.
Ellis and Perou [24] addressed that SH2 domain missense

mutation D197Y at breast cancer is functional. Overex-
pression of D197Y is more potent than wild type LYN at
inducing signalling cascade, rendering the treatment of ER
downregulator fulvestrant or PI3K inhibitor BKM120 less
effective. This indicates that LYN may play a role for ER+
breast cancer acquiring hormone-independent growth. Two
LYN mutations in our discovery for RTK pathway related
mutational event were also located SH2 domain (E159K,
K188N).The twomutationsmay be considered to have similar
contribution to D197Y.

NCK1 is downstream of signal cascade of LYN. Its major
function is activating actin cytoskeleton reorganization.
However, there is no documentation on how LYN and NCK1
regulate the transcription level of PDGFR pathways. Our
observation indicates that the group with either mutation
of the two genes has lower level of gene expression in the
PDGFR pathway than the group without mutations.

Among mutational event of 16 samples on any of the
three genes (PIK3R1, PIK3CD, and GRB2), PIK3R1 is the
most frequent (number of event samples: 14). Most of the 14
mutations are clustered in the PIK3CA interaction domain.
BKM120 and GDC-0941 are the suggested drugs for patients
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Table 2: List of multi-gene mutational events with pathway level expression change.

Pathway Mutational event
(# of distinct genes: 32) # event sample 𝑡-stat 𝑞-value

KEGG GLIOMA PIK3CB, HRAS 5 12.587 0.000
KEGG MELANOMA PIK3CB, BRAF 7 10.302 0.000
PID CDC42 CDH1, MAP3K1 70 −5.244 0.000
PID TRAIL RIPK1, MAPK3 6 9.624 0.000
BIOCARTA PPARA NCOR1, EHHADH 21 −4.562 0.007
PID A6B1 A6B4 INTEGRIN COL17A1, GRB2 6 −6.239 0.009
BIOCARTA MTOR TSC1, TSC2 7 −5.081 0.010
SIG PIP3 SIGNALLING IN B LYMPHOCYTES ITPR3, RPS6KA3 7 6.174 0.014
PID CERAMIDE MAP2K4, AKT1, RIPK1 35 4.803 0.017
SA PTEN AKT3, BPNT1 5 −6.573 0.018
ST FAS SIGNALLING MAP3K1, EZR 42 −3.727 0.029
PID EPHBFWDPATHWAY EPHB1, EFNB1 9 −4.848 0.032
KEGG RENAL CELL CARCINOMA EPAS1, GRB2, PDGFB 7 7.628 0.057

PID ECADHERIN KERATINOCYTE CDH1, FMN1, PIP5K1A, EGFR, AKT2,
CDH1, RAC1, CDH1, RAC1 49 −5.564 0.074

KEGG BLADDER CANCER CDH1, THBS1, MDM2, RAF1 41 −4.966 0.083

Table 3: List of multi-gene mutational events with pathway level expression change on drug target centric pathways.

Pathway Mutational event # event samples 𝑡-stat 𝑞-value
PDGFRB neighbors LYN, NCK1 5 −8.3139 0.005
FGFR2 neighbors PIK3R1, PIK3CD, GRB2 18 3.506 0.141
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Figure 5: Multiple genes’ mutational influence on mRNA expres-
sion at pathway level (X-axis). X: averaged pathway level difference
of mutation having group minus nonhaving group. Y : number of
samples having summarizedmultigenemutational event.Z:−log10p
score, where p is from t-test of pathway statistics betweenmutational
event having group versus nonhaving group. Red: mutation event
where its influence on pathway level is significant (FDR q value <
0.25).

having mutation at PIK3R1 sites [14]. PIK3R1, PIK3CD, and
GRB2 all interact together in a protein level.This suggests that
mutation on any of these genes can cause similar functional
impact on downstream pathways.

In summary of receptor tyrosine kinase pathways, we
additionally discovered two mutational events that have
significant pathway level mRNA change. Literature survey
[21–23, 26] on discovered mutations also revealed that the
mutations are potential drug targets. This is supportive
evidence that our method can sensitively detect functional
rare mutations; in other words, measuring pathway level
impact of summarized rare mutational events is useful to
prioritize the functional ones.

4. Conclusion

In this paper, we propose a practical approach that assesses
mutational impact on pathway level mRNA expression. We
suggest combinatorial summary of mutational events. We
have demonstrated that the proposed approach sensitively
discovers important mutations that have been known to have
pathway level functional impact. Important mutations that
cause deregulation of representative breast cancer pathways
reported by previous study have been captured by our
approach.
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Figure 6: Gene network of 32 genes with pathway level expression change and mutation via GeneMANIA. Two approved drugs (sorafenib
and arsenic trioxide) are associated with functional network of 32 genes. Pink edges indicate physical interaction of genes, and grey edges
indicate genes that drugs are affecting.

Combinational mutation summary found 32 genes that
showed pathway level difference between the two groups,
with and without mutational events. Gene ontology enrich-
ment test of the 32 genes shows significant enrichment in the
cancer-related biological processes such as “MAPK cascade,”
“ERBB2 signalling,” “Fibroblast growth receptor signaling,”
suggesting that the combinational mutational summary cap-
tures are actually involved in cancer mechanism. Based on
the pathway level impact analysis result, we suggested that the
functional importance of somatic mutations on the 32 genes
is bigger than that of the others.

We also investigated impact of rare mutations on drug
target pathways; we found two mutational events that con-
sisted of two and three genes. Two of total fivemutations were
mentioned as potential drug target in the literature, indirectly
supporting that our approach is useful to prioritize druggable
mutations.

Due to the innovation of next generation sequencing
technology, more cancer patients’ genomic and transcrip-
tomic data are expected to be available. We hope that our
proposed approach can be used to discover mutations having
functional impact. The approach can further be used to
prioritize mutations for the consideration of custom tailored
therapy.
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