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ABSTRACT Diet plays an important role in shaping the structure and function of
the gut microbiota. The microbes and microbial products in turn can influence vari-
ous aspects of host physiology. One promising route to affect host function and re-
store health is by altering the gut microbiome using dietary intervention. The indi-
viduality of the microbiome may pose a significant challenge, so we sought to
determine how different microbiotas respond to the same dietary intervention in a
controlled setting. We modeled gut microbiotas from three healthy donors in germ-
free mice and defined compositional and functional alteration following a change in
dietary microbiota-accessible carbohydrates (MACs). The three gut communities ex-
hibited responses that differed markedly in magnitude and in the composition of
microbiota-derived metabolites. Adjustments in community membership did not cor-
respond to the magnitude of changes in the microbial metabolites, highlighting po-
tential challenges in predicting functional responses from compositional data and
the need to assess multiple microbiota parameters following dietary interventions.

IMPORTANCE Dietary modification has long been used empirically to modify
symptoms in inflammatory bowel disease, irritable bowel syndrome, and a diverse
group of diseases with gastrointestinal symptoms. There is both anecdotal and sci-
entific evidence to suggest that individuals respond quite differently to similar di-
etary changes, and the highly individualized nature of the gut microbiota makes it a
prime candidate for these differences. To overcome the typical confounding factors
of human dietary interventions, here we employ ex-germfree mice colonized by mi-
crobiotas of three different humans to test how different microbiotas respond to a
defined change in carbohydrate content of diet by measuring changes in microbiota
composition and function using marker gene-based next-generation sequencing and
metabolomics. Our findings suggest that the same diet has very different effects on
each microbiota’s membership and function, which may in turn explain interindi-
vidual differences in response to a dietary ingredient.

KEYWORDS: function, gastrointestinal, metabolite, obesity, prebiotic, precision

The role of the gut microbiota in maintaining health and causing disease is now well
recognized, and yet the operations of this vital component of our biology and the

factors driving its function are poorly understood due to its complexity and individu-
ality. Dietary nutrients can have a significant impact on the abundance of specific
microbial taxa (1). Some of the most prevalent resources that support the gut micro-
biota are microbiota-accessible carbohydrates (MACs), the complex carbohydrate por-
tion of dietary fiber (2) that can be metabolized by gut microbes (3). MACs have proven
to be a powerful modulator of the microbiota, and purified forms of these carbohy-
drates (i.e., prebiotics) are increasingly being investigated for therapeutic potential (4).
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Predictably shifting the community structure with dietary interventions (5) may be
relevant in alleviating the pathogenesis of symptoms associated with chronic gastro-
intestinal diseases like irritable bowel syndrome and inflammatory bowel disease,
where dietary intolerances are common (6). Such strategies have been used as a
common intervention (7), and yet the response rates are highly variable, suggesting
that interindividual microbiota differences may contribute to this variability. Recent
studies in humans highlight the interindividual responses of microbiota composition
following specific dietary interventions (1, 8–11); however, the interpretation of the
data is limited by a lack of biological replicates for each microbiota composition.
Characterization of gut microbial community function has revealed overall conserva-
tion at broad levels of functional categorization (12, 13), although long-term dietary
trends like veganism appear to influence the serum metabolome, which partially
reflects gut microbiota functionality (10). How a specific change in the nutrient milieu
influences the conservation of functionality that accompanies individual-specific com-
positional changes remains a key question.

Here, we investigate structural and functional responses of different human micro-
biotas to a single microbiota-accessible carbohydrate using a highly controlled exper-
imental system with gnotobiotic mice. Our previous work established that the diversity
and metabolomic signatures of a human gut microbiota can be reconstituted in
ex-germfree (ex-GF) humanized mice (14).

All experiments were performed according to the A-PLAC, the Stanford IACUC. GF
Swiss Webster mice maintained in gnotobiotic isolators were humanized using human
fecal samples from healthy donors as previously described (14). Mice were fed a
standard polysaccharide-rich diet (Purina LabDiet 5K67) for the first 4 weeks while
allowing the microbial community to equilibrate and then switched to a defined diet
containing the common prebiotic fructooligosaccharide (FOS; 10% [wt/vol]; Bio-Serv,
NJ) for a period of 10 days (see Fig. S1A in the supplemental material). Fecal samples
were collected before and after FOS diet intervention and processed for both 16S
rRNA-based community composition analysis and fecal metabolomics.

Postpyrosequencing (454 Titanium) data analysis using QIIME (15) identified 713 �

251 unique operational taxonomic units (OTUs) on average per mouse and 208 � 35
unique OTUs on average per mouse after removing singletons. The microbial commu-
nities were allowed to establish themselves stably for 4 weeks based on prior studies
(16) prior to a dietary change. Before the dietary intervention, two of the microbiotas
(D1 and D2) were similar in composition (Bacteroides and Parabacteroides constituting
more than half), contrasting with that of D3 mice, which was dominated by Clostridiales.
Furthermore, D3’s phylogenetic alpha-diversity was significantly higher (P � 6.3e�07;
see Table S1 in the supplemental material).

Following dietary intervention, distinct compositional changes were detected in
each microbiota with various magnitudes as revealed by unweighted UniFrac principal
coordinate analysis (PCoA) (Fig. 1A). The two similar microbiotas (D1 and D2) exhibited
marginal compositional adjustments with respect to PC1 and PC2, in contrast to D3
mice, which showed a marked change along PC2. Taxonomic assignments up to the
species level revealed similar traits, with D3 showing the most significant variability in
taxonomic composition across the dietary intervention (see Table S2 in the supple-
mental material). For example, within D3 Clostridiales decreased from a mean of 45.6%
to 5.8%, while Allobaculum increased from a mean of 0% to 31% (P � 0.05, Mann-
Whitney-Wilcoxon test; Benjamini-Hochberg false discovery rate [FDR] correction).
Bacteroides fragilis, Sutterella species, and Barnesiellaceae also increased in D3 while
other Clostridiales, Ruminococcus and Oscillospira species, decreased. In contrast, Lach-
nospiraceae (a Clostridiales family) increased significantly in D2 (from a mean of 8.8% to
21.9%), accompanied by decreases in Paraprevotella species and Bacteroides ovatus. The
significant changes in D1 were small in terms of magnitude, with increases in Barne-
siellaceae, Butyricimonas, and Paraprevotella and decreases in Clostridiales (3.9% to
0.1%) and Coprobacillus species. The current 16S rRNA-based sequencing technology
and available reference databases preclude more precise identification at the species
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level, and yet the above findings highlight interindividual variability in compositional
response among the three groups of humanized mice.

We next applied supervised learning approaches to determine the confidence with
which individual specific changes could be reliably predicted. Donor-specific changes
due to diet were predicted with no detectable error (see Table S3 in the supplemental
material) consistent with the individuality of composition and response. FOS diet-
related responses across all three groups were predictable with 6 to 22% error (see
Tables S4 and S5 and Fig. S1B). Next, given that the dietary intervention involved a
significant shift in carbohydrates, we imputed changes in the community’s glycoside
hydrolase (GH) functional capacity using 16S rRNA data and a method that intentionally
cripples the imputations by overgeneralizing across available reference genomes and
thereby increasing confidence in signals that overcome this blurring, as previously
validated (17). Glycoside hydrolase families capture various degrees of carbohydrate
specificity, with multiple families sometimes representing similar functions, for which
linear combination analyses such as linear discriminant analyses (LDA) are appropriate.
Interestingly, applying this supervised learning approach to the imputed GH profiles
reliably predicted the individual donors (Fig. 1B), consistent with an individual and
specific reorganization of functional capacity following FOS diet introduction. Further-
more, GH70 and GH64 were closely associated with the dietary intervention when
assessed in donor groups (see Fig. S1C and D).

Given the specific functional changes, we next performed nontargeted metabolo-
mics using ultraperformance liquid chromatography-mass spectrometry (MS) on the
same fecal samples as previously described (14). Briefly, fecal water samples were
extracted by using solid-phase Oasis extraction cartridges (Waters, Milford, MA, USA).
Chromatographic separation was performed on a 150-mm by 2.1-mm Kinetex 1.7-�m
C18 column (Phenomenex, Torrance, CA) using an Acquity ultraperformance liquid
chromatography system (Waters). The flow rate was 0.25 ml · min�1. The column was

FIG 1 Effect of dietary change on gut microbial community structure. (A) Unweighted UniFrac-based
PCoA plot of 16S rRNA profiles showing differences in gut microbiotas in ex-GF mice colonized with
three distinct gut microbial communities before and after a change from standard to FOS diet (10%
[wt/vol]). (B) Change in glycoside hydrolase (GH) profile using linear discriminant analysis in the three
groups of mice following change from standard to FOS diet as imputed from 16S rRNA sequence
data.
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held at 40°C. Solvent A was 10 mM ammonium formate in water, and solvent B was 10
mM ammonium formate in methanol. The gradient started at 5% B and linearly
increased to 10% B at 14 min and then linearly increased to 100% B at 22 min and was
held at 100% B for 5 min. The column was equilibrated at 5% B for 3 min before starting
the run. First, 1.3 min of mobile-phase flow was diverted from the ion source into the
waste. MS was performed on the Exactive (Thermo, Fisher, Waltham, MA, USA) Orbitrap
mass spectrometer operated in positive and negative electrospray mode and controlled
by Xcalibur 2.1 software.

Using stringent criteria for identifying features in our metabolomics data (signifi-
cantly higher than baseline intensities and more than 3E4 arbitrary units [AU] in at least
one sample and manually curated for peaks consistent with well-separated com-
pounds), we identified 1,527 total unique features in both electrospray modes. Features
meeting the identification criteria were used to identify the same features in other
samples that did not meet the intensity criteria after alignment, after which 628
features were identified as common across all samples. We identified 1,475 features
shared in at least one sample in each of the dietary groups and 472 that were
significantly different (P � 0.05; Mann-Whitney-Wilcoxon test) between dietary inter-
ventions (see Table S6 in the supplemental material). In contrast, 1,131 features were
identified in at least one sample in each of the donors (see Fig. S2A to C)

Principal component analysis of the metabolomic features revealed that the mag-
nitude of change following the introduction of a FOS diet did not correspond to the
magnitude of change observed in composition (Fig. 2A). In fact, the variances explained
between samples in the metabolomics data were only negligibly correlated with those
in compositional data (R � 0.66, P � 0.001; Mantel’s Pearson test, 1,000 permutations).

FIG 2 Effect of dietary change on gut microbial function. (A) PCA of metabolomic features detected in feces of ex-GF mice colonized with three distinct
human-derived gut microbial communities before and after a change from standard to FOS diet (10% [wt/vol]). (B) Donor-specific metabolites across
dietary interventions identified using linear discriminant analysis. The metabolites with the top m/z values with various retention times that differentiate
the donors are depicted as scaled vectors. (C) Liquid chromatography elution profiles of two metabolites before and after dietary change in the three
groups of mice. (D) Fold changes of the distances between metabolomics and compositional data from standard to FOS diet vary significantly (P < 0.05;
Wilcoxon rank test) across all of the donor groups.
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Specific features (m/z values) were better predictors of individual donors than the
dietary intervention, suggesting individualized functional changes following diet inter-
vention (Fig. 2B; see also Table S7 in the supplemental material). For example, some
metabolites such as that with an m/z value of 222.1123 were similarly altered in all the
groups of mice; other compounds, such as that with an m/z value of 236.1723, showed
individualized responses (Fig. 2C; also see Table S8 in the supplemental material).
Furthermore, after applying a Procrustes transformation which optimally minimized the
distances between the metabolomics and compositional data, the fold changes of the
distances between fecal samples before and after dietary intervention were signifi-
cantly different across all groups (Fig. 2D; also see Fig. S2D; P � 0.05, Wilcoxon rank
test).

In summary, we describe changes in gut microbiota composition and function from
three healthy individuals modeled in ex-GF mice following a defined dietary interven-
tion. Our findings show that compositional changes affected by diet do not necessarily
predict community functionality. In the context of precision medicine, our data point to
the importance of assessing an individual’s changes in microbiota function in the
context of compositional changes following dietary intervention in attempts to ratio-
nally manipulate community metabolic output. While this pilot study highlights the
differential response to diet in 3 groups of humanized mice, in order to better delineate
individualized responses and changes in specific metabolites, larger patient cohorts will
need to be investigated with an in-depth profiling of microbial community function.
Future studies assessing changes in microbial function following defined dietary inter-
ventions in humans will be critical to identify microbiome-encoded determinants of
host response to diet.

Accession number(s). Postpyrosequencing data were deposited in the NCBI Se-
quence Read Archive under accession no. SRP080153. Metabolomics data have been
deposited in the MassIVE database under accession no. MSV000079922.
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