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Abstract: Using methane as a carbon source, low-dimensional carbon nanomaterials were obtained in
this work. The films were deposited directly on glass substrates by radio frequency plasma-enhanced
chemical vapor deposition (RF-PECVD). The configuration and compositions of this nanographite films
were identified by X-ray photoelectron spectroscopy (XPS) as carbon in sp2 bonding form. Raman spectral
characterization verified the configuration of the films to be hexatomic ring of carbon atoms. As a result,
they were found to be nanographite films (NGFs). Also, the atomic force microscopy (AFM) topography
and Raman spectra of different areas demonstrated the diversity of the films at the nano scale. The high
light-transmitting and electron mobility indicated that the NGFs possessed excellent optic-electronic
properties and could be used as good photoelectrical function materials. Furthermore, the physical
and chemical growth mechanism of NGFs were analyzed by PECVD. NGFs could be obtained in a
controlled process by modulating the growth conditions. In this work, the complicated transfer process
commonly used for optoelectronic devices could be avoided. Also, by growing the films directly on a
glass substrate, the quality degradation of the film was not a problem. This work can further promote
the development of next-generation electronic or optoelectronic function materials, especially for their
application in transparent conductive electrode fields.
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1. Introduction

As one of the most intensively investigated traditional materials, carbon has a history of thousands
of years. Carbon is one of the most abundant elements in the earth’s crust. It is found in many
allotropes and forms. With the continued scientific exploration of carbon materials, graphite, diamond,
fullerene, carbon nanotube, and graphene were discovered successively in the 20th century during
50 years [1–4]. They have been extensively used in many fields. The 2010 Nobel Prize for physics
was awarded to Andre Geim and Konstantin Novoselov for “ground-breaking experiments regarding
the two-dimensional material graphene” [5]. This breakthrough stirred up scientists’ enthusiasm for
research. A wide variety of carbon materials and related preparation methods were reported [4–6].
Graphene film, a unique two-dimensional (2D) monoatomic planar membrane of carbon, has emerged
as a revolutionary breakthrough in material technology. Owing to their excellent transparency,
electroconductivity and air stability, graphene and its related low-dimensional carbon nanomaterials
have been used as transparent conductive electrodes and electron transport layer and buffer layer
for photoelectric devices [7–13]. As reported in previous studies, carbon-related low-dimensional
nanomaterials possess outstanding characteristics. They showed enough strength and superior
mechanical performance, excellent physical and chemical stability, high thermal conductivity, high
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specific surface area, excellent optical property, and good conductivity. These versatilities are very
promising in a wide range of application domains, such as machinery and electronics, aerospace,
photoelectric devices, energy conservation, and bio-pharmaceuticals, which made them become the
rapidly rising star on the horizon of materials science.

These significant progresses have greatly promoted the fabrication and application of
low-dimensional carbon nanomaterials. However, there are lots of important challenges that limit
the practical application of low-dimensional carbon nanomaterials [14–16]. At present, the obtained
low-dimensional carbon nanomaterials films and their related materials need to be separated from
metal substrates and transferred to insulating substrates for further electronic processing [16]. It is a
tedious and lengthy process, which demands higher operating costs, and the materials present poor
performance. So, growing low-dimensional carbon nanomaterials directly on insulating substrates such
as Si/SiO2 or glass is helpful to overcome the quality degradation and additional defects caused by the
transfer process [15]. However, growing graphene-related materials directly on a Si or glass substrate
is still a great challenge. In addition, low-temperature carbon film growth is attractive to reduce the
costs and may enable the direct growth of carbon materials on flexible polymer-based substrates.
However, the currently typical temperature required for chemical vapor deposition (CVD) growth of
carbon-related materials is 800 ◦C–1000 ◦C [17–20], which is still too high. To address these problems,
plasma-enhanced chemical vapor deposition (PECVD) was chosen for the preparation. PECVD has
been widely used to produce carbon-related materials because of its advantages [8–10]. Compared to
other CVD methods, PECVD possesses advantages such as lower reaction temperature, higher
growth selectivity, purer atmosphere, and easiness in realizing large growth areas of films [5,8–10].
In this work, nanographitic films (NGFs) were deposited directly on glass substrates without a
further transfer process. Radio frequency (RF)-PECVD was used to synthesize NGFs under 300 ◦C.
This temperature is much lower than the temperature required for the growth of carbon films by
CVD. Meanwhile, the sole source gas that was used was methane without hydrogen, which is rare
in most of the carbon-related materials synthetic procedures using CVD. Furthermore, the structure
and the optical and electronic properties of the films were characterized by Raman spectroscopy,
ultraviolet–visible spectrophotometry, and hall effect measurement system, respectively.

2. Materials and Methods

The NGFs were synthesized by a 450 high-vacuum RF-PECVD system (manufactured by Xin Lan
Tian vacuum technology Co., LTD, Shenyang, China). Glass (1–2 mm in thickness, CAT.NO.7101) was
chosen as a substrate, and methane was used as the precursor. The glass substrate was washed with
acetone, alcohol, and deionized water three times, separately. Then, the cleaned substrates were placed
onto the chassis. The air pressure of the chamber was kept at 10−4. A gaseous mixture containing a
certain ratio of carbon source (methane) and assistant gas (argon) was imported into the chamber.
Then, the chassis was gradually heated to 300 ◦C. The radio frequency power was then turned on,
and the power was set to 200 W. Thus, plasma was generated by glow discharge. After the growth
process, the RF power was shut off, and the chamber was cooled down naturally to room temperature.
For a comparative study, the growth parameters were carefully controlled. A variety of variables were
modulated in this work, including vacuum pressure, substrate temperature, radio-frequency power,
gas flow, deposition time, and space between the polar plates. The optimum experimental parameters
are listed in Table 1. Finally, NGFs with controlled morphologies and structures formed on the glass.

Table 1. The parameters in the deposition of nanographitic films (NGFs). RF: radio frequency.

Vacuum
Pressure/Pa

Substrate
Temperature/◦C

RF
Power/W

Gas Flow/Sccm
CH4:Ar

Deposition
Time/Min

Plate
Spacing/Cm

50 300 200 2:50 60 5
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The surface morphology and thickness of the films were characterized by scanning electron
microscope (SEM), transmission electron microscope (TEM), and atomic force microscopy (AFM).
The configuration and compositions of these NGFs were characterized by X-ray photoelectron
spectroscopy (XPS), and their bonding forms and properties were obtained by Raman spectroscopy.
The optical properties of the films were characterized by ultraviolet–visible spectrophotometry.
The JSM-6700F SEM (manufactured by JEOL Ltd. from Japan), with a limit resolution up to 50 À, could
reach a magnification of 50–100,000 times, and the accelerating voltage could be modulated in the range
of 1–40 KV. The Cypher S AFM was manufactured by Asylum Research from America. The INVIA
confocal Raman spectrometer (manufactured by Renishaw PLC from England) was used with a typical
laser wavelength at 633 nm. The laser beam was focused on the sample with a spot size of 2.0–3.0 µm in
diameter. The Persee TU-1901 double-beam mode UV-spectrophotometer was produced by the Beijing
Purkinje General Instrument Limited company. The range of spectrum was 300–850 nm, and the
spectral bandwidth was 1 nm. The electrical properties, such as carrier concentration, carrier mobility,
and resistivity of the films transferred to the SiO2/Si substrate were tested by a Crosstech HMS300 hall
effect test system, which was manufactured by ACCEAT OPTICAL Company from England.

3. Results and Discussion

3.1. Morphology Characteristics of the NGFs

As shown in Figure 1, the morphologies of the samples obtained by RF-PECVD were observed by
SEM. A typical sample was selected with the following preparation conditions: 50 Pa, 200 W, 2:50 sccm,
5 cm, 60 min, and 300 ◦C. Figure 1a shows the surface topography with magnification of 3000x. As we
can see, layers of uneven films with different thicknesses and sizes were distributed on the surface of the
glass substrate. As shown by the scale bar, the maximum size of these films could reach 1 µm. Figure 1b
presents a larger version of the films, with a magnification of 20,000x. It shows that there were layers
of compact film with fluctuating sizes on the nanoscale on the substrate. Figure 1c,d clearly show the
atoms’ crystal lattice of the NGFs by TEM. It presents that the morphology of this region had features
of lattice gradient and interleaving structure. The selected area in Figure 1c was analyzed to observe
the electron diffraction pattern. In the transmission electronic diffraction pattern of Figure 1d, a series
of concentric circles with less obvious diffraction spots of regular hexagon can be seen. It demonstrates
a polycrystalline structure of the NGFs, which is the character of carbon materials. The morphology at
the nanometer scale can be clearly seen. On the other hand, it is evident that these interfaces were clean
without any other reaction products. In order to further prove the thickness of the films, the surface
roughness was studied by AFM in terms of root-mean-square roughness. Figure 2a,b presents the
AFM topography of the films in 2D and 3D images. It shows a densely packed mass of atoms going
ups and down, with an average height of 50–80nm. Two representative points were selected and were
marked in green, as shown in Figure 2a. The height difference was measured and calculated to be 6 nm.
The 3D image in Figure 2a vividly displays the uneven surface of atomic dimensions. The deposition
sequence, sectional structure, and grain size can be seen clearly. These results are in accordance with
the SEM images and are useful for the analysis of the film growing mechanism.
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Figure 1. (a) Surface topography of NGFs by SEM with magnification of 3000x; (b) surface topography
of NGFs by SEM with magnification of 20,000x; (c) morphologies of NGFs by TEM; (d) transmission
electronic diffraction pattern of the area indicated in (c).

3.2. Structural and Photoelectric Properties of the NGFs

The components and chemical states characterization of the NGFs previously analyzed by SEM is
shown in Figure 2c,d. Figure 2c shows the XPS wide surface survey of the NGFs on the glass substrate.
As shown, the strongest peak at 284–285 eV is characteristic of C1s, indicating that the major ingredient
of NGFs was carbon. The peak of O1s at 529–537 eV with weak intensity was attributed to absorbed
oxygen from the atmosphere and the glass substrate [20]. The very tiny peaks of Si2p and Si2s at
96–102 eV and 146–155 eV were attribute to SiO2 and its related compound from the glass substrate.
Figure 2d exhibits the narrow scans for C1s. The C1s curve was deconvolved by using a standard
multiple Lorentzian curves fitting, presented with different colors. As shown in Figure 2d, the line in
army green located at 284.6 eV occupies a dominant position. It represents the peak of carbon–carbon
double bounds. This is a convincing evidence that the carbon atoms with the basic six-membered
ring structure of graphite were present, rather than other allotropes of carbon. The small pink peak at
286.3 eV was identified as the C–O–C bond [21]. The little peak in red at 289.1 eV could be featured as
the O–C=O bond. These results further demonstrated the diverse structure of the NGFs.
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Figure 2. (a) 2D AFM images of the films; (b) 3D AFM topography of the films; (c) XPS wide surface
survey of the NGFs; (d) narrow scans for C1s.

The structures and crystallinity quality of the films were studied by Raman spectroscopy.
Figure 3a–c shows the Raman spectra of different points on the same sample, corresponding to
the morphology shown in Figure 1 (these illustrations exhibit the specific position accordingly).
A feature common to all of them is that there are four peaks named “D peak”, “G peak”, “2D peak”,
“D + G peak”. The peak at about 1350 cm−1 was called “D band”. The D peak was due to the breathing
modes of sp2 atoms in rings. This is a common defect-induced Raman feature of disordered graphitic
carbon or is due to carbon at the edge of the film, which requires a defect for its activation [22–26].
The peak near 1595 cm−1 was due to bond stretching of sp2 atoms in both rings and chains, and is also
known as G peak [23,24,27]. It is known to associate with the doubly degenerate phonon mode at the
Brillouin zone center and indicated that the films were dominated by the sp2 sites of carbon. The “2D
peak” centered at about 2650 cm−1 which originated from a second-order Raman process, is a typical
peak of graphite [25,26]. The low intensity of the 2D peak and small I2D/IG indicated a thick layer of
nanographite. The very tiny peak at about 2950 cm−1 was a combination of the D and G peaks [24].
The thickness and quality of the films could be calculated by fitting the ratio of the intensity of the 2D
peak to that of the G peak (I2D/IG). The full width at half maximum (FWHM) of the D peak, the G peak
was influenced by the size and defects of crystals [23–26]. The linewidth of the D and G peaks and the
Raman intensity ratio of the 2D and G peaks (I2D/IG) is shown in Table 2. As shown, the area marked
by the red arrow in Figure 3a exhibited a less obvious 2D band. The broader and slightly upshifted 2D
band as well as the reduction of I2D/IG indicated an increase of the atom layers. So, the layer of film in
the position marked by the purple arrow in Figure 3b was thinner than the layer of film in the red
arrow. However, the 2D peak in Figure 3b is quite different from that of bulk graphite that consists
of two components [27]. It can be seen that the D peak in Figure 3c was stronger and broader than
the G peak, indicating that in this point (the area marked by the blue arrow), the film exhibited more
defects and worse crystallization. It can be concluded that this point was on the edge, that is, at the
junction between two six-membered rings. All these Raman spectrum results are consistent with the
SEM graph shown in the nearby illustration. This is a powerful confirmation that there were ebbs
and flows on the surface of the film, as seen in the AFM images in Figure 2. It is the imperfection
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and inhomogeneity of the films that caused differences of configuration in different areas. On the
other hand, the positions and strength of the picks were slightly different. This further proved the
nonuniformity of the films. In conclusion, the films were nanographite films with irregular surfaces.
These results are in accordance with the SEM observations.

Figure 3. (a) Raman spectra of NGFs at the position marked by the red arrow. (b) Raman spectra of
NGFs at the position marked by the purple arrow; (c) Raman spectra of NGFs at the position marked
by the blue arrow; (d) transmittance of NGFs.

Table 2. Linewidth of D and G peaks and Raman intensity ratios of 2D and G peaks (I2D/IG). FWHM:
full width at half maximum.

Points 1(Red Arrow) 2 (Purple Arrow) 3(Blue Arrow)

FWHM of D/cm−1 164 126 134
FWHM of G/cm−1 105 80 162

I2D/IG 0.30 0.32 0.22

To explore the optical characteristics of the NGFs, the absolutely transmittance was measured
and is shown in Figure 3d. From the spectra, it can be seen that the obtained NGFs had a very high
transparency in visible wavelengths. Using ultraviolet light (460–300 nm), the transmissivity of NQFs
declined significantly. The transmittance increased exponentially from 86% to 94%. This indicated
that light in the UV region was absorbed more easily by the NGFs. In general, NGFs displayed
excellent transmittance from 460 to 800 nm, close to 95–96%. This is very favorable for NGFs to be
used as window layers in photoelectric devices. The electric properties of the NGFs, such as resistivity,
mobility, and bulk concentration of the films, were measured by the Hall effect test system under 300 K.
The average thickness of the film was about 200nm. Their carrier bulk concentrations could reach to 8.92
× 1020 cm−3. The NGFs exhibited n-type semiconductor characteristics with low resistance (1.89 × 10−5

Ω·cm) and relatively high mobility (654.8 cm2/V·S). Such outstanding carrier transporting performance
make them very as the electron transport materials with capacious foreground. So, the NGFs could be
successfully applied in photoelectric devices, especially as a transparent conductive layer [5–10].
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3.3. Growing Mechanism of NGFs on a Glass Substrate

In order to grow the NGFs more controllably, their growth mechanism was researched intensively
by conducting a series of experiments. By adjusting the deposition parameters, NGFs with different
morphologies and structures were deposited on a glass substrate. To understand these complex
processes, the detailed growth process of NGFs analyzed by RF-PECVD is shown in Figure 4.
Considering that it is one of the cheapest small-molecule gases containing the carbon element and with
a relatively lower pyrolysis temperature, methane was chosen as the carbon source. The deposition of
NGFs could be divided into several processes: first, the carbon source of methane was highly activated
and decomposed by plasma. The RF-PECVD equipment offered a sufficiently high radio-frequency
power of about 10–20 eV. This was enough to break down methane into solid carbon and hydrogen
gas [9]. The thermal energy required by these processes was thus further reduced to as low as 300 ◦C
in this work. Then, the C–H bond was dissociated, producing various active groups of carbonaceous
species. Methane can be dissociated into a variety of ingredients, including ions, atoms, and active
groups (excited state), such as CHx (x = 0–3) [20]. These active groups can undergo a series of
free-radical reactions, which can be divided into two sorts: combination reactions of free radicals and
migration processes of free radicals. The first ones involve two radicals and form non-free radicals.
Then, sufficient energy can aid the accumulation of charged carbonaceous ions and the acceleration of
their surface diffusion, making the incorporation of charged carbonaceous ions easier. By means of
iterative collision, the active groups increased greatly in number. This prompted the creation of extra
free radicals, which often results in chain reactions:

CH4 → CxHy → · · · → C + 2H2

By collision and reaction, active groups constantly migrated to the substrate surface and fell on it.
Once exceeding a certain threshold, they bonded with each other and then grew into stable groups.
This corresponded to the early stage of nucleation of the NGFs. Later, the carbon nuclei combined with
each other and stacked into the films.

It was proved that if too high temperatures are reached and too much energy is accumulated,
the carbonaceous ions diffuse too fast to grow horizontally [28]. That is, the carbonaceous ions can
only stack upwards before new nucleation occurs. The energy provided by PECVD in this work
was high enough, making it more likely for the ions to form a stack of nanographite films rather
than to grow graphene layer by layer. On the other hand, low substrate temperatures and pressures
contrast the migration and diffusion of carbonaceous ions [29]. By slowing down the deposition rate,
the possibility of longitudinal growth can be reduced, which is conducive to the growth of nanofilms
rather than to the island growth of graphite particles. A glass substrate with smooth surface rather
than a catalyzed substrate was a disadvantage to the nucleation of the film and could also slow down
film formation. Meanwhile, as affluent energetic H atoms might etch the accreting layers or remove
adatoms, the feed gases in this work was methane alone without hydrogen. Thus, carbonaceous
species absorbed on the surface would move along the surface quickly. This was also helpful to the
low-dimension growth of nanofilms. Meanwhile, a relative low temperature (300 ◦C) could decrease
the nucleation density and slow down nucleation rates, which benefitted the two-dimensional growth
of nanographite. This explanation can further prove the Raman result that the carbon films were
low-dimension nanograohite films, rather than bulk graphite films. Unfortunately, this is averse to the
coverage of the films as well and can account for the unevenness of the films. These factors can well
explain the reason why the films were nanographite films [30].
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Figure 4. Detailed process of growing NGFs by RF-plasma-enhanced chemical vapor deposition (PECVD).
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4. Conclusions

Low-dimensional carbon nanomaterials of NGFs were synthesized directly on glass substrates
under 300 ◦C by PECVD. NGFs were found to be nanographite films with different thicknesses
at the nanoscale. The XPS proved the component and bonding structure to be nanocarbon in sp2

bonding form. The Raman spectral characterization verified the configuration of the films to be
hexatomic ring networks of carbon atoms. The AFM topography and Raman spectrum of different
points demonstrated the nonuniformity of the films on the nanoscale. It was found that the NGFs
possessed excellent optic-electronic properties, which is very beneficial for their use as a photoelectrical
function material in photoelectric devices, especially as a transparent conductive layer. It was proved
that different thicknesses of nanographite films with different morphologies and structures could
be obtained by adjusting the parameters during the deposition. In addition, methane was the sole
source gas that was used in this work. The absence of a catalyst allowed to obtain a high purity
of the films. Furthermore, the complicated transfer process used for optoelectronic devices could
be avoided. By directly depositing the films on a glass substrate, quality degradation of the films
could be avoided. This work can further promote the development of next-generation electronic or
optoelectronic materials, especially for their application in transparent conductive electrode fields.
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