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Abstract: In response to obesity-associated chronic inflammatory disorders, adipose tissue 
releases a biologically active peptide known as leptin. Leptin activates the secretion of 
chemical mediators, which contribute to the pathogenesis of chronic inflammatory disorders, 
such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis. 
Conversely, adiposity and obesity are the major aggravating risk factors in the pathogenesis 
of metabolic syndrome (MetS), including type II diabetes mellitus and obesity-associated 
hypertension. Elevated level of leptin in obesity-associated hypertension causes an increase 
in the production of aldosterone, which also results in elevation of arterial blood pressure. 
Hyperleptinemia is associated with the progress of the atherosclerosis through secretion of 
pro-inflammatory cytokines, like interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), IL- 
17, and other cytokines to promote inflammation. The release of those cytokines leads to 
chronic inflammatory disorders and obesity-associated MetS. Thus, the aberrant leptin level 
in both MetS and chronic inflammatory disorders also leads to the complication of cardio-
vascular diseases (CVD). Therapeutic target of leptin regarding its pro-inflammatory effect 
and dysregulated sympathetic nervous system activity may prevent further cardiovascular 
complication. This review mainly assesses the mechanism of leptin on the pathogenesis and 
further cardiovascular risk complication of chronic inflammatory disorders. 
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Introduction
Adipose tissue is the major organ to produce and release leptin.1 Leptin was discovered 
on animal models by Friedman in 1994.2 At the time of discovery, treatment of obesity 
was hopeful on this active adipokine molecule. However, hyperleptinemia was seen in 
obese individuals after it was found.3 Two years after its discovery, low energy signal 
transmission effect of the central nervous system was identified as its first physiological 
function.4 Neurons found in the ventral tegmental area of midbrain in the hypothalamus 
express leptin receptors.5 Energy homeostasis in the peripheral nervous system is 
regulated by highly complex interaction of neurons and leptin.6 It can be maintained 
through interaction of leptin signaling pathways with neuropeptide Y neurons.7 Leptin 
regulates the satiety, energy expenditure, inflammation, endothelial cells function, blood 
pressure, and insulin secretion.8 It is proportional to the mass of adipose tissue.9 

Impairment of adipose tissue results in the release of effector adipokines, including leptin 
and resistin10 (Figure 1). The signaling pathways of leptin can be impaired due to an 
increase in body mass.11 Thus, fat storage and energy homeostasis in adipose tissue could 
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be impaired due to the effect of obesity-associated 
inflammation.10 Fatel et al12 in 2018 mentioned leptin as 
a pro-inflammatory adipokine because it induces the activation 
and secretion of the pro-inflammatory cytokines, including 
tumor necrosis factor-α (TNF-α), lipopolysaccharide, and 
interleukin (IL-1). In contrast, the inflammatory cytokines 
induce the generation and secretion of leptin to promote 
chronic inflammation.12 The pro-inflammatory stimuli, IL-1, 
TNF-α, and lipopolysaccharide lead to upregulation of expres-
sion of leptin messenger RNA (mRNA) to aggravate 
inflammation.13 Chronic inflammation may provoke leptin 
resistance through interruption of its receptor signaling cas-
cade, which in turn leads to hyperleptinemia and obesity.14

Leptin is involved in the pathogenesis of various obe-
sity-related inflammatory disorders, such as psoriasis, sys-
temic sclerosis, diabetes, and hypertension.15 Psoriasis is 
an inflammatory skin disease, which is mainly associated 

with pro-inflammatory cytokines, including IL-6, interleu-
kin 17 (IL-17), interferon-gamma (IFN-γ), and TNF-α.16 

Obesity is an attributable risk factor for the complication 
of psoriasis.17 The autoimmune inflammatory disorders, 
including systemic lupus erythematosus (SLE) induce the 
release of leptin to modulate the immune system18 that in 
turn leads to chronic inflammation.19 Although there are 
contradictory data, the majority of studies mentioned ele-
vated level of leptin in SLE patients.20 Rheumatoid arthri-
tis (RA) is another chronic autoimmune inflammatory 
disorder, which leads to the synthesis both of leptin and 
cytokines.21 Leptin also induces the activation of macro-
phage, regulatory T-cells and Th17 cells to release pro- 
inflammatory cytokines like interleukin 6 (IL-6), TNF-α, 
(IL-17), and other cytokines to promote inflammation.22 

The binding of leptin to its receptors induces an increase in 
arterial blood pressure23 because obesity-related 

Figure 1 Leptin for progression of atherosclerosis in T2DM. The synthesis of leptin is associated with atherogenic effect because leptin receptors are found on endothelial 
cells. Thus, its elevation in obese individuals causes endothelial dysfunction. In this regard, obesity and secretion of leptin is a characteristic feature of T2DM. IL-6 secreted 
from endothelial cells activate Janus kinase/activators of transcription (JAKs) after it binds to the cytoplasmic domain of gp130 within macrophage, followed by the 
phosphorylation of transmembrane tyrosine receptor motifs, such as Tyr905, Tyr814, Tyr767, Tyr705 and Tyr915. This leads to increase expression of pro-inflammatory 
genes through STAT3, which aggravates inflammation and atherosclerosis in T2DM. 
Abbreviations: CVD, cardiovascular disease; IL-6, Interleukin-6; JAK/STAT, Janus kinase/ activators of transcription; STAT3, activators of transcription-3; T2DM, type II 
diabetes mellitus.
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inflammation causes an impairment in leptin sympathetic 
activity that control the renin–angiotensin system.23 The 
sensitizing effect of leptin on upregulation of the renin– 
angiotensin system increases the risk of hypertension in 
obese individuals.23 In addition to maintaining body 
weight, leptin is also involved in carbohydrate 
metabolism24 and strengthening sensitivity of insulin in 
type I diabetes mellitus.25 The expression of leptin recep-
tor isoform, Lep-Rb in the peripheral tissue enhances the 
pathogenesis of various diseases, including immune dys-
regulation and type II diabetes.26

Recently, leptin has gained the insight of the scientific 
community due to its association with obesity, cardiovascular 
risk, and insulin resistance.27 Evidence has suggested that 
obesity aggravates the development of chronic inflammation, 
which in turn leads to metabolic syndrome (MetS).28 

Characteristic features of MetS, such as hypertension, ather-
osclerosis, insulin resistance and obesity are correlated with 
elevated levels of leptin.29 Studies revealed that obese indi-
viduals with hyperleptinemia are more likely to develop 
insulin resistance, type II diabetes mellitus, degenerative 
disease and cardiovascular complications.13,30 Studies 
revealed that insulin sensitivity became decreased in 
pre-diabetes because of a higher level of leptin.31 The devel-
opment of these chronic diseases are associated with obesity- 
associated complications.32 In contrast, hypertension is one 
of the obesity-associated MetS, which is caused by an abnor-
mal secretion of leptin.33 Increased levels of IL-6, TNF-α and 
leptin results in dysfunctional epithelial cells, proliferation of 
smooth muscle cells, and migration of macrophages toward 
the damaged endothelial cells, which also leads to the devel-
opment of the cardiovascular risk factors, such as athero-
sclerosis and hypertension.34 Even if contradictory data has 
been shown in vascular diseases,35 hyperleptinemia is the 
adverse effect of cardiovascular complications such as 
stroke, heart failure, and acute myocardial infarction.36 

Although scientific evidence had argument on leptin effect 
in coronary artery disease, it has a correlation with intima- 
media thickness and calcification of coronary artery among 
type II diabetes mellitus patients.37 Coronary artery disease 
(CAD) is associated with increased synthesis of the perivas-
cular adipose tissue derived leptin and its atherogenic effect. 
Consequently, the therapeutic target of this active adipokine 
molecule is recommended to treat obesity-associated cardio-
vascular complications.38 Hyperleptinemia is associated with 
the progress of atherosclerosis. Thus, the therapeutic target of 
leptin may decrease the complication of cardiovascular 
diseases.39 Generally, hyperleptinemia acts as a major risk 

factor for the complication of cardiovascular disease (CVD) 
in addition to other traditional risk factors40 (Figure 1). This 
review article evaluates the obesity-associated chronic 
inflammatory diseases and correlates the effect of these dis-
orders with cardiovascular complications. It focuses on the 
pro-inflammatory effect of leptin in various chronic inflam-
matory disorders and obesity-associated MetS.

Effect of Leptin in the Pathogenesis 
of Rheumatoid Arthritis
According to a clinical and epidemiological global study in 
2010, the prevalence of rheumatoid arthritis (RA) was esti-
mated to be 0.24% and continues without change from 1990 
to 2010.41 It is characterized by a highly systemic inflamma-
tion, which leads to reduced life expectancy and increased 
mortality rate.42 Obesity-associated inflammation increases 
the burden of RA.43 Evidence argues about unknown plasma 
levels of leptin and its undefined effect in RA patients com-
pared to healthy controls.44 However, as early as 2006, 
a marked elevation of plasma leptin level was detected in 
RA patients.45 Recently, in 2018, de Souza Fatel et al46 tried 
to confirm the association of RA and leptin. Researchers have 
various insights about leptin and disease activity in RA.47 

Studies showed that higher disease activity of RA is asso-
ciated with hyperleptinemia.48 In patients with RA under-
going anti-TNF therapy due to disease severity, there was 
a strong positive correlation between body mass index of the 
patient and serum levels of leptin.49 A recent 12-month 
multicenter study done in 2020 revealed that the ratio of 
leptin/fat was elevated in RA patients treated with 
tocilizumab.50 However, the alteration of serum leptin level 
was not evaluated in their study. It was also the case for RA 
patients undergoing intravenous therapy with the anti-IL-6 
receptortocilizumab.51 Moreover, a significant reduction of 
leptin levels was observed following one single intravenous 
infusion of the anti-IL-6 receptor tocilizumab.51 However, 
there was no a statistically significant differences in allele 
frequencies of leptin gene polymorphisms (LEP rs2167270) 
between RA patients and controls.52 A brief report done in 
Mexico in 2015 suggested the presence of linear association 
of leptin with disease activity of RA. Skalska and Kontny,53 

in their 2016 study, clearly describe leptin as a risk factorfor 
the development of RA.

De Souza Fatel et al revealed that leptin has a pro- 
inflammatory effect in the development of RA by activat-
ing the secretion of effector cytokines.46 Macrophages 
play a significant role in the development of RA.54 
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Leptin activated macrophage induces the release of IL-6 
and TNF-α55 (Figure 2). In vitro, the chemotactic activity 
of macrophage is associated with induction of leptin.55 In 
autoimmune diseases, deregulated immune response of 
cells are affected by alteration of metabolic process within 
these cells55 because leptin binds to its long isoform 
receptor (Ob-RB) to induce its biological and physiologi-
cal effect through JAK/STAT signaling pathway. JAK/ 
STAT signal transduction is caused by the involvement 
of Janus kinase 2 (JAK2), activators of transcription 
(STAT) and transducers found on longer receptor isoform 
(Ob-Rb).13 In addition to leptin, this signaling pathway 
requires the interaction between complex molecules, 
including node-like receptor pyrin domain-containing pro-
tein 3 (NLRP3), micro RNA-98 (miR-98), caveolin-1 
(CAV-1-NR2B) and IL-33.56 JAKs are a group of tyrosine 
kinases, which bind to type I and II tyrosine receptor 
family,57 whereas STATs are factors that are phosphory-
lated by cytokines activated tyrosine motifs.58 Leptin- 
receptor interaction begins after leptin binds to Ob-Rb, 

extracellular domain, later Jak2 tyrosine kinase become 
activated.59 This in turn causes auto-phosphorylation of 
Jak2 and intracellular Tyr1138, Tyr1077, and Tyr985 
motifs.13 Physically associated receptor-JAK complex 
activate phosphorylation of STATs, including STAT1, 
STAT2, STAT3, and other transcriptional signaling 
molecules.60 In addition, phosphorylated Tyr1138 induces 
the phosphorylation of STAT3, which is exported to the 
nucleus for targeted gene transcriptional process.59 This 
signaling cascade within macrophage induces synthesis of 
pro-inflammatory cytokines, including IL-6 and TNF-α61 

(Figure 2). Then, IL-6 and TNF-α are released from 
macrophage to promote inflammation and contribute to 
the pathogenesis of RA.62 Although effective anti-arthritis 
therapies are designed from these first-class adipokines, 
drugs from leptin and other adipokines may also be 
formulated.63 Chronic inflammation resulted from JAK/ 
STAT signaling may be altered with a therapeutic drug 
(Jakinibs) in rheumatoid arthritis patients.56 In addition, 
leptin induces macrophage chemotaxis, synthesis and 

Figure 2 Cumulative effect of leptin on both chronic inflammatory disorders and further cardiovascular complication. The homeostatic role of adipose tissue impaired due 
to obesity-associated inflammation. The impairment of adipose tissue results in the release of effector adipokines, including leptin. The adipokines secreted by adipose tissue 
involve in obesity related inflammatory disorders, such as psoriasis, SLE and RA by activating of secretion of various cytokines. Conversely, obesity induced inflammation 
causes an impairment in sympathetic activity that controls the renin–angiotensin system through secretion of aldosterone, which results in elevation in water and salt 
retention and leads to obesity-associated hypertension. The reduced physiological activity of leptin on adipose tissue to oxidize stored fat leads to a phenomenon known as 
leptin resistance. In this regard, leptin resistance occurs in diabetic and obese subjects. Adiposity and obesity are risk factors for the occurrence of metabolic syndrome, such 
as T2DM and hypertension. In addition to this, RA, psoriasis and SLE are developed due to adiposity and obesity, which in turn leads to cardiovascular complications. 
Abbreviations: CVD, cardiovascular disease; IBD, inflammatory bowel disease; JAK/STAT, Janus kinase/activators of transcription; Lep-Rb, leptin receptor isoform-b; RA, 
rheumatoid arthritis; MC4Rs, melanocortin-4 receptors; SLE, systemic lupus erythematosus; SNS, sympathetic nervous system; T2DM, type II diabetes mellitus.
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release of pro-inflammatory cytokine, IL-12.61 Similarly, 
leptin activated macrophage induces synthesis of IL-18 to 
mediate T-helper 1 immune response.64 Secreted IL-18 
and IL-12 enable differentiation of Th1 phenotype from 
T-helper cells and activate synthesis of interferon-γ (IFN- 
γ) and IL-2. Converely, Th1 cells synthesize leptin and 
induce the release of IL-18, IL-12, IL-6 and TNF-α by 
stimulating macrophage.65 The expression of glycoprotein 
(CD38), adhesion molecules, CD25, and CD69 also 
increased within activated macrophage.61

In contrast, leptin contributes to the progression of RA by 
downregulating regulatory T-cell activity (CD4+CD25high) 
and upregulating the activity of T-helper 1 (TH1) cells.66 

Diminished level of Treg cells seen in an opposite effect to 
the level of leptin and BMI in obese individuals.55 The experi-
ment done in leptin-deficient mice showed the anti-inflamma-
tory potential of leptin by inhibiting inflammatory agents. 
However, it elevates systemic inflammation in RA through 
TH1-mediated immune response.67 T-helper 1(TH1) cells pro-
mote inflammation in different autoimmune disorders, includ-
ing RA.68 The elevated ratio of both regulatory T-cell and 
Th17 cells (Th17/Treg) and Th1/Th2 promote the pathogen-
esis of RA69 (Figure 2). Even if there is no well-defined 
association among adipokines and RA, leptin is one metabolic 
risk factor.70 In addition, elevation in leptin/adiponectin ratio 
and positive association of leptin with homeostasis model 
assessment of insulin resistance (HOMA-IR) 
indicates magnitude of atherosclerosis development and pla-
que formation.70 Therefore, leptin plays a significant role in 
the pathogenesis of RA and risk of cardiovascular 
complication.

Hyperleptinemia and 
Cardiovascular Risk in Systemic 
Lupus Erythematosus
Systemic lupus erythematosus (SLE) is chronic autoim-
mune inflammatory disease characterized by inflammation 
of connective tissue.71 Versini et al72 et al, in 2017, men-
tioned the availability of inadequate data regarding the 
association between obesity and SLE through their cross- 
sectional study. Although studies argue regarding the asso-
ciation of leptin with SLE, an increase in serum leptin 
concentration may elevate systemic inflammation in 
SLE.73 Even though contradictory data are available, 
findings showed that the level of leptin increases in 
SLE.27,66,73 In contrast to this, the other meta-analysis 
done on leptin and SLE revealed that diminished level of 

leptin is shown in SLE.74 Alternatively, studies done in 
Egypt in 2018 confirmed the presence of higher level of 
serum leptin among SLE patients.19 Elevated level of 
leptin is correlated with MetS and obesity, which act as 
an exposure risk factors for chronic autoimmune diseases, 
including SLE.74 In the pathogenesis of SLE, the immune 
system is affected by leptin, which serves as a pro-inflam-
matory cytokine.75 In this regard, macrophages synthesize 
TNF-α due to the stimulatory effect of leptin.76 Therefore, 
SLE patients with CVD show an elevated level of IL-1 and 
TNF-α.77 At the onset of inflammation, leptin increases the 
synthesis of inflammatory mediators, including IL-6 and 
TNF-α.78

Leptin contributes to the pathogenesis of SLE by acti-
vating the synthesis of auto-antibody production and dys-
regulation of the immune system.79 Although the 
pathogenesis of SLE is still undefined, the circulating 
auto-antibodies activate secretion of inflammatory cyto-
kines, which in turn contribute to the progress of SLE.80 

Beyond leptin’s significant enrollment, both auto-antibo-
dies and CD4+ T-cells play another significant role in the 
pathogenesis of SLE.18 The abnormal activation of CD4+ 

T-cells and mediated inflammatory responses are seen in 
SLE patients.80 Immune dysregulation associated with 
leptin is due to an increase in differentiation of Th17 
cells,18 which in turn lead to tissue damage in autoimmune 
disorders, including SLE.79 The effector cell, Th17 
induces inflammation by the activating secretion of IL-17 
which also enhances tissue damage and inflammation in 
psoriasis, SLE, and RA81 (Figure 2).

Role of Leptin in the Pathogenesis of 
Psoriasis
Psoriasis is a chronic inflammatory disease in joints, nails and 
skin due to immune modulation, environmental, and genetic 
variation.82 The World Health Organization describes it as 
a global health burden, and the prevalence of disease is 
expected to be 2% in Western countries.83 The complication 
of psoriasis is related to the effects both of MetS and obesity.82 

Profumo et al84 in 2012 mentioned the development of obesity 
in psoriatic patients. Obesity has an association with inflam-
matory skin cells by modulating their activity.85 It also induces 
chronic inflammation by activating the secretion of cytokines 
and leptin.86 The release of adipokines contribute to a chronic 
cutaneous inflammation in psoriasis.87 Leptin plays its own 
role in the promotion of psoriasis through secretion of pro- 
inflammatory mediators, which are recruited to cutaneous 
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lesions.88 Although cutaneous psoriasis patients at moderate- 
to-severe stages of the disease treated with anti-TNF biologics, 
leptin correlated with MetS features and inflammation. In this 
regard, in these patients with moderate-to-severe psoriasis, 
leptin concentration is correlated with C-reactive protein and 
with systolic and diastolic blood pressure before the onset of 
the anti-TNF-adalimumab therapy.89 A negative correlation 
with insulin sensitivity was also found.89 Although clarifica-
tion on anti-inflammatory and pro-inflammatory effect of 
psoriasis is challenging, the expression of anti-inflammatory 
cytokines resolve Th2 and Th1/Th17 unbalanced proportion in 
psoriasis.16 However, studies done in mice showed that leptin 
induces and activates the differentiation of T-lymphocytes into 
T-helper-1 lymphocytes (Th1 lymphocytes) to release pro- 
inflammatory cytokines, including TNF-α, IL-6 and IL-890 

(Figure 2). Researchers have confirmed that leptin increases 
the genetic expression of IL-6 both in humans and rats.91

Regard to psoriasis pathogenesis, Th1-cells are responsi-
ble for the synthesis of TNF-α, IFN-γ and IL–2.16 Similarly, 
Th17 cell becomes differentiated due to stimulatory effect of 
IL-6 and this cell also induces the release of IL-17, IL-6, IL- 
22 and IL-2116 (Figure 2). The systemic inflammation is due 
to a network of cytokines activation such as IL–2, TNF-α, 
IFN-γ, IL-6, IL-17, IL-21, IL-22 and others.16 The secreted 
cytokines cascade promote the development of accelerated 
atherosclerosis in psoriasis patients.89 The IL-17 deficient 
mice showed diminished level atherosclerotic plaque forma-
tion, hence IL-17 lymphocytes may be involved in athero-
sclerosis development.83 From a common perspective, 
inflammation mediated atherosclerosis has a common pro-
cess similar to CVD.83 Similarly, leptin induces the secretion 
of pro-inflammatory cytokines like TNF-α and IL-6 from 
macrophages and inhibits secretion of Th2 cytokines.92 In 
this context, the pro-inflammatory effect of TNF-α has been 
activated,89 whereas the anti-inflammatory effect of Th2 
cytokines will be downregulated.92 Studies showed that 
Th2-produced IL-10 may assist psoriasis therapy because it 
diminishes synthesis of chemokines and pro-inflammatory 
cytokines from macrophage.93 Inflammation enhances 
pathophysiology of psoriasis, which in turn leads to the risk 
of cardiovascular complications.83

Leptin and Intestinal Inflammation 
in Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is a chronic inflamma-
tion of the digestive tract that includes ulcerative colitis88 

and Crohn’s disease.76,94 The incidence of IBD is higher in 

developed countries, but its prevalence is lower in devel-
oping countries compared to the former one.94 Intestinal 
microbiome difference, smoking habits, lifestyle modifica-
tion, and a variation on dietary content are some of the 
factors, which contribute to variation in the prevalence of 
IBD. Genetic, environmental factor, abnormality in 
immune response, and intestinal microbiome contribute 
to the development of IBD.94 Studies describe IBD as an 
inflammatory disorder, which is characterized by an 
increase in the level of pro-inflammatory cytokines, 
including, TNF-α, IL-6, and IL-194 (Figure 2). 
Researchers have revealed that the pathogenesis of IBD 
is associated with activation of nuclear factor-κB (NF-κB), 
which enhances the genetic expression of pro-inflamma-
tory cytokines.95 Binding of leptin to its receptors found 
on immune cells of lamina propria and small intestine 
enterocytes induce NF-κB activation,96 which in turn 
leads to villi cell apoptosis phenomena within intestinal 
mucosa. Migration of macrophage toward dead 
cells enhance and release pro-inflammatory cytokines, 
including IL-6, IL-1, and IL-12.97 Neutrophils migrate 
toward the inflamed intestine98 and synthesize or secrete 
leptin, but its proportion is not comparable to adipose 
tissue.99 The cytokines secreted from macrophage are 
due to the stimulatory effect of leptin, especially in 
patients with Crohn’s disease (CD).96 In contrast, pro- 
inflammatory cytokines, including TNF-α, IL-6, and IL-1 
induce an elevated activity of leptin in inflamed tissue.100 

Thus, neutrophils play a vital role in the pathogenesis of 
IBD by mediating intestinal inflammation.98 During intest-
inal microbiome disturbance, adipocytes also involve in 
innate immune response through generation of leptin.101 In 
addition, characteristic systemic inflammation shown in 
IBD is associated with elevated CD4+ cells polarization 
to Th1 cells, which in turn lead to release of pro-inflam-
matory cytokines97 (Figure 2).

Leptin Involved in the Progression 
of Atherosclerosis in Type II 
Diabetes Mellitus
In the US, 34% of the population are challenged with com-
plication of type II diabetes mellitus (T2DM).102 This is 
because both obesity and T2DM are highly associated with 
each other.102 Obesity is the major risk factor for the patho-
genesis of diabetes mellitus.103 Type II diabetes mellitus is 
characterized by obesity and secretion of leptin.104 The pro-
duction of leptin is related with atherogenic effect,104 because 
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its elevation in obese individuals causes endothelial 
dysfunction103 (Figure 3). Leptin binds to its receptors on 
neutrophils105 and activates the chemotaxis and phagocytosis 
process.106 The effect of leptin on the generation of reactive 
oxygen species is still undefined,105 but it causes the migra-
tion of leukocytes toward injured tissue.106 At the onset of 
inflammation, leptin increases the synthesis of pro-inflamma-
tory mediators like IL-6 and TNF-α.78 IL-6 and TNF-α are 
synthesized from macrophage within endothelium and con-
tribute to the atherogenic process.107 In addition to macro-
phage, different types of cells are responsible for secretion of 
IL-6, including endothelial cells, adipocytes, and skeletal 
muscle cells.108 In contrast to pro-inflammatory effect, leptin 
activates synthesis of anti-inflammatory cytokines, including 
IL-4 and IL-10 from different types of immune cells.65 

However, in T2DM, the vascular complication promoted by 
the active pro-inflammatory mediator, IL-6 through JAK/ 
STAT signal transduction pathway.109 The interaction of this 
cytokine with its receptor induce activation of JAK/STAT 
signaling pathway.60 The transphosphorylation of JAK and 

STATs is related with stimulation of receptors.57 Janus 
kinase/activators of transcription (JAK) activation is caused 
by the binding of IL-6 to the cytoplasmic domain of gp130 
followed by auto-phosphorylation of JAK and phosphoryla-
tion of transmembrane tyrosine receptor motifs, including 
Tyr905, Tyr814, Tyr767 and Tyr915.99,110 In addition, phos-
phorylation of both ser727 and Tyr705 residues of Ob-RB 
also occurred within macrophage.111 Mitogen activated pro-
tein kinases (MAPKs) are responsible for serine 727-phos-
phorylation of STAT3 and STAT1, which act as linkage sites 
for MAPK and STATs.112 Activators of transcription-3 
(STAT3) are the major activation transcription factor for leptin 
signaling cascade, which requires phosphorylation of 
Tyr705.109 In addition to Tyr705, extracellular regulated 
kinase (ERK)-activated phosphorylated ser727 also mediates 
STAT3 stimulation during leptin signaling cascade.111 Then, 
STAT3 dimerizes, phosphorylates and translocates to the 
nucleus to activate pro-inflammatory gene expression.109 

The translocated STAT binds to gamma-activated sites113 

and interferon-stimulated response elements (ISREs) which 

Figure 3 The impact of leptin on the pathogenesis of chronic autoimmune inflammatory disorders. Leptin binds to its long isoform receptor (Ob-RB) on macrophage to 
induce its biological and physiological effect through a JAK/STAT signaling pathway. This signaling cascade within macrophage induces the synthesis of pro-inflammatory 
cytokines, including IL-6 and TNF-α. The synthesis and release of IL-6 and TNF-α also involves the pathogenesis of RA. Similarly, IBD is one of inflammatory disorders which 
is characterized by elevation in the level of pro-inflammatory cytokines, including TNF-α, IL-6 and IL-1 that leads to the development of diseases. In contrast, the immune 
dysregulation related to leptin is due to elevated differentiation of Th17 cell, which in turn leads to tissue damage in autoimmune inflammatory disorders, including, SLE, 
psoriasis, and RA. The effector cell, Th17 induces inflammation by the activating secretion of IL-17 which also enhance tissue damage and inflammation in SLE. In the 
pathogenesis of psoriasis, studies done in mice showed that leptin induces and activates the differentiation of T-lymphocytes to T-helper-1 lymphocytes (Th1 lymphocytes) to 
release pro-inflammatory mediators, including TNF-α, IL-6 and IL-8. 
Abbreviations: IBD, inflammatory bowel disease; IL-6, interleukin-6; IL-17, interleukin-17; JAK/STAT, Janus kinase/activators of transcription; RA, rheumatoid arthritis; SLE, 
systemic lupus erythematosus; Th1 and 2 cells, T-helper-1 and 2- lymphocytes; Th17 cells, T-helper-17 cells; TNF-α, tumor necrosis factor-alpha.
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are involved in the signaling cascade of IFN and acute phase 
response109 (Figure 3).

In contrast, the lower level of leptin seen both in 
rodents and humans indicates the presence of normal meta-
bolic activity of cells.114 The higher insulin concentration in 
the circulation leads to the deposition of fat in adipose tissue 
in the form of triglyceride.115,116 In response to accumulated 
fat, leptin will be secreted by adipose tissue to oxidize it. But, 
the physiological activity of leptin does not act on adipose 
tissue to oxidize stored fat, which leads to a phenomenon 
called leptin resistance.114 The demonstration done on rats 
showed that leptin resistance may be caused by downregula-
tion of genetic expression of Lep-Rb in the hypothalamus. In 
addition to this, its signal transduction pathway can be inhib-
ited through suppressor of cytokine signaling-3 (SOCS3) 
having counter regulatory effect.117 Studies done on mice 
confirm that obesity was inhibited by avoiding SOCS3 and 
protein tyrosine phosphatase 1B in the pro-opiomelanocortin 
(POMC) neurons.118 Elevation of counter regulatory signal-
ing pathways and overexpression of leptin receptor cause 
inhibition of leptin signaling cascade, which in turn leads to 
leptin resistance. Therefore, hypothalamus promotes the sen-
sitivity of leptin through upregulation of STAT3, JAK2 and 
diminished genetic expression of SOCS3.119 In addition to its 
receptor aberration, a defect in transportation of leptin also 
contributes to leptin resistance.120 The expression of leptin 
receptor isoform (Lep-Rb) in the brain activates transporta-
tion of leptin to undergo its biological and physiological 
effect on hypothalamus. However, the blood–brain barrier 
inhibits transportation of leptin.121

Diminished response to biological and physiological 
action of leptin commonly occurs in obese individuals.122 

The observational study done by Kennedy et al123 in 2016 
explained that elevated level of leptin was seen in hypergly-
cemia condition. In the hypothalamus, the JAK–STAT sig-
naling pathway is induced through interaction of Lep-Rb and 
leptin, which leads to the biological effect of leptin action.124 

The glycolipid metabolism is regulated by leptin binding to 
its long isoform receptor, Lep-Rb which is found in the liver 
and hypothalamus.125 Lep-Rb/STAT3 signaling controls gly-
cemic index, hence leptin regulates STAT3 and phosphatidyl 
inositol-3 kinase (PI3K) activity.126 Glucose reduction activ-
ity of leptin through energy expenditure enhances insulin 
sensitivity effect.127 However, in animal models, the mutated 
leptin receptor gene may be associated with leptin action, 
T2DM pathogenesis, and obesity124 (Figure 1). Leptin resis-
tance occurs both in diabetes and obese subjects.128 An 
investigation done on an animal model showed that leptin 

replacement therapy decreased hepatic gluconeogenesis and 
hyperglycemia condition.129 Leptin therapy is not an ade-
quate alternative method due to unresponsiveness to its phy-
siological action. Therefore, additional desensitizing 
molecules should be combined with leptin to strengthen its 
anti-obesity activity.122 If the anti-obesity activity of leptin 
therapy is enhanced, the stored fat will be oxidized, as well as 
insulin sensitivity elevated. Hence, the pathogenesis of dia-
betes might be decreased.

Leptin in the Pathogenesis of 
Obesity-associated Hypertension
Globally, the obesity-associated hypertension increases at 
a higher rate.130 Several researchers confirmed that leptin 
leads to obesity related to hypertension.131 A recent inves-
tigation tried to evaluate blood pressure in lipodystrophy 
patients through administration of leptin. Although they 
identified elevated level of leptin, patients did not show 
a significant variation as their blood pressure is 
measured.132 However, mutation of leptin and its receptor 
may cause severe obesity in human beings, but normal or 
lower arterial pressure and sympathetic tone may be 
detected.133–135 Obesity is a well-known risk factor for 
the development of hypertension.136 In premenopausal 
women, obesity induces three-fold elevation for the pro-
gression of hypertension.131 The abnormal secretion of 
biologically active peptide, leptin leads to aberration of 
the appetite regulation, insulin sensitivity, inflammation, 
and elevation of blood pressure (BP).137 A recent investi-
gation revealed that hypertension developed through ele-
vation of the sympathetic nervous activity.138 Blood 
pressure is maintained through interconnected activity of 
the hormonal factors, such as TNF-α, angiotensin, mela-
nocortin, and leptin.130 High fat diet intake causes the 
secretion of effector molecules, such as leptin and TNF-α 
to induce their sympathetic activity on hypothalamus.130 

Independent of food consumption, leptin regulates sympa-
thetic activity and BP.139 It affects BP by elevating sym-
pathetic nervous system and aldosterone levels.139 Protein 
tyrosine phosphatase 1B (PTP1B) and SOCS3 have nega-
tive feedback on the effect of leptin by induction of leptin 
resistance. As leptin resistance occurred, the biological 
effect of leptin on sympathetic nervous system (SNS) 
becomes disrupted, which contributes to arterial hyperten-
sion pathogenesis.140 Investigations done on rodents and 
humans revealed that BP becomes elevated as leptin infu-
sion occurred at hypothalamic arcuate nucleus (ARC). On 
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contrast, BP and heart rate decreased due to downregula-
tion of leptin receptor in the proopiomelanocortinergic 
(POMC) neurons.141

Leptin activates SNS to induce obesity related to 
hypertension23 because it affects autonomic nervous sys-
tem in Lep-Rb containing neurons.142 In contrast to this, 
the activity of SNS and BP can be impaired during intra-
venous administration of leptin in humans.143 Sympathetic 
nervous system and BP are regulated through the activa-
tion of melanocortin-4 receptors (MC4Rs) in brain stem 
nuclei, hence the renal SNS is altered.144 The lysis of 
POMC protein induces the synthesis of α-melanocyte-sti-
mulating hormone (α-MSH), which in turn activates 
MC4Rs.144 The sensitization of hypothalamus MC4Rs 
induces an increase in renal system activity, including 
elevated sodium retention and secretion of renin, further 
leading to an increase in BP.144 In addition to this, 
receptors of leptin are mainly expressed in the hypothala-
mus and are responsible for elevated secretion of aldoster-
one, which also depends on the level of Ca2+.145 Xie and 
Bollag et al146 in their focused review elaborate that leptin 
stimulates overproduction of aldosterone. The elevated 
level of aldosterone also leads to elevate retention of salt 
and water by the kidney, which results in an increase in 
BP146 (Figure 1). Consequently, elevated level of leptin 
among obese individual leads to hypertension through 
increased production and secretion of aldosterone.

Hyperleptinemia Aggravates 
Further Cardiovascular Risk 
Complication
Globally, cardiovascular diseases (CVD) are a major 
health burden, which accounts for up to 12.3 and 
17.6 million deaths in 1990 and 2016, respectively.147 

Different types of diseases are categorized under CVD, 
including coronary artery diseases,148 myocardial infarc-
tion, heart failure, rheumatic heart diseases, stroke, and 
congenital heart diseases.149 Stroke and coronary artery 
disease (CAD) are the major factors for the global death 
burden both in high and low-income countries.150 In the 
USA, 15.4 million people were diagnosed with CAD from 
2007 to 2010 whose age was greater than 20 years old.40 

Researchers are in contention whether leptin has a positive 
or negative impact on the heart and vascular system.151 

Perivascular fat has a characteristic of atheroprotective 
vascular homeostasis and give a mechanical strength for 
vasculature through release of leptin. However, it loses its 

biological function during obesity.152,153 The expression of 
leptin has been elevated because of obesity-associated 
perivascular adipose tissue.154 In contrast, 
investigations done on hypertensive rats showed the 
expression of perivascular adipose tissue (PVAT)-derived 
leptin was decreased.155 Perivascular-derived leptin leads 
to vessel stiffness during obesity.153 In addition, SNS 
activity become elevated due to the release of leptin.156 

In addition to leptin, PVAT activates the release of mono-
cyte chemoattractant protein-1 (MCP-1), IL-8, IL-6, and 
TNF-α to promote the development of atherosclerosis 
through activation of smooth muscle cell migration.157 

Perivascular-derived leptin activates macrophage migra-
tion, expression of adhesion molecule, synthesis of free 
radicals, secretion of IL-6, and TNF-α.158 Obesity-asso-
ciated perivascular adipose tissue activates p38 mitogen- 
activated protein kinases signaling pathways to induce 
phenotypic change on vascular smooth muscle cells.

Published scientific conclusions on the effect of leptin 
on vascular diseases differ.35 Several animal studies 
revealed that the pathogenesis of cardiac hypertrophy is 
associated with obesity.159 Although leptin causes increased 
ventricular thickness and cardiac mass, its effect on cardiac 
hypertrophy is still undefined. It may lead to cardiac remo-
deling through triggering its biological and physiological 
effect using PI3K, mitogen-activated protein kinase 
(MAPK) and JAK/STAT3 signaling cascade 
mechanism.160 However, cardiac hypertrophy may develop 
because of activation of SNS and renin–angiotensin-aldos-
terone system.161 Stangl et al162 in 2000 carried out 
a demonstration on mice, and they confirmed that infusion 
of leptin leads to an increase in sympathetic activity of 
certain organs. Binding of leptin to its receptors induce the 
activation of SNS.163 Receptors of leptin found on vascular 
cells indicate the potential role of leptin in the function of 
the vascular system.164 Therefore, it has autocrine and 
paracrine effects on the vascular modulation process.36 

Investigations done on animal models showed that leptin 
leads to the development of atherosclerosis and thrombosis, 
which act as risk factors for CAD.27 Even though animal 
investigations revealed that it contributes to atherosclerosis 
development,115 findings from clinical investigations as 
well as experimental animal studies showed leptin’s protec-
tive effect against atherosclerosis.165,166 With regard to this, 
the synthesis of reactive oxygen species (ROS) increased 
rapidly after the treatment of leptin.167 In addition to CAD, 
evidence revealed that heart failure is caused by increased 
genetic expression of leptin and its receptors.168 In contrast, 
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congestive heart failure causes an elevation in leptin plasma 
level.167 The induction of leptin signal transduction path-
way through PI3K, MAPK, JAK2/STAT3 results in biologi-
cal and physiological response in different tissues, 
including left ventricular, which is related to left ventricular 
hypertrophy (LVH).160 Moreover, angiotensin II-associated 
myocardial remodeling may be due to the biological effect 
of leptin through its signal transduction.160 In vitro investi-
gation showed that rodent and human cardiomyocyte hyper-
plasia were activated by the effect of leptin.169

Adiposity and obesity are the major risk factors for the 
pathogenesis of MetS, such as T2DM and hypertension, 
which in turn leads to cardiovascular complications,170 

because abnormality in adipose tissue and obesity induce 
a chronic inflammation.55 Adiponectin/leptin ratio will be 
diminished during systemic inflammation to induce patho-
genesis of various MetS.10 In this regard, researchers agree 
with influence of dysfunctional adipokines on the pathogen-
esis of MetS.171 This is due to a positive correlation 
between the level of leptin and development of 
atherosclerosis172 (Figure 1). Elevated mass of adipose 
tissue is characterized by increased secretion of adipokines, 
which contribute to the pathogenesis of atherosclerosis.35 

Furthermore, the association between leptin and athero-
sclerosis is mainly associated with leptin resistance instead 
of hyperleptinemia.173 Leptin resistance occurs in diabetes 
and obese subjects.128 On behalf of the obesity-associated 
hypertension, elevated level of leptin leads to an increase in 
the production of aldosterone. Elevated aldosterone level 
also leads to increased retention of salt and water by the 
kidney, which results in an increase in blood pressure.146

Although it is difficult to clarify the mechanism of devel-
opment of atherosclerosis, SLE patients may develop 
atherosclerosis.174 This is because of development of athero-
sclerosis, which may be associated with the deposition of 
cholesterol ester (CE) in foam cells during endothelial 
dysfunction.175 Concerning the atherosclerosis, a huge 
cohort study was done in Systemic Lupus International 
Collaborative Clinics (SLICC) on 1249 patients and 31 of 
them developed atherosclerosis.174 In addition to this cohort 
study, the population-based research done in Sweden con-
firmed that higher incidence of CVD was seen in SLE 
patients.176 According to this study, SLE patient’s within 
the age range of 20–39 years have 16 times higher cardio-
vascular mortality risk than the general population. Similarly, 
Lewandowski and Kaplan177 in 2016 also describe that one 
third of deaths of SLE patients are due to cardiovascular 
complications. Therefore, the risk of developing CVD is 

higher in SLE patients due to the development of 
atherosclerosis174 (Figure 1). In contrast, numerous 
investigations confirmed that IBD leads to the risk of cardi-
ovascular complication,178 which is associated with involve-
ment of leptin in the development of atherosclerosis178 

(Figure 1). Regarding psoriasis, inflammation promotes 
pathophysiology of disease, which in turn leads to the risk 
of cardiovascular complication.83 Thus, CVD is one of the 
comorbidity effects of psoriasis.83 Similarly, patients with 
RA are 1.5 times more likely to develop CVD as compared 
to the general population.179 Adipokines modify the immune 
system and metabolic activity of cartilage, and bone which 
results in the occurrence of MetS.170

Conclusion
Leptin induces the activation and release of pro-inflamma-
tory cytokines, including IL-6, TNF-α, IL-17 and other cyto-
kines to promote systemic inflammation in RA, SLE and 
psoriasis. Leptin-activated pro-inflammatory mediators con-
tribute to complication of atherosclerosis in T2DM. 
Conversely, it induces obesity-associated hypertension 
through activation of sympathetic nervous system in Lep- 
Rb containing neurons. It increases the secretion of aldoster-
one, which in turn causes an increase in arterial blood pres-
sure. Consequently, the development of both MetS and 
chronic inflammatory disorders leads to the pathogenesis of 
CVD such as coronary artery disease and stroke. This review 
strongly suggests that the adverse individual effect of leptin 
on chronic inflammatory diseases in turn increases the risk of 
developing CVD. Therapeutic target of leptin regarding its 
pro-inflammatory effect and dysregulated sympathetic ner-
vous system activity may prevent further cardiovascular 
complication. Therefore, we recommend that treating an 
elevated level of leptin has broad therapeutic potential to 
inhibit the pathogenesis of chronic inflammatory disorders 
and associated further cardiovascular complications. Early 
therapeutic management of hyperleptinemia in obesity-asso-
ciated inflammatory disorders has a cumulative therapeutic 
potential to manage complications of CVD.

Abbreviations
CVD, cardiovascular disease; IBD, inflammatory bowel 
disease; IL, interleukin; JAK2/STAT3, Janus kinase/acti-
vators of transcription-3; MetS, metabolic syndrome; RA, 
rheumatoid arthritis; SLE, systemic lupus erythematosus; 
TNF-α, tumor necrosis factor-alpha.
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