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Background. Increasing evidence has shown a strong correlation between necroptosis and antitumor immunity. However, precise
expression patterns of necroptosis-related genes in cutaneous melanoma (CM) have not been clearly elucidated nor have their
effects on the immune cell infiltration in the tumor microenvironment. Method. We investigated the expression patterns of
necroptosis-related genes of individuals with cutaneous melanoma based on 67 necroptotic genes and methodically associated the
expression patterns with the comprehensive characterization of tumor immune microenvironment. Using principal component
analysis methods, the NRG score was developed to quantify the expression patterns of necroptotic genes in CM patients. Result.
Three different necroptotic subtypes were determined with marked survival differences, showing distinct characteristics of
immune cell infiltration. The high NRG score group with comprehensive immunosuppression was characterized by the worse
immunotherapeutic efficacy and the poor prognosis, while the low NRG score group indicated a robust activation of immune
function and a better response to immunotherapy, which may be responsible for a better prognosis. Furthermore, the predictive
ability of the NRG score on prognosis and immunotherapeutic benefits was further revalidated using the other independent
datasets of cutaneous melanoma. The results indicated that patients with low NRG scores exhibited prolonged survival. Sur-
prisingly, all patients with CM with clinical response, including complete response/partial response, belonged to the low NRG
score group. Conclusion. Our present work revealed the close association between expression patterns of necroptosis-associated
genes and tumor immune microenvironment. NRG score can serve as a potential predictor to independently assess patients’
prognosis with CM and effectively estimate the response to immunological therapy, thus facilitating the identification of ap-
propriate candidates with CM for immunotherapy and the formulation of individualized therapeutic approaches.

1. Introduction

Cutaneous melanoma (CM) is the most fatal form of skin
cancer, with metastasis at an early stage and a poor prognosis
[1]. Epidemiological evidence has revealed that the morbidity
of CM has increased drastically by 170% to 289,950 cases
worldwide from 1990 to 2019, contributing to 80% of deaths
from dermatologic cancers [2, 3]. Furthermore, CM causes
approximately 55,500 deaths annually, and less than 20% of
individuals with advanced CM survive more than 5 years after
diagnosis [4, 5]. Over the past decade, the therapeutic
landscape for advanced CM has evolved dramatically with the

development of immunological therapy represented by im-
munological checkpoint blockade (ICB), which could effec-
tively facilitate the reconstruction of the immune system and
induce sustained antitumor immune responses [6]. However,
an apparent restriction of ICB, as observed, is merely a small
percentage of CM individuals with durable responses that
could benefit from it, while there is no objective response for
60-70% of CM patients to immunotherapy, and 20-30% of
these patients without objective response relapse with tumor
recurrence and progression [7-9]. Therefore, reliable indi-
cators or predictors are in great demand to help identify the
appropriate CM individuals for immunotherapy.
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Necroptosis is a new type of programmed cell death with
morphological characteristics similar to necrosis relying on
caspase-independent mechanisms for the activation of death
receptors, which increases membrane permeability by
interacting with various phospholipids, thereby prompting
the releases of chemokines and cytokines and inducing
inflammation and immune response [10, 11]. In the past five
years, increasing shreds of evidence have demonstrated a
strong association between antitumor immunity and nec-
roptosis. Tumor cells that undergo necroptosis have been
shown to be characterized by the immune system activation,
particularly the antigen presentation and activation of CD8+
T cell in tumor microenvironment (TME) [12, 13]. Fur-
thermore, numerous studies have observed the possible
combinatorial effects between immune checkpoint blockade
(ICB) and the induction of necroptosis in TME on pro-
moting long-term antitumor immunity [10, 14, 15]. With a
targeted immunostimulatory mechanism, a necroptotic
tumor cell mimicry nanovaccine has proven to increase
antitumor immunity, inducing the expansion of natural
killer (NK) cells and CD8+ T cell, and multiepitope T cell
responses [16]. Furthermore, the antitumor effects of vac-
cination could be optimized in combination with immune
checkpoint inhibitors (ICIs) in vivo [16]. These results in-
dicate that the biological process of necroptosis is strongly
associated with antitumor immunity, suggesting that nec-
roptosis could be a potential immunotherapy target and the
expression patterns of necroptosis-related genes might serve
as an effective predictive factor of the response to immu-
notherapy of CM patients and the prognosis.

The present work evaluated the associations between
expression patterns of necroptosis-related genes with the
levels of immune cell infiltration in TME by combining
genomic and transcriptomic data from TCGA and GEO-
derived CM samples. In addition, three distinct expression
patterns of necroptosis-related genes have been identified
through unsupervised clustering, showing obvious differ-
ences in prognosis and the landscape of tumor immune
microenvironment. Furthermore, in this study, a reliable
scoring system, NRG score, has been constructed to evaluate
expression patterns of necroptosis-related genes among
individual tumors and to comprehensively assess the re-
sponse to immunotherapy of CM patients, thereby assisting
in the formulation of individualized therapeutic strategies.

2. Methods and Materials

2.1. CM Dataset Acquisition and Preprocessing. The detailed
workflow for this study is shown in Figure 1(a). First, we
searched and downloaded gene expression dataset from
public databases, as well as complete clinical annotation
from the Cancer Genome Atlas (TCGA) database and Gene
Expression Omnibus (GEO) database. Individuals that have
complete survival information were selected for further
analysis. Overall, 685 CM sample datasets (TCGA-SKCM
and GSE65904) were identified for further evaluation.
Furthermore, the independent CM datasets (GSE19234),
including 44 CM individuals, were analyzed to validate the
prognostic value of NRG score. In addition, an independent
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CM dataset (GSE91061), including 49 CM individuals re-
ceiving immunotherapy, was analyzed to identify again the
predictive ability of NRG score to immunotherapy. Re-
garding the datasets from TCGA, RNA sequencing data,
which were relative to gene expression (FPKM values), have
been acquired from the University of California Santa Cruz
Xena browser (Genomic Data Commons (GDC)). For the
GEO datasets, we directly derived the matrix files after
normalization. More specifically, we converted the FPKM
values to transcripts per kilobase million (TPM) values. We
corrected the batch effect from nonbiological technical bias
with “ComBat” algorithm. In addition, from the TCGA
database, the somatic mutation data were obtained. R
Bioconductor and R (version 4.1.1) packages were used to
perform data analysis.

2.2. Mutation-Related Genes and Mutation-Related Signa-
tures of Tumor. A gene set was identified including 67 genes
related to necroptosis through the gene set enrichment
analysis (GSEA) (https://www.gsea-msigdb.org/gsea/index.
jsp) and previous studies on necroptosis [17]. This study
adopted the MutSigCV algorithm to determine obviously
mutated genes. To be specific, MutSigCV was applied to
determine distinct enrichments of non-silent somatic mu-
tations for the single gene by removing the background
mutation rate in a specific mutational context. Additionally,
we used the waterfall function of the R package “maftools” to
describe the mutational landscape of SMG and genes related
to necroptosis in the TCGA-SKCM cohort. The CNV
landscape of 67 necroptosis-related genes present in 23 pairs
of chromosomes was described with the “RCircos” package.

2.3. Clinical Validation by Immunohistochemical Staining.
The expression patterns of some representative necroptotic
genes (RIPK3, HSP90AA1, PLK1, SLC39A7, and SQSTM1)
in normal and CM tissues were clinically validated using
immunohistochemical staining derived from Human Pro-
tein Atlas (HPA) (https://www.proteinatlas.org/) [18]. These
immunohistochemical images of this study were obtained
from CM patients aged 53 to 88. The antibodies used for
these images are as follows: RIPK3 (HPA055087, Sigma-
Aldrich), HSP90AA1 (CAB002058, Sigma-Aldrich), PLK1
(HPA053229, Sigma-Aldrich), SLC39A7 (HPA053999,
Sigma-Aldrich), and SQSTM1 (CAB004587, Sigma-
Aldrich).

2.4. Unsupervised Clustering for Necroptosis-Related Genes.
The prognostic values of these genes related to necroptosis in
patients with CM were revealed by the univariate Cox re-
gression model. We used the unsupervised clustering
analysis to determine different subtypes of necroptosis and
divide CM individuals for subsequent analysis, based on 67
genes related to necroptosis. The stabilities and number of
clusters were identified via a consensus clustering algorithm.
Previous processes were carried out via the Consensu-
sClusterPlus package [19], and the stability of categorization
was guaranteed via 1000 repetitions.


https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.proteinatlas.org/

Journal of Oncology

Altered in 359 (76.87%) of 467 samples
| 686 samples enrolled in this work (TCGA-SKCM, GSE65904) |

13854
@
z No. of samples )
o Jibwib L (TR
s (I e,
Unsupervised clustering for identifyi totic patterns based e
ipervised clustering for identifying necroptotic patterns based on CDKN2A || r-|
screened 67 necroptosis-related genes. ALK
FLT3 || III
EGFR
necroptosis cluster A Atrx |11 |1
necroptosis cluster B IDHI |
necroptosis cluster C AXL U] [
TLR3 U A i u
Tverse2 |1 [
Estimation of immune landscape and functional DT — H
annotation of different necroptotic clusters RNF31 A A [
BACH2 [N | ']
25 IR 1
app [ ] ]] | [ ]
55 i H
- - YLD
| Identification of necroptotic signature genes | Rvis || I | i
WV\MI‘WV‘“T rr"\'r"p"r\’l*nr‘\i‘ v ‘\T.m-w‘aww-,wvmw“w’.-‘wv‘-»‘w‘ u CT W Toa
| = GG R T>C
= C>A " T>G
Consensus clustering algorithm for > -
necroptotic signature genes
gene cluster A
gene cluster B = Missense_Mutation ~ ® Splice_Site
o ® Frame_Shift_Ins In_Frame_Del
gene cluster C ® Frame_Shift Dl ® Multi_Hit
= Nonsense_Mutation
PCA algorithm for quantifying expression
patterns of necroptotic signature genes.
NRGscore
Correlate NRGscore with the comprehensive characterization of
tumor immune microenvironment
Validate the prognostic value of NRGscore Explore and validate the predictive value of NRGscore
in CM cohorts (GSE65904 and TCGA- for immunotherapeutic efficacy in CM cohorts
SKCM) and Validate the results based on (GSE65904 and TCGA-SKCM) ; Validate the results based
another independent dataset (GSE19234). on another independent datasets (GSE91061)
(a)
40 "
o
o ‘/'@m
] o=
% /@OO
30 4 “ 66?1 s,
_ L4 :
g > § % :
c / 8
2 / iy
g 1 eg Usilfy o
2 20 4 IEH s
£ - [BiH .
Z
K
8] oo 0 " P
10 °
e
oo ]
e oo ® e
[} [ ]
o ' N N LY
od @ e e ° o 00 0 0
[ QB oo o = ) -
EEZE2E8fE:2882z2062885°%
FEESESEFREZAIZZ22E5 S ¢¢
= = =]
S EE g == 8 2
2 c @
T
® GAIN
® LOSS
(©
IEH

Expression-TPM

-10
T T T
- 0 5
pCl T © 2 o
= IS o o <
« SKCM Tumor Eéééﬁgﬂgﬁggﬁgeﬁaﬁiﬁé
+ SKCM Normal SL 3 2E = 2 g e = < @
« Skin Not Sun Exposed Suprapubic 2 g2 = 2 oz o
+ Skin Sun Exposed Lower leg Z © & (S
= Tumor
= Normal

®

Figure 1: Continued.
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FIGURE 1: Expression and genetic variation landscapes of necroptotic genes within CM. (a) The workflow of this study. (b) Mutation
frequencies of necroptotic genes (the top 20) among 467 CM cases in the TCGA-SKCM cohort. (c) Frequency of CNVs in necroptosis-
related genes derived from the TCGA cohort. Column heights indicate the frequencies of variation. The green and red dots suggest deletion
and amplification frequencies, severally. (d) Locations of CNVs in necroptotic genes on 23 chromosomes from patients in the TCGA cohort.
(e) PCA of 67 necroptotic gene expression profiles for distinguishing tumor tissues from healthy skin and tumor-adjacent tissue in the
TCGA-SKCM cohort. (f) The expression levels of necroptotic genes in melanoma versus healthy tissue samples. Differentially expressed
necroptotic genes were shown (P value less than 0.05). (g) Immunohistochemical staining of some necroptosis-related genes (RIPK3,
HSPA4, SLC39A7, and SQSTM1) in normal and CM tissues available from the HPA database. (h) In the combined CM datasets, the
univariate Cox regression analyses were used to determine the importance of necroptotic genes in prognostic prediction. Horizontal length
represents 95% CI of each necroptotic gene. The necroptotic gene with statistical significance (P value less than 0.05) was displayed. (i)
Association among necroptosis-related genes in CM. The sizes of circles mean effects on the prognostic prediction of each regulatory factor.

2.5. Differentially Expressed Genes (DEGs) in Distinct Nec-  permutations. Furthermore, stromal/immune cells (stromal/
roptotic Subtypes. Based on selected genes related to nec-  immune scores) were evaluated using the ESTIMATE al-
roptosis, individuals with CM were divided into three  gorithm [20]. The infiltrating levels of various immune cells
distinct necroptosis clusters. The empirical Bayesian ap-  within TME were also assessed by the single-sample gene set

proach was utilized to determine DEGs among distinct ~ enrichment analysis (ssGSEA) algorithm. The gene panels
necroptosis clusters. In addition, the significance filtering  applied to label diverse immune cell types of TME were
criterion to identify DEGs was determined as the adjusted P acquired through the study by Charoentong et al. [21]. The
value less than 0.001. relative abundances of various immune cell types in the

TME were denoted via the enrichment score determined by

the ssGSEA. In addition, the TIMER database (https://
2.6. Estimation of the Infiltration of Immune Cells of TME via  cistrome.shinyapps.io/timer/) provides detailed informa-
TIMER Database, Single-Sample S-Gene Set Enrichment  tion for systematic investigation of immune infiltration in
Analysis (ssGSEA), and Deconvolution Algorithms. Wemade  various types of tumors [22]. Based on the gene expression
use of the “CIBERSORT” package to quantify the levels of  profiles, a previously described algorithm was used in the
infiltrating of various immune cells in CM for 1000  TIMER database for estimating the levels of immune cell
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infiltration [23]. We applied TIMER to evaluate the rela-
tionships of RIPK3 with the infiltrating levels of several
subtypes of CD8+ T cells.

2.7. Gene Set Variation Analysis (GSVA) and Functional
Annotation. The distinctions in biological processes among
three immune clusters were further evaluated by GSVA,
which was an unsupervised and nonparametric approach to
assess the variations in activity of biological process and the
signal pathways in the samples [24]. An adjusted P value less
than 0.05 was deemed as significant statistically. Using the
clusterProfiler R package, the functional annotation of gene
ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of DEGs were also performed,
with a cutoft value corresponding to false discovery rates
<0.05. We downloaded gene sets from the MSigDB database
for analyzing the correlations of RIPK3 with immune-re-
lated pathways.

2.8. Generation of NRG score. DEGs determined from
distinct necroptosis clusters were first normalized across
all samples, and the overlapping DEGs were selected.
Individuals were divided into distinct subtypes through
the unsupervised clustering analyses for subsequent
analysis according to the overlapping DEGs. We then used
the consensus clustering algorithm to identify the
quantity and stability of three gene clusters. Furthermore,
the prognostic analysis for every gene of this signature was
conducted with the univariate Cox regression, and we
extracted the genes with the prominent prognostic value
for subsequent analysis. Next, the principal component
analysis (PCA) was performed to establish immune gene
signatures, with principal components 1 and 2 being the
signature scores. The superiority of the approach was the
focus of the score of this set containing significantly well-
associated or anticorrelated genes, but downweighing the
contribution from genes which do not associate with
others of the set. The approach of defining the NRG score
in our study was similar to that performed for the GGI
[25]:

NRG score = Y (PCli + PC2i), (1)

where i represent the levels of necroptosis-associated genes.

2.9. Quantification of the Immune Response Predictor:
Immunophenoscore (IPS). IPS is a validated factor devel-
oped by Charoentong et al., to predict the response to anti-
CTLA-4 or anti-PD-1 therapy, as it quantifies immunoge-
nicity determinants of tumors and characterizes the immune
landscapes within the tumor and cancer anti-genome [26].
The ESTIMATE algorithm, using distinct transcriptional
patterns to infer tumor purity and cellularity, was used to
determine stromal/immune scores for predicting the infil-
trating levels of stromal/immune cells [27]. Tumor tissues
with significant immune cell infiltration meant a higher IPS
and lower tumor purity.

2.10. Statistical Analysis. The R 4.1.1 software was applied for
all statistical analyses in this study. Spearman’s and distance
correlation analyses were applied for obtaining the corre-
lation coefficients in two variables. The one-way ANOVA
and Kruskal-Wallis tests were utilized to assess the differ-
ences across three groups [28]. The optimal cutoff point for
each group, using the survminer R package, was identified
based on the association between the NRG score and the
patients’ survival. In addition, we utilized the surv-cutpoint
function of the “survival” package to tautologically examine
all cutoff points for identifying the maximum rank statistic,
which helped dichotomize the NRG score, and next sepa-
rated individuals with CM into the low and high NRG score
groups. Using the Kaplan-Meier method, the survival curve
was depicted so as for prognostic analysis, and the log-rank
tests were applied to examine the significance of variations.
Furthermore, independent prognosis-related factors were
determined by the multivariate Cox regression. Patients who
had complete clinical information were selected to perform a
more comprehensive multivariate prognostic analysis.
Clinicopathologic characteristics including the RIPK3 ex-
pression correlated with the overall survival of CM indi-
viduals from TCGA analyzed using the Cox regression.
Additionally, the data from the multivariate prognostic
analysis for NRG score in the CM cohort were visualized
using the forest plot R program. All statistical P values were
bilateral, and P values <0.05 were deemed significant
statistically.

3. Result

3.1. Landscape of Genetic Variation of Necroptosis-Related
Genes in Cutaneous Melanomas. Finally, in this study a total
of 67 necroptosis-related genes were identified. We first
summarized the incidences of copy number variations
(CNVs) and somatic mutations of 67 necroptosis-related
genes in CM. Among 467 samples, 359 exhibited mutations
of necroptosis-related genes, with a frequency of 76.87%.
The top twenty genes, which have the highest rate of mu-
tations, are shown in Figure 1(b). Notably, BRAF had the
highest mutation frequency, followed by HDAC9; however,
no mutation was observed in 11 necroptosis-related genes in
CM samples, including IDH2, MPG, STUBI, ID1, TNF,
BNIP3, SLC39A7, SIRT2, DIABLO, SIRT3, and IPMK. We
investigated the differences in the levels of these genes be-
tween mutant and normal samples to understand the effects
of these mutations on expression levels of necroptosis-re-
lated genes. Statistically significant results are shown in
Supplementary Figure 2. The investigation of the frequency
of CNV alteration indicated significant CNV alterations in
18 of 67 regulators. The copy number amplification fre-
quency of FADD, TERT, BRAF, RIPK1, MYC, IDH2, TNF,
SLC39A7, TRAF2, HDACY, and SPATA2 was higher than
the deletion frequency, while HSPA4, MYCN, ITPK1,
CYLD, BACH2, CDKN2A, and HSP90AA1 showed a more
significant CNV frequency for deletions than amplification
(Figure 1(c)). To understand the details of mutations
influencing necroptotic regulators, we marked the sites of
CNV alterations on chromosomes in Figure 1(d).



Additionally, CM samples might be completely differenti-
ated with normal samples according to levels of the 67 genes
related to necroptosis (Figure 1(e)). The necroptosis-related
genes with differential expression between tumor samples
and healthy or tumor-adjacent are shown in Figure 1(f)
(logFC >0.6, P<0.05). Besides, immunohistochemical
staining images of some representative necroptosis-related
genes in normal and CM tissues are shown in Figure 1(g).
Significant expression differences in these genes have been
observed between CM tissues and normal tissues, which are
in accordance with the outcomes of previous bioinformatic
analyses. Obviously, the expressions of necroptotic regula-
tors are not clearly related to CNV alteration. Thus, the
genetic variations displayed above might not be the key
factors contributing to differences in the expressions of
necroptotic regulatory factors.

We used the univariate Cox regression analyses to de-
termine the prognostic value of 67 necroptosis-related genes,
and these necroptosis-related genes with prognostic values
are shown in Figure 1(h). According to the results, most
genes were favorable prognostic factors for CM patients,
while PLK1 (HR=1.225, P value=0.003), HSPA4
(HR=1.215, P value=0.041), USP22 (HR=1204, P val-
ue=0.045), and TSC1 (HR=1.297, P value=0.016) were
associated with adverse effects on the survival of patients
with CM. Furthermore, the comprehensive landscape of
interactions between necroptosis-related genes with prog-
nostic value, as well as the respective value in prognostic
prediction of CM cases, was analyzed using the networks of
the necroptosis-related genes (Figure 1(i)). The results
revealed that positive correlations were observed among the
overwhelming majority of necroptosis-related genes with
prognostic value, while USP22 exhibits negative correlations
with TNF, RIPK3, FASLG, MLKL, ZBP1, and CD40. Besides,
the effects on necroptotic induction by promoting the ex-
pression of stimulators might be limited due to the obvious
positive correlations between the stimulators and
SuUppressors.

In summary, the above results indicated that the tran-
scriptomic and genomic landscapes in necroptosis-associ-
ated genes between CM tissues and tumor-adjacent tissues
or normal tissues were highly heterogeneous, suggesting that
necroptosis-related genes might have vital effects on the
occurrence and progression of CM.

3.2. RIPK3 Expression Significantly Related to Immune
Microenvironment. Increasing evidence has revealed a
strong correlation between antitumor immunity and nec-
roptosis. Tumor cell that undergoes necroptosis has been
shown to be closely linked to immune system activation.
Therefore, we further explored the relationships between
necroptosis-related genes with the expression patterns of
infiltrating immune cells of CM tissues. The results revealed
that the expression levels of necroptosis-related genes were
closely associated with the infiltrating levels of immune cells
in CM tissues (Figure 2(a)). Some necroptosis-related genes,
such as USP22, TSC1, PLK1, and HSPA4, are significantly
inversely associated with infiltrating degrees of various
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immune cells. These genes have been also determined as risk
factors and are related to poor prognosis. Meanwhile, RIPK3
is significantly positively related to the infiltrating levels of
the majority of immune cells. RIPK3 has been also identified
as the favorable factors and are associated with more fa-
vorable clinical outcome (Figure 2(e)). The multivariate
COX regression analysis suggested that RIPK3 is an inde-
pendent prognostic factor in melanoma, along with patients’
age (P =0.017), AJCC T stage (P<0.001), and N stage
(P<0.001) (Figure 2(f)). Besides, we selected RIPK3, a
widely used marker in necroptosis, as an example to further
clarify the relationships of these immune features with
necroptosis-related genes. As shown in Figures 2(b)-2(d),
significant positive correlations have been observed between
the expression degree of RIPK3 and levels of various CD8+
T cells, such as CD8+ naive T cell, CD8+ effector memory
T cell, and CD8+ central memory T cell. The above results
have been validated using various algorithms, including
CIBERSORT, EPIC, XCELL, MCPCOUNTER, CIBER-
SORT-ABS, and QUANTISEQ (Supplementary
Figure 3A-E). Prior study has shown that RIPK3 can drive
the secretion of inflammatory chemokines and cytokines,
thereby activating cytotoxic T lymphocyte, in the process of
cell death [29]. To further detect the difference in immune
infiltration related to the RIPK3 expression. The median
value of RIPK3 expression was used to classify individuals
into two groups (high and low RIPK3 groups). Significant
differences in immune cell infiltrating levels, key immune-
related pathways, expression level of antigen-presenting
molecules, and immune checkpoints have been observed
(Supplementary Figure 3F-H). From the above, we could
speculate that RIPK3-mediated necroptosis of tumor cells
may promote the activation of various tumor-killing im-
mune cells and enhance the immune cells infiltrating within
tumor tissues, thereby enhancing the intratumoral antitu-
mor immune response. Furthermore, these results were
consistent with previous studies and provided more shreds
of evidence in the potential ability of RIPK3 to serve as a
novel target in melanoma, especially in enhancing “hot”
tumor phenotype and improving the efficacy of existing
immunotherapies.

3.3. Identification of Necroptotic Subtypes. To further ex-
plore the potential biological features of different expression
patterns of necroptosis-related genes in CM, this study di-
vided the cases into different necroptotic subtypes based on
the levels of 67 necroptosis-related genes. A total of 686 tumor
samples that have available clinical data and OS information
profiles based on the meta-cohort (GSE65904; The Cancer
Genome Atlas (TCGA)-SKCM) were enrolled in the analysis.
Using the ConsensusClusterPlus package of R software,
unsupervised clustering analyses were conducted to divide
individuals with CM into three separate subtypes with sig-
nificant survival differences (Supplementary Figure 1).
According to the prognostic analysis, the necroptosis cluster
A showed a particularly noticeable survival advantage among
three different necroptosis clusters, while the necroptosis
cluster C had the worst prognosis (Figure 3(a)). Additionally,
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infiltration levels. (e) Difference in survival of CM individuals between the high RIPK3 expression group and the low RIPK3 expression
group. (f) With univariate and multivariate Cox regression, correlations with survival and clinicopathologic characteristics in TCGA
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PCA demonstrated the obvious differences among three
different necroptosis clusters relative to the transcriptional
profile of 67 necroptosis-related genes (Figure 3(b)).
According to the heat map analysis, the expression levels of
67 necroptosis-related genes of necroptosis cluster C in-
dividuals were obviously lower compared with that in
patients of necroptosis cluster A and necroptosis cluster B
(Figure 3(c)).

3.4. Immune Landscape and Functional Annotation of Dif-
ferent Necroptosis Clusters. To investigate the biological
characteristics among three different necroptosis clusters, we
performed the GSVA enrichment analysis. Compared with
necroptosis clusters B and C, necroptosis cluster A presented
remarkable enrichment of signaling pathways, which were
associated with immune activation and apoptosis, including
B cell receptor signaling pathways, T cell receptor signaling
pathways, Toll-like receptor signaling pathways, chemokine
signaling pathways, and cytokine-cytokine receptor inter-
action signaling pathways, indicating that necroptosis
cluster A exerted powerful immune activity, which was
consistent with the results of prognostic analysis
(Figures 3(d) and 3(e)). The robust immune function of
necroptosis cluster A could be a plausible explanation for
discovered correlation between high expressions of nec-
roptosis-related genes with better survival.

To further investigate the relationship between expres-
sion patterns of necroptotic genes and immune function, the
components of immune cells in TME among three nec-
roptotic subtypes were analyzed. The ssGSEA analysis, as
expected, revealed that various infiltrating immune cells
were prominently enriched in necroptosis cluster A, in-
cluding CD4+ T cell, MDSC, macrophages, activated B cell,
mast cell, gamma delta T cell, eosinophils, CD8+ T cell, and
natural killer cell (Figure 3(f)), while necroptosis cluster B
was distinguished by comprehensive suppression of immune
function. We further assessed the proportion of different
subtypes of infiltrating immune cells of CM based on the
“CIBERSORT” method. The results also indicated higher
levels of immune effector cells in necroptosis cluster A,
including M1 macrophage and memory CD4+ T cell and
activated CD8+ T cell, which were consistent with the above
analyses of ssGSEA (Figure 3(g)). The composition of the
TME was also assessed via reliable ESTIMATE algorithm.
Furthermore, we calculated the stromal/immune scores to
verify the degree of infiltration of stromal/immune cells. The
results indicated that cluster A displayed the highest im-
mune score and the highest stromal score, while cluster B
displayed the lowest immune scores, and cluster C had the
lowest stromal score (Figure 3(g)). Furthermore, we assessed
the expressions of several vital genes associated with im-
mune checkpoints, including CTLA-4, PD-L1, LAG3, PAF1,
PD-1, CD80, CD86, and TNFRSF9 in each necroptosis
clusters. In necroptosis cluster A, the expressions of these
genes except PAF1 were obviously higher than that of
necroptosis cluster C or cluster B (Figure 3(h)).

In summary, the expression patterns of necroptosis-
related genes were strongly associated with immune
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function. Significant differences were observed in immune
status between three distinct necroptotic subtypes. Nec-
roptosis cluster A with higher expression of 67 necroptosis-
related genes showed stronger immune function along with
better survival.

3.5. Construction of Necroptosis-Related Gene Signatures and
Identification of Necroptotic Gene Subtypes. To unravel the
potential biological characteristics of each necroptosis
cluster, with the Limma packages, differential analyses of
gene expression among three necroptosis clusters were
performed to identify transcriptome distinctions, finally
determining 1242 overlapping differentially expressed genes
(DEGs) related to necroptosis (Figure 4(a)). Then, we uti-
lized the clusterProfiler package to perform KEGG and GO
enrichment analyses for these DEGs. As expected, these
DEGs were prominently enriched in biological processes
associated with necroptosis and immune function,
involving lymphocyte differentiation, T cell differentiation,
and T cell activation, again confirming that the expression
pattern of the necroptosis-related gene played a vital role in
immune modulation in TME (Figures 4(b) and 4(c)). Next,
the above overlapping DEGs were utilized to conduct a
survival analysis for each gene via the univariate Cox re-
gression. A total of 527 DEGs associated with prognosis were
identified (P <0.05), which altogether constituted the nec-
roptosis-related gene signatures. To better validate the above
regulatory mechanism, we performed the unsupervised
clustering of these necroptotic signature genes detected in
three necroptosis clusters, which divided the GSE65904 and
TCGA-SKCM cohorts into distinct gene subtypes (Sup-
plementary Figure 1). Consistent with necroptotic subtypes,
three distinct genomic phenotypes were recognized via an
unsupervised clustering algorithm, termed gene clusters A,
B, and C, severally. The transcriptome profiles of these
prognostic DEGs based on gene clusters were represented as
a heat map (Figure 4(d)).

The prognostic characteristics of three gene clusters were
investigated by combining them with prognostic informa-
tion. Overall, 266 of 300 patients with CM were aggregated
in gene cluster A, suggesting better survival outcomes,
whereas patients in gene cluster C (159 patients) were ob-
served to be strongly associated with poorer outcomes.
Besides, 257 patients with CM belonged to gene cluster B
with an intermediate prognosis (Figure 4(e)). Furthermore,
the landscapes of infiltrating immune cells in the TME have
been investigated in three gene clusters using “CIBERSORT”
and the “ssGSEA” methods (Figures 4(f) and 4(g)). We
found that gene cluster A had dramatically higher immune
scores and stromal scores compared with other gene clusters
and it presented the highest activated CD8+ T cell and
activated CD4+ memory T cell infiltration. As shown in
Figure 4(g), gene cluster B, having much lower immune
scores, was characterized by remarkable immunosuppres-
sion-related M2 macrophage infiltration. Furthermore, we
also investigated expressions of some vital immune check-
point-relevant genes in the three gene clusters to unravel the
biological behaviors among different gene clusters,
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FIGURre 3: Immune landscape and functional annotation of different necroptotic subtypes. (a) Survival analysis of different necroptotic
subtypes in the combined CM cohort. The K-M curves with a P value less than 0.001 suggested that the differences in survival were
significant across the three clusters. Immune cluster A displayed superior survival compared with the other subtypes. (b) PCAs for
transcriptome profile of necroptotic subtypes, suggesting an obvious distinction in the transcriptome among different subtypes. (c)
Unsupervised clustering of the genes related to necroptosis in the combined CM cohort. Necroptosis cluster, age, and status of survival
served as patients’ annotation. Red means high levels, and blue means levels. (d), (e) GSVA enrichment analyses of the activated signaling
pathways in three different necroptosis clusters. Red color means the activation of the signaling pathway, and blue means the inhibition of
the signaling pathway. (f) Variations in the abundance of infiltrating immune cells among necroptosis clusters A, B, and C using “ssGSEA.”
“*” represents the statistical P value (* P value less than 0.05; **P value less than 0.01; ***P value less than 0.001). (g) Difference in the
abundance of infiltrating immune cells among necroptosis clusters A, B, and C using “CIBERSORT” analysis. “*” represents the statistical P
value (* P value less than 0.05; ** P value less than 0.01; *** P value less than 0.001). (h) The expression of immune checkpoint genes in three

necroptosis clusters.

indicating obvious differences. Gene cluster A was related to
much higher expressions of immune checkpoint genes,
whereas the lower gene expression level was observed for
gene clusters B and C (Figure 4(h)). In brief, the correlation
between prognostic profiles and immune profiles among
distinct gene clusters indicated that the sorting scheme was
reasonable and scientific.

3.6. Establishment of the Necroptosis-Related Gene Score (NRG
Score) and the Association between NRG Score and TME.
The process of necroptosis is complicated and heterogeneous
across different individuals. To acquire quantitative pre-
dictors of the expression patterns of necroptosis-related
genes in individual patients with CM, based on the above
necroptosis-related gene signatures, we developed the
scoring system to quantify expression patterns of nec-
roptosis-associated genes of individual with CM, called NRG
score. Detailed constructive processes of NRG score are
provided in the Methods section. To further explore the
characteristics of the NRG score, we classified individuals
with CM into a low or high NRG score group with an
optimum cutoff value identified using survminer package.
The alluvial diagram indicated the attribute alterations in
different patterns. As shown, most of the patients in gene
cluster B and almost all individuals belonging to gene cluster
C corresponded to the high NRG score. In contrast, most
patients from gene cluster A belonged to the lower NRG

score group. Additionally, the necroptotic subtypes were
consistent with relevant gene clusters (Figure 5(a)). The
Kruskal-Wallis test further revealed remarkable differences
in the NRG score among distinct gene clusters and nec-
roptosis clusters (Figures 5(b) and 5(c)). The lowest average
score was associated with gene cluster A, whereas gene
cluster C was linked to the highest average score among
different clusters, suggesting that NRG score might be
negatively correlated with immune function. The higher
score might be indicative of immune suppression, while the
low score might be associated with immune activation. Next,
the ssGSEA analysis demonstrated prominently higher de-
grees of the majorities of infiltrating immune cells in the low
NRG score group, including higher infiltration levels of
activated dendritic cell, MDSC, activated CD8+ T cell, ac-
tivated B cell, activated CD4+ T cell, and NK cell
(Figure 5(d)). Additionally, the subsequent analysis further
indicated that the NRG score was significantly negatively
related to the level of infiltration of kinds of immune cells,
including CD4 T cell, activated B cells, and CD8 T cell, all of
which further confirmed the above hypothesis (Figure 5(e)).
Furthermore, we calculated the levels of several vital im-
mune checkpoint genes, including CTLA-4, PAF1, CD80,
PD-L1, LAG3, CD86, PD-1, and TNFRSF9, along with the
expressions of signatures related to immune activity, such as
CXCL9, TNF, PRF1, GZMB, CXCL10, IFNG, GZMA,
CD8A, and TBX2. Interestingly, the Wilcoxon test revealed
that most key genes related to immune checkpoints and
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F1GURE 4: Construction of necroptosis-related gene signatures and identification of necroptotic gene subtypes. (a) Venn diagram presenting
1242 overlapping DEGs among three necroptosis clusters that were identified. (b) Functional annotations of DEGs based on GO analysis
and the circle size mean the number of genes enriched. (c) Functional annotations of DEGs based on KEGG pathway analysis and the circle
size represents the enriched gene number. (d) Unsupervised clustering of the necroptosis-related gene signatures in the combined CM
cohort. The necroptosis cluster, gene cluster, survival status, and ages served as individual annotation. Red means high levels, and blue
means levels of these genes. (e) Survival analyses of distinct gene subtypes in the combined CM cohorts. The K-M curves with P <0.001
suggested that differences in survival were obvious across the three clusters. (f) Difference in abundances of immune cell infiltration among
gene clusters A, B, and C using “ssGSEA.” “*” means the statistical P value (*P value less than 0.05; ** P value less than 0.01; *** P value less
than 0.001). (h) The expression of genes related to immune checkpoints in three gene clusters. (g) Variations in abundances of immune cell
infiltration across gene clusters A, B, and C using “CIBERSORT” analysis. “*” represents the statistical P value (*P value less than 0.05; ** P

value less than 0.01; *** P value less than 0.001).

activation of immune function were substantially upregu-
lated in the low NRG score group, except TBX2 (Figures 5(f)
and 5(g)). Furthermore, GSEA demonstrated that apoptosis
signaling pathway and immune-related pathways were el-
evated in the low NRG score group, such as the T cell re-
ceptor and Toll-like receptor signaling pathways, NK cell-
mediated cytotoxicity pathways, and B cell receptor sig-
naling pathways (Figure 5(h)). Furthermore, among GO
terms, the low NRG score group was still characterized by
the activation of necroptosis-related biological processes and
enrichment of immune-associated pathways such as B cell
proliferation, immune responses to tumor cells, and NK cell
activation, all of which further robustly indicated that the
lower NRG score could mean more active immune function
and stronger necroptosis than the high NRG score group
(Figure 5(i)).

3.7. The Prognostic Ability of NRG Score. The subsequent
analysis assessed the values of NRG score in predicting the
outcome of individuals with CM. The results revealed that
those with a low NRG score showed a considerable survival
advantage over the high NRG score group (P value less than
0.001) (Figure 6(a)). Additionally, the prognostic values of
NRG score were further validated based on another inde-
pendent dataset of CM patients (GSE19234). As expected,
the survival of patients belonging to the low-score group was
also superior to the high-score group (P value less than
0.001) (Figure 6(b)). Besides, to further explore the accuracy
of NRG score in predicting the prognosis of melanoma
individuals, the ROC curve of NRG score was plotted in the

TCGA cohort and was compared with some other published
models. As shown in Figure 6(c), the merged ROC curve
indicated that AUC score of NRG score was 0.651, which was
superior to that of the other models, suggesting that NRG
score had a relatively accurate prognostic ability. Addi-
tionally, our present study also explored whether NRG score
was an independent predictor of CM individuals’ prognosis.
Based on the multivariate Cox regression model analysis, the
predictive ability of NRG score was revealed to be inde-
pendent of patient sex (P < 0.001 ), age (P < 0.001), or ACJJ T
stage (P < 0.01), indicating that this score system could exert
its predictive effect as an independent, reliable, and effective
biomarker (Figures 6(d)-6(i)).

Many studies have demonstrated that the tumor mu-
tation burden (TMB) could influence the outcomes of CM
patients and the response to ICB [30, 31]. An increased
TMB is always associated with a better immune therapeutic
effect and prolonged progression-free survival [32]. Con-
sidering the prominent clinical implications of TMB, the
functional relationships between the NRG scores and TMB
were investigated to decipher the genetic signatures of
distinct immune clusters. First, based on the set point of
TMB, patients with CM were divided into separate sub-
types, and we observed that patients belonging to the high
TMB group indicated a better prognosis compared with
individuals with low TMB, as shown in Supplementary
Figure 4, which was consistent with previous studies [33].
Next, we compared TMB of individuals with the low NRG
score and high NRG score groups. Nevertheless, no sta-
tistical difference was observed in TMB between low and
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(e) Association between NRG score and immune infiltrating cells of TME analyzed by Spearman’s analysis. Positive and negative cor-
relations are represented by red and blue colors, respectively. (f) The expression of immune checkpoint-related genes in the low and high
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GO).

high-scoring groups (Supplementary Figure 4). Using the
stratified survival analysis, our present work further revealed
that the predictions based on NRG score were not affected by
the status of TMB. No matter in the low or high TMB
subgroups, remarkable prognostic variations were observed
between the high and low NRG score groups (Figure 6(j)). To
summarize, the above results further demonstrated that the
NRG score was an independent predictor, which could ef-
fectively evaluate the outcomes of patient with CM.

3.8. The Effects of NRG Scores on Predicting Immunothera-
peutic Benefits. Although ICB has achieved remarkable

outcomes as cancer therapy with an unprecedented increase
in patient survival, it is unfortunate that only a small per-
centage of CM individuals could benefit from durable re-
sponses, whereas most patients experience little clinical
benefit. The effects of the NRG score in evaluating the re-
sponse of CM patients to ICB were validated in the sub-
sequent analysis. Based on the immunophenoscore
developed by Charoentong et al. to predict response to
immunotherapy [26], we found anti-PD-1 immunotherapy
alone or the combination of anti-PD-1 and anti-CTLA-4
immunotherapy, and the immunophenoscore was always
higher in the low NRG score group than in the high NRG
score group in the TCGA-SKCM cohort, suggesting that
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FIGURE 6: Prognostic ability of NRG score. (a) Survival analysis of melanoma patients with low and high NRG scores based on the K-M
curve (P value less than 0.0001, log-rank test). (b) Survival analysis of melanoma individuals with high and low NRG scores from another
independent dataset based on the K-M curve (P value less than 0.0001, log-rank test). Survival analysis of individuals with high and low
NRG scores based on the K-M curves (P value less than 0.0001, log-rank test). (¢) Comparison between the ROC curves of NRG score
with that of other published models. (d) Age<65 (P value less than 0.05, log-rank test). (e) Age >65 (log-rank test, P value less than 0.05).
(f) Female individuals (log-rank test, P value less than 0.05). (g) Male individuals (log-rank test, P value less than 0.05). (h) Individuals
with stages T1-T2 (log-rank test, P value less than 0.05). (i) Individuals with stages T3-T4 (log-rank test, P value less than 0.05). (j)
Stratified survival analysis of patients derived from the TCGA-SKCM cohort divided according to both NRG scores and TMB (P value

less than 0.001, log-rank test).

patients belonging to this group could benefit from these two
types of immunotherapies (Figures 7(a) and 7(b)). To further
validate this speculation, we used another independent
dataset consisting of CM patients receiving immunotherapy
(GSE91061) to explore this predictive effect of NRG scores
on immunotherapeutic benefits. The results indicated that
individuals with low NRG scores exhibited a prolonged
survival compared with high-scoring patients (Figure 7(c)).
Surprisingly, further analysis indicated that in this immu-
notherapy cohort, all patients with clinical response, in-
cluding partial response (PR)/complete response (CR),
belonged to the low NRG score group, suggesting that NRG
scores were extremely sensitive in predicting immuno-
therapeutic benefits (Figure 7(d)). Collectively, these find-
ings robustly suggested that the NRG score could serve as an
immunotherapeutic and prognostic biomarker, thereby
assessing the immunotherapy response.

4. Discussion

Immunotherapy symbolized by ICB has brought revolu-
tionary advances in the fields of cancer therapies, contrib-
uting to an unprecedented increase in patient survival
[7, 34]. To date, the US Food and Drug Administration has
approved ICIs targeting three different molecules (CTLA-4,
PD-1, and its ligand, PD-L1) for use in humans, improving
CM patients’ prognosis [35, 36]. However, an obvious
limitation of ICB therapy is merely a minor percentage of
CM individuals that will achieve durable responses from this
treatment, whereas the majority will experience little clinical
benefit, which is far from meeting clinical needs [37].
Consequently, it is extremely necessary to identify

appropriate individuals with CM as candidates for
immunotherapy.

Increasing shreds of evidence have shown that nec-
roptosis, one of the new forms of programmed cell death, has
a vital effect on inflammation, antitumor responses, and
antitumor immune responses, which involve immune sys-
tem activation, including antigen presentation and CD8+
T cell cross-priming in the TME [38, 39]. In addition, the
possible synergistic effects between the induction of nec-
roptosis in TME and the ICB have been observed to promote
durable antitumor immunity, further supporting the close
correlation between the necroptotic process and the immune
response to the tumor. Therefore, necroptosis might be a
potential immunotherapy target and the expression patterns
of necroptosis-related genes might serve as an effective
predictor of the prognosis of patients with CM and the
response to immunotherapy. However, comprehensive
characterizations of the immune infiltration landscape
among different expression patterns linked to the expres-
sions of necroptosis-associated genes are not recognized
generally.

In this study, based on 67 necroptosis-related genes, we
identified three different necroptotic expression patterns
with obvious differences in the characterization of immune
cell infiltration of TME and survival of patients. Heat map
analysis revealed that the expression levels of most nec-
roptosis-related genes were obviously higher in cluster A
with significant survival advantage than in cluster C with the
worst prognosis. Among three distinct patterns, necroptosis
cluster A was featured by immune-related pathway activa-
tion and elevated levels of immune cell infiltrating, including
activated B cell, CD8 T cell, NK cell, CD4 T cell, and activated



Journal of Oncology

17

0.00019
g 8
T %o
3 3
o o
9 ]
:. 6 j 6
= =
E T
v;l ml
&3 a3
Low High Low High
NRGscore NRGscore
NRGscore NRGscore
M Low W Low
M High M High
(a) (b)
1.00 100 -
£ 075
=
3
£, 0.50 75
=
2
= o
5 025 5
& :
g 50 4
0.00 S
(5
0 1 2 3 A~
Time (years)
. 25 1
g Number at risk
2 Low | 43 29 18 1
g High { 6 2 1 0
Z 0 1 2
Time (years) 0
NRGscore Low High
—— Low NRGscore
—— High
& fustat
[l rD/SD
Ml rr/CR

(c)

(d)

Figure 7: Effect of NRG scores on the predicting immunotherapeutic benefits. (a) The immunophenoscore of anti-PD-1 immune
checkpoint therapies in melanoma individuals with the low or high NRG score. (b) The immunophenoscore of anti-PD-1 and CTLA-4
immune checkpoint therapy in melanoma patients with the low and high NRG scores. (c) Survival analysis of patients with low and high
NRG scores from the cohort consisting of CM patients receiving immunotherapy (GSE91061) based on the K-M curves (P < 0.0001, log-
rank test). (d) Proportions of PD-1 blockade immunotherapy-responsive patients in the high and low NRG score groups. CR, PR, and PD
stand for complete response, partial response, and progressive disease.

DC cell, suggesting that the level of immune cells infiltrating
in TME was significantly positively correlated with indi-
vidual survival. These findings were consistent with previous
studies [40, 41], which could also be a plausible explanation
for the discovered correlation between expressions of nec-
roptosis-related genes with the prognosis of patients.
Subsequent analysis indicated that the differences in the
mRNA transcriptome between three different expression
patterns of necroptosis-related genes were closely related to
the necroptotic biological process and immune-related bi-
ological pathways. In particular, 1242 DEGs overlapping

among three subtypes were defined using Limma packages
of R software, and KEGG and GO analyses showed that these
genes were mainly enriched in the necroptosis-related bi-
ologic process and the NF«B signaling pathway, which is one
of the most important necroptotic signaling pathways [42].
In addition, enrichment of these genes in immune-related
biological pathways was also observed, including activation
and differentiation of T cells, lymphocyte differentiation, and
PD-L1 expression and the PD-1 checkpoint signaling
pathway, further suggesting the close correlation between
necroptosis and antitumor immunity. Then, 527 DEGs with
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obvious prognostic value were finally identified by survival
analyses for each gene by the univariate Cox regression
model, together constituting the necroptosis-related gene
signatures. Consistent with the clustering analysis based on
necroptosis-related genes (necroptosis clusters A, B, and C),
we discovered three genomic clusters (gene clusters A, B,
and C) according to the selected necroptotic signature genes,
showing significant differences in prognosis and TME
characterization. Further analysis demonstrated that gene
cluster A with a prominent survival advantage had the
highest stromal score and immune score, as well as the high
immune cell infiltration in the TME, suggesting an
immunoactivated phenotype. Interestingly, the degrees of
infiltration of M1 macrophages, as observed in cluster A,
were significantly higher compared with other subtypes,
while the degrees of infiltration of M2 macrophages were the
lowest. M2 macrophages can excrete many immunosup-
pressive cytokines, facilitating tumor progression and me-
tastasis, associated with a poor prognosis [43]. Additionally,
as targets for immunotherapy, the expression levels of
several vital immune checkpoints were also investigated
among three gene clusters. Gene cluster A was related to
much higher expression levels of immune checkpoints,
whereas gene cluster C with the worst prognosis had the
lowest level of expression. These results robustly demon-
strated the importance of comprehensively evaluating the
expression patterns of necroptosis-related genes, which
could better understand the characterization of TME and
might help estimate the response to immunotherapy and
prognosis of CM patients.

It is necessary to establish the scoring system to quantify
expression patterns of necroptosis-related genes in indi-
vidual patients with CM, considering individual heteroge-
neity of the necroptotic patterns. Based on the necroptotic
signature genes mentioned above, this study constructed a
scoring pattern termed NRG score. The subsequent GSEA
demonstrated that the apoptosis signaling pathway and
immune-related pathways were elevated in the low NRG
score group, such as T cell receptor signaling pathways, B cell
receptor signaling pathways, and NK cell-mediated cyto-
toxicity pathways. Moreover, among the GO terms, a low
NRG score was still characterized by the activation of
necroptosis-related biological process and the enrichment of
immune-related pathways such as B cell proliferation, im-
mune response to tumor cells, and NK cell activation.
Furthermore, the infiltrating degrees of various immune
cells in TME of the low NRG score group were much higher
compared with those of the high NRG score group, all of
which further indicated that the lower NRG score could
mean more active immune function and stronger nec-
roptosis, compared with the high NRG score group.

Based on the cohort consisting of TCGA-SKCM and
GSE65904, we further evaluated the value of the NRG score
as a prognostic predictor. The results revealed that indi-
viduals with low NRG scores showed a prolonged survival
than high score patients. In addition, the above conclusion
was validated again based on another independent CM
dataset (GSE19234), which robustly indicated that NRG
score might serve as an effective prognostic marker of CM
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patients. Furthermore, we explored the predictive capacity of
this scoring system for the immunotherapeutic benefits of
CM patients. The Wilcoxon test revealed that all key genes
associated with immune checkpoints were upregulated in
the low NRG score group, such as CTLA-4, PAF1, CD80,
PD-L1, LAG3, CD86, PD-1, and TNFRSF9. Based on an
immunophenoscore to assess the response to immuno-
therapy developed by Charoentong et al. [26], we demon-
strated that patients with CM with a low NRG score could
benefit from anti-PD-1 or a combination of anti-CTLA-4
and anti-PD-1 immunotherapy. Furthermore, using an in-
dependent immunotherapeutic cohort (GSE91061) con-
sisting of CM individuals receiving immune therapy, we
again validated the predictive ability of NRG score to im-
munotherapeutic benefits of CM patients. The results in-
dicated that individuals with low NRG scores showed a more
prolonged survival compared with high score patients.
Surprisingly, all individuals with clinical responses, in-
cluding complete responses (CR)/partial responses (PR),
belonged to the low NRG score group, which robustly
validated that NRG score was an extremely sensitive pre-
dictor of immunotherapeutic benefits. Therefore, the NRG
score could serve as an independent immunotherapeutic and
prognostic indicator, thereby facilitating the identification of
appropriate candidates for immunotherapy and the for-
mulation of individualized therapeutic approaches.

Nevertheless, we should notice that these results are
based on the TCGA and GEO public databases with a lack of
biological validation. Our current CM cases are very limited
and are far from sufficient to be used to conduct the clinical
characteristic-related analysis. Furthermore, according to
the above analysis, we believe that the relationships of
necroptosis-related genes with immune features and un-
derlying mechanisms of necroptotic stimulators promoting
the antitumor immunity are indeed an interesting and
promising research. We will pay more efforts on the clinical
sample collection and follow-up and try to illustrate the
underlying mechanisms in future studies.

5. Conclusion

Our present work revealed close correlations between ex-
pression patterns of necroptosis-related genes and tumor
immune microenvironment. A scoring system, the NRG
score, was established to comprehensively assess nec-
roptosis-related gene expression patterns and the charac-
terization of tumor immune microenvironment in
individuals with CM, providing a basis for the determination
of tumor immunophenotype and effective clinical practice.
Furthermore, the NRG score has been shown to serve as a
potential indicator to independently assess CM individuals’
prognoses and to effectively estimate the response of indi-
viduals with CM to immunotherapy, all of which have been
turther validated, respectively, in our study based on other
independent datasets. Finally, evaluating the expression
patterns of necroptosis-related genes of individual tumors
could contribute to enhancing our understanding of the
comprehensive characteristics of tumor immune microen-
vironment and offer valuable insights for immunotherapy.
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Supplementary Figure 1. Consensus matrixes of screened
genes. (A)-(D) Consensus matrixes of 67 necroptosis-re-
lated genes with the prognostic value for each k, showing the
stability of clustering via 1000 iterations of hierarchical
clustering (k=2-5). (E)-(H) Consensus matrixes of nec-
roptosis-related gene signatures for each k, showing the
stability of clustering via 1000 iterations (k=2-5). Supple-
mentary Figure 2. Differences in expressions of necroptotic
genes between mutants with normal samples. (A)-(Y)
Difference in the necroptotic gene expression between the
necroptotic gene wild and gene mutation groups. The
interquartile range of data was indicated by the upper and
lower ends of the boxes. The black dots in the boxes signified
outliers, whereas the line in box means median value. “*”
represents obvious P value. Supplementary Figure 3. Dis-
tinct immune landscapes in the high and low RIPK3 ex-
pression groups. (A)-(E) Using various algorithms,
including QUANTISEQ, CIBERSORT, CIBERSORT-ABS,
EPIC, and MCPCOUNTER, validate the obvious positive
relationship between the levels of RIPK3 with infiltrating
levels of CD8+ T cells. (F)-(H) Differences in immune cell-
infiltrating levels, immune-related pathways, expression
level of antigen-presenting molecules, and immune
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checkpoints between the high and low RIPK3 expression
groups. Supplementary Figure 4. Association of the NRG
score with tumor mutation burden. (A), (B) Waterfall plot
indicating that the TMB was constructed based on high and
low NRG score patients. (C) Survival analysis of patients
with low and high TMB. (D) Scatterplots demonstrated that
the NRG score was uncorrelated with TMB. (E) The dif-
ference in TMB in the low and high NRG score groups.
(Supplementary Materials)
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