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Abstract: Despite numerous studies on major depressive disorder (MDD) susceptibility, the precise
underlying molecular mechanism has not been elucidated which restricts the development of
etiology-based disease-modifying drug. Major depressive disorder treatment is still symptomatic and
is the leading cause of (~30%) failure of the current antidepressant therapy. Here we comprehended
the probable genes and pathways commonly associated with antidepressant response and MDD. A
systematic review was conducted, and candidate genes/pathways associated with antidepressant
response and MDD were identified using an integrative genetics approach. Initially, single nucleotide
polymorphisms (SNPs)/genes found to be significantly associated with antidepressant response were
systematically reviewed and retrieved from the candidate studies and genome-wide association
studies (GWAS). Also, significant variations concerning MDD susceptibility were extracted from
GWAS only. We found 245 (Set A) and 800 (Set B) significantly associated genes with antidepressant
response and MDD, respectively. Further, gene set enrichment analysis revealed the top five
co-occurring molecular pathways (p ≤ 0.05) among the two sets of genes: Cushing syndrome, Axon
guidance, cAMP signaling pathway, Insulin secretion, and Glutamatergic synapse, wherein all show
a very close relation to synaptic plasticity. Integrative analyses of candidate gene and genome-wide
association studies would enable us to investigate the putative targets for the development of disease
etiology-based antidepressant that might be more promising than current ones.
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1. Introduction

Major depressive disorder (MDD) is the third largest cause of burden of disease and it is responsible
for almost 80% of psychiatric hospitalizations. According to recently conducted world mental health
surveys, MDD is experienced by 10–15% people in their lifetime [1] and it can lead to high incidence of
suicide. Over 800,000 lives are lost yearly due to suicide, which translates to 3000 suicide deaths every
day [2]. It is almost more than half a century now since the first antidepressant drug was discovered,
starting from non-specific monoamine oxidase inhibitors (MAO-I) and tricyclic antidepressants (TCA)
to target specific selective serotonin reuptake inhibitors (SSRIs). Among them, SSRIs have proven to be
the most effective drugs to date, yet approximately 30–40% of depressive patients do not or partially
respond to the therapy whereas 60–75% fail to achieve complete remission [3]. This may be attributed
to the poor understanding of MDD pathophysiology and lack of etiology-based drugs. Candidate
gene-based studies and GWAS have shown that the clinical heterogeneity in therapeutic outcome is
also influenced by a variety of genetic (single nucleotide polymorphisms, SNP; copy number variations,
CNV; insertions, I; deletions, D etc.), pathophysiological and environmental factors [4,5].

With the advent of high throughput technologies it became possible to generate numerous genomic
datasets to identify genetic markers associated with complex disorders and predict drug response.
However, these datasets are not consistent enough to turn these findings into clinical practice. The
inconsistency may be attributed to the difference in ethnicity of the studied population, underpowered
study design, and various confounding factors like age of onset, the severity of disease, gender, etc.
Therefore, there is an impending need for integrating these datasets so that we can have a more advance
understanding of disease etiology as well as drug response. In pursuit of a better understanding of the
problem, several integrated approaches have been put forward for studying the interactions between
disease-associated genes and proteins [6]. Network and pathway analysis of candidate genes involved
in MDD has provided important information about gene interaction and regulation in MDD [7]. A very
recent study has explored the common link for pathogenesis between MDD and glioblastoma using
the transcriptomics convergence method, thus providing a new approach to analyze the available huge
genetic datasets [8].

With the genetic data on SSRI response and MDD available across diverse populations, a systematic
review will help us to better interpret (or curate) the findings of these studies. Therefore, in this study,
we first systematically reviewed the literature concerning the genetics of SSRI response (studies on
responder versus non-responder patients on SSRIs) and MDD (studies on MDD cases versus healthy
controls). Further, we used an integrative genetics approach and retrieved common genes and pathways
involved in SSRI response and MDD manifestation to find out potential drug targets for etiology-specific
antidepressants development. We identified 29 overlapping genes from a systematic literature search
concerning SSRI response and MDD development. Finally, we performed functional enrichment
analysis using the WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) [9] (http://webgestalt.org/) to
identify the top pathways that are inter-linked between antidepressants response outcome as well as
MDD, on the molecular basis. Hence, by integrating genes associated with disease and drug response
studies we found a list of genes and pathways which can be validated and might be novel molecular
targets for etiology-based antidepressant development.

2. Results

A systematic review of candidate gene studies for SSRI response and systematic literature search
of GWAS for SSRI response and MDD both revealed 245 and 800 genes to be significantly associated
with SSRI response and MDD pathophysiology, respectively. Using these sets of genes, we retrieved
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commonly associated genes, pathways, and gene ontology (GO) terms, between SSRI response
and MDD.

2.1. Systematic Search and Study Selection of Antidepressant Response Candidate Gene Studies

Systematic search strategy for identifying SSRI response associated genes extracted 8936 candidate
gene studies (4268 from MEDLINE and 4668 from Web of Science), which were further reduced to
441 unique articles of relevance after the title and abstract screening. Among these excluded articles,
2529 were duplicate articles between MEDLINE and Web of Science. Further, 2144 non-human, 1800
co-morbid, 580 non-response, 1241 non-SSRIs studies, and 201 other articles including non-genetic
studies, review articles, genome-wide studies, editorials, and letters were also removed. Remaining
441 articles were then searched for their full text and 351 articles were again excluded from the study,
as they did not meet the inclusion criteria (Figure 1), leading to a final of 90 articles for data extraction
and processing.
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Figure 1. PRISMA flowchart of the study selection process. Reasons for articles that were excluded
given in the diagram.

2.2. Data Extraction from Candidate Gene Studies of SSRI Response

All the 186 significantly associated SNPs (p-value ≤ 0.05) from the 90 selected articles are
summarized in Table 1 (complete table in Table S1 online). Sample size along with their phenotype and
drugs studied in each of the articles are also detailed in the same. In some research studies, authors had
performed two types of analysis, one, responder versus non-responder and second, remitter versus
non-remitter; here, we have tabulated all the significant SNPs reported in either kind of analysis.
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Table 1. Characteristics of included studies for assessment of the association between genetic variants and SSRIs response in major depressive disorder.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

1 Nouraei H et al.
(2018) [10] 33 67 100 70 30 GCR rs41423247 0.008 0.032 3.3 (1.35–8.09) 2.2 (1.09–4.44) Fluoxetine 6 9

2 Firouzabadi N
et al. (2017) [11] 25 75 100 33 67 ADRB1 rs1801253 0.003 0.0002 5.7 (1.4–23.9) 3.3 (1.72–6.50) Sertraline 6 9

3
Xu Z et al.
(2016) [12] 116 165 281 114 50 TPH2

rs11178998 0.0209 N.A. 2.3 (1.14–4.50)
N.A. SSRI 6 9

rs7963717 0.0239 N.A. 2.2 (1.09–4.35)

4 Manoharan A et al.
(2016) [13] 35 67 102 56 46 SLC6A4 5-HTTLPR 0.0066 N.A. 4.0

(1.45–11.03) N.A. Fluoxetine 6 9

5 Paroni G et al.
(2017) [14] 95 234 329 176 153 KL rs9536314 0.011 N.A. N.A. N.A.

Escitalopram,
Sertraline,
Paroxetine,
Citalopram

22 8

6
Lim SW et al.

(2014) [15] 59 180 239 154 85

TPH2

rs4760815 0.00001 N.A.

N.A. N.A. SSRI 6 9

rs11179027 0.00002 N.A.

rs17110532 0.00009 N.A.

rs17110747 0.0002 N.A.

GRIK2
rs543196 0.00005 N.A.

rs572487 0.0001 N.A.

GAD1
rs3828275 0.00007 N.A.

rs12185692 0.0002 N.A.

SLC6A4
rs2066713 0.0001 N.A.

rs2020942 0.0003 N.A.

7
Fukui N et al.

(2014) [16] 65 58 123 24 35 COMT

rs2075507 N.A. 0.0036

N.A. N.A. Fluvoxamine 12 7rs1544325 N.A. 0.0036

rs5993883 N.A. 0.015

8 Li X et al.
(2014) [17] 141 149 290 220 70 SLC17A7 rs74174284 0.014 0.008 0.57

(0.38–0.87) N.A. SSRI 6 9

9
Wang XC et al.

(2014) [18] 109 189 298 219 79

BDNF rs6265 0.001

N.A. N.A. N.A. Paroxetine 6 9
GDNF

rs2973049 0.005

rs2216711 0.005

10 Han KM et al.
(2013) [19] 13 81 94 37 19 CYP2D6 rs1065852 0.001 0.001 N.A. N.A. Escitalopram 12 9
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Table 1. Cont.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

11 Shima Sahraian
et al. (2013) [20] 26 78 104 65 39 SLC6A4 5-HTTLPR 0.023 N.A. N.A. N.A. Citalopram 14 8

12 Liu Z et al.
(2013) [21] 72 113 185 98 87 PDLIM5 rs2433320 0.0145 N.A. N.A. N.A. Fluoxetine 6 9

13
Mitjans M et al.

(2013) [22] 35 120 155 96 51 CNR1

rs806368 0.029 0.021

N.A. N.A. Citalopram 12 9rs806371 0.045 0.016

rs806377 0.188 0.043

14 Myung W et al.
(2013) [23] 34 54 88 46 42 SLC6A4 5-HTTLPR 0.004 N.A. N.A. N.A. Sertraline,

Fluoxetine 6 9

15 Wang Y et al.
(2012) [24] 182 221 403 287 78 DRD2 rs2734833 0.0445 N.A. N.A. N.A. SSRI 6 8

16
Yang Z et al.
(2012) [25] 182 221 403 130 35

APC rs2229992

N.A.

0.05

N.A. N.A. SSRI 6 8
SRP19 rs495794 0.0011

REEP5
rs153549 0.0015

rs153560 0.0009

17 Xu Z et al.
(2012) [26] 121 187 308 114 52 HTR1B rs6298 0.023 N.A. N.A. 0.39

(0.17–0.91) SSRI 6 9

18 Illi A et al.
(2011) [27] 36 49 85 29 56 SLC6A4 5-HTTLPR 0.03 N.A. N.A. N.A.

Citalopram,
Fluoxetine,
Paroxetine

6 9

19 Kishi T et al.
(2010) [28] 121 144 265 150 115 HTR2A rs1928040 0.054 0.0252 N.A. N.A.

Fluvoxamine,
Sertraline,
Paroxetine

8 7

20 Kishi T et al. (2010)
* [28] 121 144 265 150 115 HTR2A rs1928040 0.0910 0.0418 N.A. N.A.

Fluvoxamine,
Sertraline,
Paroxetine

8 7

21
Liou YJ et al.
(2009) [29] 186 263 449 42 117 KCNK2

rs6667764 0.046 0.360

N.A. N.A. Citalopram,
Fluoxetine

8 9rs10494994 0.05 0.082

rs6686529 0.019 0.0008

22 Min W et al.
(2009) [30] 272 307 579 243 119 SLC6A4 5-HTTLPR 0.032 0.617 N.A. N.A. SSRI 6 9

23 Kishi T et al.
(2009) [31] 60 61 121 60 61 CLOCK rs3736544 0.0043 0.0026 N.A. N.A. Fluvoxamine 8 9
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Table 1. Cont.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

24 Kishi T et al. (2009)
* [31]

60 61 121 60 61 CLOCK
rs3736544 0.0065 0.0026

N.A. N.A. Fluvoxamine 8 9
rs3749474 0.073 0.025

25
Tsai SJ et al.
(2009) [32] 208 300 508 126 61 TPH2

rs2171363 0.009 0.512
N.A. N.A.

Fluoxetine,
citalopram 8 7

rs4290270 0.019 0.459

26 Arias B et al.
(2009) [33] 114 33 147 96 52 DTNBP1 rs760761 0.03 0.007 N.A. N.A. Citalopram 4 8

27
Wong ML et al.

(2008) [34] 37 71 108 - -

CYP3A4 rs2242480

N.A.

0.02

N.A. N.A. Fluoxetine 8 7

PSMD13 rs3817629 0.04

CD3E rs2231449 0.002

PRKCSH rs160841 0.02

PSMA7

rs2057169 0.004

rs2057168 0.003

rs2281740 0.002

rs3746651 0.01

28
Tsai SJ et al.
(2008) [35] 101 129 230 74 92 GSK3B

rs334558 0.002 0.02

N.A. N.A.
Fluoxetine,
Citalopram 4 8rs13321783 0.002 0.002

rs2319398 0.011 0.011

29 Gau YT et al.
(2008) [36] 100 128 228 74 43 NGFR rs2072446 0.039 0.012 N.A. N.A. Fluoxetine,

Citalopram 8 9

30 Bozina N et al.
(2008) [37] 69 61 130 65 65 SLC6A4 5-HTTLPR 0.005 0.0004 N.A. N.A. Paroxetine 6 9

31 Papiol S et al.
(2007) [38] 35 124 159 95 51 CRHR2 rs2270007 0.018 0.002 N.A. N.A. Citalopram 4 8

32 Ham BJ et al.
(2007) * [39] 29 76 105 42 63 TPH1 rs1800532 0.047 0.017 N.A. N.A. Citalopram 8 9

33 Choi MJ et al.
(2006) [40] 24 59 83 57 26 COMT rs6265 0.012 0.009 N.A. N.A. Citalopram 8 7

34 Hong CJ et al.
(2006) [41]

93 131 224 81 143
HTR1A rs6295 0.009

N.A. N.A. N.A. Fluoxetine 4 8
SLC6A4 5-HTTLPR 0.001

35 Choi MJ et al.
(2005) * [42] 51 20 71 22 49 HTR2A rs6311 0.018 0.034 N.A. N.A. Citalopram 4 8
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Table 1. Cont.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

36 Kraft JB et al.
(2005) [43] 49 47 96 77 19 SLC6A4 rs25531 N.A. 0.03 N.A. N.A. Fluoxetine 12 9

37 Yu YW et al. (2003)
* [44] 67 90 157 4 115 IL-1B rs193922490 0.028 N.A. N.A. N.A. Fluoxetine 4 7

38 Yoshida K et al.
(2002) [45] 22 32 54 35 19 SLC6A4 5-HTTLPR 0.059 0.01 N.A. N.A. Fluvoxamine 6 9

39 Yin L et al.
(2016) [46] 141 151 290 220 70 DRD4 rs1800544 0.03 0.41 N.A. N.A.

Fluoxetine,
paroxetine,
sertraline,
citalopram

6 9

40 Hun Soo Chang
et al. (2011) [47] 16 99 115 49 25 BDNF rs6265 0.001 0.006 N.A. N.A. Escitalopram 8 9

41
Lin KM et al.
(2010) * [48] 36 205 241 69 102 CYP1A2

rs4646425 0.002 0.03 2.3 (1.12–4.73)

N.A. Paroxetine 8 9rs2472304 0.024 0.01 0.39
(0.19–0.82)

rs2470890 0.015 0.004 0.34
(0.16–0.74)

42
Lee SH et al. (2010)

* [49] 17 47 64 35 29 MRP1

rs2239330 0.038 0.005

N.A. N.A. Citalopram 8 9rs212087 0.194 0.052

rs212090 0.133 0.035

43 Tsai SJ et al.
(2009) [50] 138 196 334 101 52 COMT rs4680 0.02 0.006 N.A. N.A. Fluoxetine,

citalopram 8 9

44 Yu YW et al.
(2006) [51] 94 128 222 83 139 HTR1A rs6295 0.007 N.A. N.A. N.A. Fluoxetine 4 8

45 Suzuki Y et al.
(2004) [52] 29 23 52 35 17 HTR1A rs1800042 0.042 N.A. N.A. N.A. Fluvoxamine 12 9

46
Jamerson BD et al.

(2013) [53] 44 60 104 55 49
MTRR rs1801394 0.0077

N.A. N.A. N.A. SSRI 12 8
MTHFR rs1801131 0.0313
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Table 1. Cont.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

47
Fabbri C et al.

(2013) [54] 598 943 1541 260 1281

GRM7 rs1083801 0.0000005

N.A. N.A. N.A. Citalopram 2 8

GRIK2

rs599545 0.0003

rs2786247 0.0008

rs2852584 0.0002

rs2518313 0.0003

rs2786239 0.0006

GRIA4

rs495498 0.0008

rs10791773 0.0009

rs994575 0.0009

rs11226856 0.0002

PRKCE rs505310 0.0005

CAMK2D rs12508566 0.0009

48 Glubb DM et al.
(2010) [55] N.A. N.A. 285 47 19 ADM rs11042725 0.001 N.A. N.A. N.A. Paroxetine 6 6

49
Peters EJ et al.

(2009) [56] 746 1207 1953 N.A. N.A. HTR2A
rs1923884 N.A. 0.02 N.A. 0.75

(0.58–0.97) Citalopram 6 9

rs7997012 N.A. 0.0002 N.A. 1.43
(1.13–1.81)

50
Peters EJ et al.
(2009) * [56] 746 1207 1953 N.A. N.A. HTR2A

rs1923884 N.A. 0.01 N.A. 0.72
(0.55–0.95) Citalopram 6 9

rs7997012 N.A. 3.0 × 10−5 N.A. 1.52
(1.20–1.95)

51 Mrazek DA et al.
(2009) * [57]

443 631 1074 1042 32 SLC6A4
SERTin2 0.041

N.A. N.A. N.A. Citalopram 6 9
5-HTTLPR 0.039

52 Kato M et al.
(2006) [58] 44 56 100 57 23 SLC6A4 5-HTTLPR 0.043 N.A. N.A. N.A. Paroxetine,

Fluvoxamine 6 8

53
McMahon FJ et al.

(2006) * [59] 748 1205 1953 N.A. N.A. HTR2A
rs7997012 0.00004 2.0 × 10−5

N.A. N.A. Citalopram 6 9
rs1928040 0.0701 0.0446

54
McMahon FJ et al.

(2006) [59] 748 1205 1953 N.A. N.A. HTR2A
rs7997012 2.0 × 10−6 4.0 × 10−5

N.A. N.A. Citalopram 6 9
rs1928040 0.0149 0.0709
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Table 1. Cont.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

55 Peters EJ et al.
(2004) [60] 47 49 96 77 19 SLC614 rs25533 0.037 N.A. 0.33

(0.08–1.35) N.A. Fluoxetine 12 7

56
Ji Y et al.

(2012) [61] N.A. N.A. 1232 541 691 COMT
rs13306278 N.A. 0.04

N.A.

0.78
(0.62–0.99)

SSRI 6 7

rs9332381 N.A. 0.006 1.71
(1.16–2.51)

57 Lekman M et al.
(2008) [62] 748 1205 1953 954 415 FKBP5 rs4713916 0.0027 0.0007 N.A. N.A. Citalopram 6 7

58 Lekman M et al.
(2008) * [62] 748 1205 1953 723 466 FKBP5 rs4713916 0.042 0.042 N.A. N.A. Citalopram 6 7

59 Kraft JB et al.
(2007) [63] 735 1179 1914 991 669 SLC6A4 rs25533 0.05 N.A. 1.81

(0.92–3.56) Citalopram 6 9

60
Binder EB et al.

(2010) [64] 746 1207 1953 982 726

CRHBP

rs10473984 0.0068 0.0044

N.A.

1.42
(1.11–1.81)

Citalopram 6 9

rs10474485 0.018 0.0065 1.25
(1.06–1.46)

rs10055255 0.020 0.017 1.19
(1.04–1.39)

CRHR2
rs2267716 0.024 0.013 1.20

(1.04–1.38)

rs255105 0.043 0.0086 1.20
(1.05–1.38)

CRHR1 rs12942300 0.038 0.0086 1.31
(1.07–1.60)

61
Binder EB et al.

(2010) * [64] 746 1207 1953 740 649

CRHBP

rs10473984 0.0004 0.0006

N.A. N.A. Citalopram 6 9

rs10474485 0.018 0.0062

rs10055255 0.005 0.0023

CRHR1 rs12942300 0.0087 0.0015

CRHR2 rs2267716 0.024 0.0098

AVPR1A rs7307997 0.047 0.038
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Table 1. Cont.

No. Study Name
Sample Size

Genes Studied
Variants

p-Value
OR (95% CI)
Genotypic

OR (95% CI)
Allelic

Drugs FP Score
M F Total

(n)
Responder/
Remitter (n)

Non Responder/
Non Remitter (n) Genotypic Allelic

62
Garriock HA et al.

(2010) [65] 746 1207 1953 531 790 OPRM1

rs562859 N.A. 0.002

N.A.

1.33
(1.05–1.69)

Citalopram 6 9

rs1323044 N.A. 0.003 1.46
(1.15–1.85)

rs540825 N.A. 0.003 1.37
(1.07–1.75)

rs658156 N.A. 0.003 1.54
(1.18–2.00)

rs13195018 N.A. 0.002 1.60
(1.23–2.08)

rs538174 N.A. 0.002 1.57
(1.20–2.05)

rs583664 N.A. 0.001 1.61
(1.23–2.10)

rs618207 N.A. 0.001 1.47
(1.13–1.91)

63
Garriock HA et al.

(2010) * [65] 746 1207 1953 531 669 OPRM1

rs562859 N.A. 0.002

N.A.

1.36
(1.06–1.74)

Citalopram 6 9rs1323044 N.A. 0.005 1.44
(1.12–1.85)

rs540825 N.A. 0.002 1.44
(1.12–1.86)

64
Lin KM et al.
(2011) [66] * 19 81 100 48 26 ABCB1

rs1882478

N.A.

0.037 N.A. 0.35
(0.17–0.71)

Escitalopram 8 8rs1045642 0.045 N.A. 0.34
(0.16–0.72)

rs10256836 0.021 N.A. 3.82
(1.58–9.22)

N.A., data not available; M, male; F, female; FP, Follow-up period in weeks; OR, odds ratio; CI, confidence interval; Score, cumulative score for methodological quality assessment (see
Tables S1 and S2 for detailed scoring) * Study name shows remission data. OR calculated using reported frequencies from the respective article. All the studies represent significant
polymorphisms (p ≤ 0.05) with their corresponding genes.
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2.3. Data Extraction from GWAS of SSRI Response and MDD Susceptibility

Genes related to SSRI response and MDD etiology were also retrieved from the genome-wide
literature. We retrieved 144 articles in total, comprising GWAS with keywords “Depression” or
“Depressive Disorder”. Among them, seven GWAS [67–73] were related to SSRI response (Table 2)
and eight GWAS [74–81] were related to MDD etiology (Table 3). In total, 423 and 3884 SNPs with
p-value ≤ 0.0001 were found to be associated with SSRI response and MDD, respectively (Tables S3
and S4 online).

2.4. Data Processing and Genetic Co-Occurrence of SSRI Response and MDD

A total of 186 significant SNPs from a systematic review of SSRI candidate gene studies and
423 SNPs from GWAS of SSRI response were merged to form the first data, Set A, representing SSRI
response. Additionally, 3884 SNPs from GWAS of MDD formed the second data, Set B, relating to
MDD pathophysiology. Beside this, both sets of SNPs were enriched with probable genetic variations
found to be in LD (r2 = 1) using the HaploReg v4.1 online tool. Now enriched Set A and Set B comprise
718 and 4769 SNPs, respectively. Enriched Set A and B thus obtained were mapped to genes using the
SCAN and Ensembl VEP online tools. After excluding unmapped genes, pseudogenes, orfs, miRNAs,
and uncharacterized genes, these annotated genes were assigned their respective HGNC IDs. This
obtained a pool of 245 and 800 genes associated with SSRI response and MDD etiology, respectively
(Table S5 online). Furthermore, we identified the overlap between SSRI-response genes (Set A) with
that of MDD genes (Set B) and found 29 common genes. Since all the MDD associated genes were
extracted from GWAS articles, i.e., an unbiased source, therefore, all of the 29 overlapped genes can be
considered as unbiased molecular players co-occurring between SSRI response and MDD susceptibility
(Figure 2a).
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Table 2. Characteristics of included genome-wide association studies concerning SSRI response in major depression patients.

No. Study Name Study
Population Responders (n) Remitters (n) Non-Remitters

(n)
Non-Responders

(n) Total (n) Genotyping Platform SNPs
Studied (n)

1 Myung W et al.
(2015) [67] Korean 497 312 558 373 870

Affymetrix
Genome-Wide Human

Single-Nucleotide
Polymorphism (SNP)

Array Chip 6.0

905,431

2 Biernacka JM et al.
(2015) [68]

Asian,
European 416 226 190 449 865

Illumina Human—
Omni Express Exome

Bead Chips
631,765

3
Hunter AM et al.

(2013) [69]
European

869 N.A. N.A. 247 1116 Affymetrix 500 K and 5.0
Human SNP Arrays 430,198

Replication data set 706 Illumina Human 610
Quad Bead Chip 550,337

4 Tansey KE et al.
(2012) [70] European N.A. N.A. N.A. N.A. 2283

Illumina Human 610
Quad Bead Chips;

Illumina Human 660
W-Quad Bead Chips

520,978

5 Ji Y et al.
(2013) [71] European 287 206 81 212 499 Illumina Human

610-Quad Bead Chips 550,337

6 Sasayama D et al.
(2013) [72]

Japanese 61 N.A. N.A. 31 92 Illumina Human CNV370
Quad Bead Chips 356,075

Replication data set 136

7 Uher R et al.
(2010) [73] European N.A. N.A. N.A. N.A. 706 Illumina Human 610

Quad Bead Chips 550,337

M, male; F, female. All the GWAS were performed on MDD patients having SSRIs as an antidepressant.
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Table 3. Characteristics of genome-wide association studies of major depressive disorder.

No. Study Name Study Population Cases (n) Controls (n) Total (n) Platform SNPs Studied (n)

1 Power RA et al.
(2013) [74] European 805 805 1610 Illumina 610 K bead array 457,670

2
Ripke S et al.
(2013) [75]

European
9240 9519 18,759 Illumina 610 K, 317 K, 370 K, 550 K,

Perlegen 600 K, Affymetrix 6.0 >200,000

6783 50,695 57,478 N.A. 593

3 Wray NR et al.
(2012) [76] European 2431 3673 6104 Illumina 317 K, Illumina 370 K,

Illumina 610 K, Affymetrix 600 K 657,366

4 Shi J et al.
(2012) [77] European 1020 1636 2656 Affymetrix 6.0 671,424

5 Shyn SI et al.
(2011) [78] European 1221 1636 2857 Affymetrix 6.0, 5.0 and 500 K,

and Perlegen 500,568

6
Muglia P et al.

(2010) [79]
European

1022 1000 2022 Illumina HumanHap550 551,101

492 1052 1544 Affymetrix 5.0 370,697

7 Sullivan PF et al.
(2009) [80] European 1738 1802 3540 Perlegen 435,291

8
Rietschel M et al.

(2010) [81]
European

604 1364 1968 Illumina HumanHap 550v3, and
Illumina Human 610 W Quad Bead

Chips

491,238
409 541 950

All the GWAS were performed on MDD patients vs. healthy controls.
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2.5. Functional Enrichment of SSRI Response and MDD Gene Pool

The WebGestalt web-tool was used to further enrich the genes obtained from systematic literature
mining. The GO term and pathway enrichment analysis were performed keeping default GO slim
classification, 0.05 significance level, and the minimum number of genes in a category was set at 3. The
significance value was adjusted by the false discovery rate (FDR) analysis using the Benjamini–Hochberg
(BH) procedure (Tables S7 and S8 online). Set A of the SSRI-response genes were significantly enriched
in 298 GO terms, involving 228 GO biological process terms, 15 GO molecular function terms, and
55 GO cellular component terms along with 24 KEGG pathway terms. Set B of the MDD etiology
genes was significantly enriched in 94 GO terms, involving 7 GO biological process terms, 1 GO
molecular function terms, and 86 GO cellular component terms along with 32 KEGG pathway terms.
On overlapping, these results showed nine common KEGG pathways (Table S6 online) and 43 common
GO terms as shown in Figure 2b,c. This overlap directs a common molecular ground between the
mechanism behind antidepressant response and MDD pathophysiology. Since the biased data source
(candidate study available literature) in Set A was overlapped with Set B which has an unbiased
source (GWAS), common enriched biological pathways must be unbiased and can be used as putative
future novel drug targets for MDD. Moreover, functional enrichment of overlapping gene set, i.e., Set
C pinpoints the significant pathways involved in both antidepressant response and MDD etiology.
Altogether, 5 out of 21 enriched pathways, namely, Cushing syndrome (p = 0.005), Axon guidance
(p = 0.007), cAMP signaling pathway (p = 0.010), Insulin secretion (p = 0.016), and Glutamatergic
synapse (p = 0.028) were coinciding when compared to nine commonly enriched pathways among
Set A and B (Figure 3). Thus, these represents the most promising pathways, which on in- vitro
or in vivo validation, may prove to be new drug targets for etiology-based antidepressant therapy.
Thereafter, we evaluated genes commonly present in the five enriched pathways, for their possible
roles or interactions in both antidepressant response and MDD pathophysiology, from both the data
Sets A and B. Thus, the top recognized genes were: KCNK2, CACNA1C, CAMK2D, GSK3B, APC,
CRHR2, CRHR1, PDE11A, ADCY9, CREB5, ADCY3, GNAI3, DVL3, ADCY2, TCF7L1, RAP1B, WNT1,
CACNA1I (Cushing syndrome); SLIT3, CAMK2D, GSK3B, RND1, SEMA5A, SEMA6D, GNAI3, ABLIM1,
SRGAP3, EFNA5, SEMA3E, NTNG1, BMPR2, EPHB6, ROBO1, BOC, ROBO2 (Axon guidance); GRIA4,
CACNA1C, CAMK2D, HTR1A, ADRB1, DRD2, GRIA3, BDNF, HTR1B, TSHR, ATP1B2, ADCY9, ABCC4,
CREB5, ADCY3, GNAI3, ADCY2, RAP1B, ACOX3, PLD2 (cAMP signaling pathway); CACNA1C,
CAMK2D, CHRM3, ATP1B2, ADCY9, CREB5, ADCY3, ADCY2, PCLO (Insulin secretion); GRIA4, GRM7,
CACNA1C, GRIK2, GRIA3, SLC17A7, ADCY9, ADCY3, KCNJ3, GNAI3, ADCY2, PLD2 (Glutamatergic
synapse).
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3. Discussion

Major depressive disorder is a progressive brain disease with one of the leading cause of
disability-adjusted life years affecting approximately 10–15% of the population worldwide [82].
Various treatment regimens are present for MDD, but SSRI pharmacotherapy is being commonly used
and often recommended as a first-line treatment option in moderate-to-severe depression because
of their higher efficacy and lower side effects compared to other antidepressants. Majorly, all the
antidepressants available up to date are aimed at symptomatic management rather than complete cure
owing to poorly understood MDD disease etiology. Since the response to antidepressant treatment
varies markedly between individuals due to considerable clinical heterogeneity, therefore, the role of
genetic predictors of antidepressant response and MDD disease per se are of utmost importance for the
development of better treatment regimen which would further improve clinical management of MDD.

In this study, we used an integrative genetics approach to unbiasedly elucidate the possible
association between antidepressant therapy and MDD etiology. Initially, an extensive literature search
was done for identification of genetic variants involved in antidepressant response and disease etiology,
followed by functional gene set enrichment, and thereby distinguishing the GO terms and molecular
pathways involved in both antidepressant response and MDD susceptibility. For the first time in
this uniquely designed study, to the best of our knowledge, has incorporated the amalgam of two
exhaustive datasets of disease, concerning its pathophysiology and drug response genes, in search of
precise drug targets to accelerate future drug development with minimal side effects.

For quality assessment of the studies included in this systematic review, based on the modified
criteria used by Guin D et al. [83], the present study has incorporated the most comprehensive quality
assessment scoring of research articles for screening SSRI response articles. Our systematic review
has retrieved a total of 55 genes from the 90 research articles which were found to be involved in
various synaptic transmission and neuronal development pathways. For instance, rs1083801 (GRM7,
a glutamate receptor gene), was found to be most significantly associated with the early response
with SSRIs [54]. The TPH2 gene and its variant, rs4760815, has been reported as probable risk factors
for the development of MDD and also associated with SSRI response [84]. In addition, other genetic
variants from TPH2, (rs11179027 and rs17110532); glutamate receptor ionotropic, kainate 2 gene, GRIK2
(rs543196), glutamic acid decarboxylase gene, GAD1 (rs3828275) and SLC6A4 (rs2066713) were also
reported to be strongly associated with SSRI response [15]. SERTPR often regarded as 5-HTTLPR
is a serotonin transporter gene promoter polymorphism which is been exhaustively studied in both
remission rate and response rate of antidepressants [85]. A review and meta-analysis study by Kato
and Serretti [86] has extensively studied and reported a significant association between the 5-HTTLPR
variant and better response to antidepressants. Zill et al. [87] have identified functional polymorphism
in the β1 adrenergic receptor 1165G>C (rs1801253), which was found to be involved in conferring the
faster response towards antidepressant treatment, but did not influences the depressive phenotype.
Furthermore, HTR2A, a serotonergic receptor gene variant rs7997012 is found to be associated with
SSRI response as well as remission [56,59,88,89]. However, Illi A et al. [90] and Kishi T et al. [28] have
reported a negative association of rs7997012 with SSRI response or remission. Thus, to overcome such
inconsistencies across several research studies, we need an innovative approach to eliminate the biases
and limitation of candidate gene studies [91]. Hence in the present study, we have opted for “candidate
gene studies and GWAS overlapping” approach to overcome the lack-of-harmony among candidate
gene studies. As a result, the systematic review of candidate gene studies and GWAS was merged to
ascertain the unbiased genes and molecular pathways involved in both antidepressant response and
MDD etiology.

After merging findings from the systematic review and GWAS studies, all the genetic variants
were grouped into Set A and Set B followed by their LD enrichment, gene annotation, and functional
enrichment analysis, to reveal multiple relevant pathways among antidepressant response and MDD
etiology (Figure 1). Furthermore, 56 KEGG pathways (24 from Set A and 32 from Set B) were identified
with 9 commonly enriched pathways, namely Cushing syndrome, Retrograde endocannabinoid
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signaling, Axon guidance, cAMP signaling pathway, Glutamatergic synapse, Insulin secretion, Gap
junction, Gastric acid secretion, and Salivary secretion, from Set A and Set B. In the view of MDD
etiology, the most interesting molecular pathways are Axon guidance, Glutamatergic synapse, and
Cushing syndrome. These 9 co-occurring pathways were further overlapped with the molecular
pathways enriched from the 29 common genes implicated in antidepressant response and MDD
etiology. This results in five overlapping molecular pathways, namely, Cushing syndrome, Axon
guidance, cAMP signaling pathway, Insulin secretion, and Glutamatergic synapse. As MDD is a
complex disorder, multiple pathways are expected to be involved in its etiology and our result is in
concordance with the same showing the interplay of stress, neurodevelopmental, synaptic plasticity,
and metabolic physiology in MDD etiology and antidepressant response.

Cushing syndrome, as being the top pathway of the analysis, is a metabolic disorder caused
by overproduction of cortisol (glucocorticoid) produced by the adrenal cortex of the adrenal gland
in response to glucocorticoids medication or in stressful condition. The adrenal gland is a part
of stress-responsive hypothalamic pituitary adrenal (HPA) axis which consists of stimulating and
feedback mechanism involving the hypothalamus, pituitary, and adrenal gland, and thus regulates the
production of glucocorticoids. The HPA axis dysregulation has been implicated in the pathophysiology
of many neuropsychiatry traits including MDD [92–94]. Genes associated with the homeostatic
response to environmental stressors particularly lies in the HPA axis [95].

Corticotrophin-releasing hormone (CRH), released by the hypothalamus, stimulates the release
of adrenocorticotropic hormone (ACTH) from pituitary which in turns regulate the levels of cortisol
secreted from the adrenal gland. Hence CRH and its downstream effects are of prime importance
which is controlled by cortisol level through feedback mechanism and two CRH receptors i.e., CRHR1
and CRHR2 [96]. Alteration in CRHR1 and CRHR2 activity may lead to HPA dysregulation and can
be a major risk factor for depressive symptoms. Bradley et al. [97] demonstrated the role of genetic
variants in CRHR1 as moderators of the effects of child abuse on adult depressive symptoms in two
independent populations which was further confirmed by a replication study which reported the
association of TAT (rs7209436, rs110402, and rs242924) haplotype in CRHR1 in predicting the adult
depression [98,99]. Woody et al. [100] also supported the hypothesis of protective CRHR1 haplotype
(TAT) as their result suggested the development of brooding among children without the protective
CRHR1 haplotype. Moreover, animal studies also indicate the prenatal glucocorticoid exposure can
cause epigenetic instability in CRHR1 promoter which further increases the risk for the affective
disorder in offspring’s across two generations [101]. Epistatic interaction between AVPR1b, CRHR1,
and BDNF genes has also been reported to be involved in susceptibility to MDD [102,103]. Ressler
et al. [104] reported the involvement of interaction of 5-HTTLPR S allele with CRHR1 haplotype in
predicting adult depression in individuals with child abuse. The SNPs rs110402, rs242924 rs3779250,
rs7209436, and rs173365 from CRHR1 and CRHR2 genes were reported to be positively associated with
MDD in the Japanese population [105]. However, a CRHR2-based 10 SNP study showed no significant
allelic or genotypic differences among unipolar patients and matched healthy controls [106].

In addition, there are evidences for an antidepressant response via glucocorticoid receptors (GRs)
where it has been demonstrated that sertraline increases human hippocampal neurogenesis via a
GR-dependent mechanism [107]. A recent study has shown the significant association of rs41423247
polymorphism with fluoxetine response in depressed patients [10]. Another study of haplotype-tag
SNPs (rs1876828, rs242939 and rs242941) in CRHR1 shown the significantly improved response to
antidepressants among highly anxious patients homozygous for the GAG haplotype, suggesting
the possible role of CRHR1 and other stress-inflammatory pathway genes in variable antidepressant
response [108,109].

Increasing evidence suggests the dysfunction of glutamatergic neurotransmission impairs
neuroplasticity in the brain and this leads to major depressive disorder [110,111]. Many novel
targets in relation to this pathway are evidenced for causing the depression phenotype. In the past
decade, NMDA has gained the utmost attention with respect to the biology of depression and also
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serves as a potential target for drug development and treatment. As under pathological condition,
elevated levels of glutamate resulted in the impairment of synaptic plasticity and even excitotoxicity.
Alternate depression hypothesis includes exposure to stress inculpates the release of the high level of
stress hormone i.e., cortisol from the adrenal gland. Correspondingly, adequate literature demonstrates
that stress and glucocorticoids are responsible for alteration in the expression and activity of vesicular
proteins of the neurotransmission of glutamate [112]. Emerging evidences from post-mortem studies
has reported the dysregulation of genes and increased glutamate levels, thus highlighting the role
of altered glutamate signaling in MDD patients [113]. Decrease expression of presynaptic genes in
MDD patients such as SYN3, SNAP25, essential for vesicular release of neurotransmitters have been
reported. Likewise, a significant downregulation of postsynaptic genes was also reported in the dentate
gyrus (DG) and CA1 of MDD patients such as AMPA receptors, specifically GLU1 and GLU3 [114].
In the same note, several NMDA gene variations have been reported to have an association with
an abnormality in NMDA receptors. One such study had shown significant association of GRIN1
(rs4880213) with depression. Further studies revealed that variations in the GRIN2B were associated
with schizophrenia, psychiatric disorders, and brain plasticity [115]. Similarly, downregulation of
NMDA receptor subunits GRIN1A and GRIN2B, as well as PSD-95 have been demonstrated in the
anterior prefrontal cortex of MDD subjects [116]. Likewise, metabotropic glutamate receptor 7 (GRM7)
encodes the protein mGluR7 mediates the glutamate neurotransmission, found to be involved in the
development of the major depressive disorder. Li W et al. [117] studied the association of genetic
variation of the GRM7 gene with MDD and schizophrenia and reported the significant association of
GRM7 gene variation (rs779706) with MDD and (rs2229902 and rs9870680) with schizophrenia in the
Han Chinese population. Thus, it is hypothesized that dysfunction of ionotropic and metabotropic
receptors are associated with the depressed phenotype. However, in a resequencing study, none of the
GRM7 variants had shown the significance level with MDD in the Dutch cohort [118].

Also, a number of studies support the association between the antidepressant response and
GRIK4 in MDD patients [89,119,120]. Genes encoded ionotropic glutamate receptors were studied with
respect to citalopram treatment and demonstrated a significant association of two SNPs (rs4825476 and
rs2518224) located within GRIA3 and GRIK2, respectively, with the treatment-emergent suicidal ideation
in MDD patients [121]. Moreover, in order to explore the potential targets for treatment-resistant
depressive patients, emerging evidence from clinical trials supported the use of glutamate receptor
modulators for the treatment of depression and these include non-competitive NMDA receptor
antagonists such as ketamine, subunit (NR2B)-specific NMDA receptor antagonists, NMDA receptor
glycine-site partial agonists and metabotropic glutamate receptor (mGluR) modulators [122]. Therefore,
glutamate pathways and its associated receptors are important and further insights and detailed
understanding could help us to target the accurate site for future drug development.

Neuronal circuit formation involves a molecular cascade of events such as axon guidance, where
axons move to their target cells in a complex, constantly changing the environment. It has been
speculated that change in this gene-environment interaction may lead to alteration in axon guidance
followed by its implication in neuropsychiatric disorders. Furthermore, a meta-analysis by S Jovanova
O et al. [123], has reported three methylated sites associated with depressive symptoms and were also
found to be involved in axon guidance as a pathway in major depression. Interestingly, research articles
have also shown that miRNAs implicated in axon guidance are involved in differential antidepressant
response where miRNAs namely miR-146a-5p, miR-146b-5p, miR-221-3p, miR-24-3p, miR-26a-5p are
known to be involved in axon guidance and were also associated with antidepressant response in MDD
patients [124,125]. Our current finding of Slit guidance ligand 3 gene, SLIT3 in antidepressant and
MDD gene set is in consensus with findings from Glessner JT et al. [126], where they have performed
genome-wide copy number variation scan of large cohort of MDD patients and controls and has
observed 5q35.1 as the most significant locus harboring the SLIT3 gene which is integral to repulsive
axon guidance. Thus synaptic plasticity mediated via axon guidance is a topic of new research and can
further be studied for better antidepressant development.
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Since the majority of intracellular messenger cascades are regulated either by G protein-coupled
receptors (GPCRs) or protein tyrosine kinases (PKAs) and are major activator of various cellular
and molecular signaling pathways such as cortisol secretion in the adrenal cortex contributing to
Cushing’s syndrome and neurotransmitters such as serotonin and norepinephrine, which are known
to mediate the effects of antidepressant treatments modulates secondary messenger cascades via
interaction with GPCRs or PKAs [127,128]. Hence, receptor activation induced by ligands such as
neurotransmitters confers to cAMP generation via stimulating adenylate cyclase (AC), and their
binding to the G-protein subtype leads to activation of PKA, which is an important factor for driving
several biological functions either by phosphorylation or dephosphorylation of specific target proteins,
undermines the antidepressant actions. Furthermore, the cAMP response element binding protein
(CREB), a transcription factor that mediates the actions of the cAMP cascade, is a substrate for PKA,
is involved in regulating gene expression, and has the capability to modulate their transcriptional
activity, which is important for cellular adaptions during antidepressant administration.

Dowlatshahi et al. [129] have reported low CREB levels in post-mortem temporal cortex of
naive major depressive disorder patients as compared to MDD patients treated with antidepressants.
Odagaki et al. [130] have even demonstrated the increased immunoreactivities of phosphorylated CREB
as well as total CREB levels in the prefrontal cortex of depressed suicide victims and specifically in
antidepressant drug-free subjects. Also, with a slight trend for increased levels of PKA-Cα in depressed
suicide victims only as compared to healthy controls. As a downstream consequence, the expression
of various target genes critical to the organization of neuronal networks and synaptic plasticity, like
neurotrophin, brain-derived neurotrophic factor (BDNF), and neuropeptide Y (NPY) is also increased
contributing towards antidepressant-mediated changes in structural remodeling, neuronal plasticity
and synaptic restructuring [131,132]. Henceforth, evidence from such studies confer the ability of HTR
receptors in either stimulating or inhibiting the AC-cAMP-PKA signaling transduction pathway but
further invokes solicitation and functional validation of pathway genes in undermining the action
of antidepressants, as this transduction pathway is highly regulated by several other factors such as
stress, apoptosis, inflammation, and others.

Hence pathway enrichment analysis of “biased and unbiased” merged data is assured to facilitate
our understanding of the underlying molecular mechanism of the complex trait of anti-depressant
response and major depression as a disease, to circumvent the symptomatic respite and design a
definite therapy. Application of this elaborated analytical tactics in translational research concerning
complex disorders like MDD would be beneficial after in-vitro and in-vivo validation of the top
promising pathways and genes involved in antidepressant response and MDD etiology.

4. Methodology

The complete workflow of the study is represented in Figure 4. We initiated with integrating
significantly associated SNPs from candidate genes studies and GWAS concerning SSRI response
and from GWAS of MDD etiology. Therefore all the SNPs from candidate gene studies and GWAS
of SSRI response were merged in one group and another group consist significant genetic variations
from MDD GWAS. Further, they were annotated into genes followed by functional and pathway
enrichment analysis.

4.1. A systematic Review of Antidepressant Response Candidate Gene Studies

Among currently available antidepressants, selective serotonin reuptake inhibitors (SSRIs) like
escitalopram, sertraline, and fluoxetine are the most commonly prescribed drugs [133] considering their
higher efficacy and lower side-effects. Hence in the present study, we have considered “SSRIs” and
“antidepressants” interchangeably in this manuscript. A systematic literature search was performed
in accordance with PRISMA guidelines [134]. The MEDLINE and Web of Science databases were
searched using Medical Subject heading (MeSH) terms “selective serotonin reuptake inhibitor”, “SSRI”,
“pharmacogenetics”, “pharmacogenomics”, “response”, “treatment outcome”, “SNP”, “variant”,
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“polymorphism” with AND/OR Boolean operators to extract all the studies evaluating association
of SNPs with SSRI treatment outcome in patients with MDD. The search and study selection was
carried out independently by three authors (AS, HG, and PS) covering the articles published till 28th
February 2018.
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The searches were confined to human and English language studies. All the articles that were
review, meta-analysis, commentary, editorial, clinical trial, letter, randomized control trial, technical
report were excluded. Articles were sorted for their relevance at two stages, first using the title
and second using their abstract. At the first stage of title screening, duplicates, reviews, systematic
reviews, meta-analysis, non-human, and co-morbid studies were removed. Secondly, the abstracts
of all remaining articles were retrieved and screened based on the inclusion and exclusion criteria of
the study. Inclusion criteria required genetic association of SSRI response in MDD patients, with age
range of 18–75 years, and that response should be inferred based on gold standard severity rating
scales like Hamilton Depression Rating Scale (HAM-D) or Montgomery Asberg Depression Rating
Scale (MADRS). Whereas studies involving MDD as co-morbidity or MDD patients with other severe
medical illness, psychiatric disorder or substance abuse were excluded. Detailed exclusion criteria are
given in Figure 1.
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4.2. Data Extraction and Quality Assessment of Antidepressant Response Candidate Gene Articles

Data, from selected full-text articles, were extracted by AS, HG, and PS and checked by DG and
RK. Ethnicity, used response criteria, sample size, genes with information of genetic variant, related
genotypic or allelic frequency and respective reported p-value, drug, dose, and follow-up period were
included in the data collection table. Ethnicity was classified as reported in the respective article, else
the country in which the study was conducted, assumed to be the individual’s ethnicity. A cut-off

p-value ≤ 0.05 was used for extracting SNPs from the selected articles. Methodological quality of each
article was assessed by two independent reviewers (AS and HG) using modified criteria for quality
assessment, as used by Guin D et al. [83]. The quality assessment was scored on 8 parameters (Table
S2 online), with a positive score awarded for each detail present in the study, the lack of detail was
described as 0. Conflicting scores were reached to a consensus upon discussing with DG and RK. If the
score obtained was 7 or higher, the study was considered as high quality.

4.3. A Systematic Literature Search of GWAS of SSRI Response and MDD Susceptibility

Data were also extracted from GWAS, using keywords “Depression” or “Depressive Disorder”,
correlating genetic variability with SSRI response in patients with MDD, and distinguishing MDD
patients from healthy controls. To maintain homogeneity in studies, only those articles were selected
where researchers have opted peripheral blood as their source of DNA extraction. In the case of disease
vs. control GWAS, the diagnosis has been made by a psychiatrist/clinical psychologist, otherwise, a
study has been excluded from the pool. Similarly, in GWAS correlating SNPs with SSRI response, if the
response were adjudicated using standard depression severity rating scales the study was included,
else excluded. Studies considering meta-analysis were also excluded. A cut-off p-value ≤ 0.0001, was
used for extracting SNPs reported in respective GWAS.

4.4. Data Processing of Candidate Gene Studies for SSRI Response and GWAS of SSRI Response and
MDD Susceptibility

SNPs from candidate and GWAS studies were retrieved and categorized into two data sets, Set
A containing SNPs associated with SSRI response (data from both systematic review and GWAS
of SSRI response), and Set B comprising SNPs associated with MDD susceptibility (data only from
GWAS of MDD disease). Here, we were investigating the targets for etiology based antidepressant
development using genomic integration of disease and drug response, one dataset needed to be
unbiased and hence we decided not to include candidate gene studies for MDD. Thus, Set A can
be considered to be a biased data set as it contains SNPs from candidate gene studies as well as
from GWAS, whereas Set B is genetically unbiased data set as it contains data from GWAS only. As
interpatient genetic variability can modulate SSRI clinical response and MDD etiology, therefore, in
order to widen the genetic region to find out the biological relevance of the associated SNPs, we
have incorporated all the probable genetic variations found to be in linkage disequilibrium (LD) with
previously extracted SNPs of Set A and Set B. Furthermore, pairwise LD among the extracted SNPs of
set A and B were performed using HaploReg v4.1 which uses mammalian conservation algorithm
from GERP and SiPhy-omega with LD threshold (r2) = 1, corresponds to 100% LD [135]. SNPs that
are found to be in 100% LD in all the four major population i.e., African, American, Asian, and
European were included in the respective SNP sets. In addition, SCAN (SNP and CNV Annotation
Database) [136] (http://www.scandb.org/newinterface/about.html) and VEP (Variant Effect Predictor
—Ensembl) [137] (https://asia.ensembl.org/info/docs/tools/vep/index.html) online tools were employed
for gene annotation for all the identified SNPs, which were extracted and enriched from LD. The
SCAN utilizes two ways for SNP annotation, i.e., relative position based and eQTLs (expression
quantitative trait loci) method. Relative position-based method identifies a gene based on SNP position
(intronic, inter-genic, etc.) or an intergenic variant can be annotated to a gene if it is in LD with any
other variant present in the gene. An eQTLs-based method annotates a gene whose quantitative
expression is altered by input SNP. Whereas VEP annotates an SNP to a gene if it has a functional
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effect on that gene, transcript, protein sequence or regulatory regions. The SNPs, which remained
unmapped, were excluded from further analysis. Genes thus obtained were assigned HGNC (HUGO
Gene Nomenclature Committee) (https://www.genenames.org/) IDs manually [138]. The pseudogenes,
hypothetical loci, non-coding RNAs, non-protein coding genes, open reading frames (orfs), microRNA
(miRNA), and uncharacterized genes were excluded from each dataset. Further, a third data set, Set C,
was also framed which contained all the overlapping genes from Set A and Set B. Set C was used to
distinguish the most significant pathways from the commonly enriched pathways among Set A and
Set B.

4.5. Functional Enrichment Analysis

For each of the three datasets, functional enrichment analysis was conducted using a WEB-based
GEne SeT AnaLysis Toolkit (WebGestalt) [9]. Gene Ontology (GO) term enrichment analysis (http:
//www.geneontology.org/) and pathway enrichment analysis with Kyoto Encyclopedia of Genes and
Genomes (KEGG) engine (https://www.genome.jp/kegg/) was performed keeping default GO slim
classification, 0.05 significance level and a minimum number of genes in a category was set at 3.
For enrichment analysis of each dataset, the significance value was adjusted by the false discovery
rate (FDR) analysis using the Benjamini–Hochberg (BH) procedure. The GO terms and molecular
pathways overlapping between Set A and Set B were extracted, which further overlaid with the
enriched pathways from Set C to identify pathophysiological grounds which can be targeted to develop
etiology based antidepressants.

5. Conclusions

Burgeoning literature evidence has so far pointed out the clinical relevance of antidepressant
response and MDD etiology individually, but such studies are not consistent enough to manifest
these findings into clinical practice. In the present study, we have focused on highlighting the
possible confounding factors responsible for antidepressant response and MDD pathophysiology
altogether. Thus we have shortlisted significant genes and pathways implicated in the same which can
be further utilized as novel molecular targets for the development of more efficacious antidepressant
drugs. Application of this elaborated analytical approach in translational research concerning complex
disorders like MDD would be beneficial after in-vitro and in-vivo validation.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/8/1993/
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