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Abstract

Coalescent methods are widely used to infer the demographic history of populations from gene genealogies. These
approaches—often referred to as phylodynamic methods—have proven especially useful for reconstructing the dynamics
of rapidly evolving viral pathogens. Yet, population dynamics inferred from viral genealogies often differ widely from
those observed from other sources of epidemiological data, such as hospitalization records. We demonstrate how a
modeling framework that allows for the direct fitting of mechanistic epidemiological models to genealogies can be used
to test different hypotheses about what ecological factors cause phylodynamic inferences to differ from observed
dynamics. We use this framework to test different hypotheses about why dengue serotype 1 (DENV-1) population
dynamics in southern Vietnam inferred using existing phylodynamic methods differ from hospitalization data.
Specifically, we consider how factors such as seasonality, vector dynamics, and spatial structure can affect inferences
drawn from genealogies. The coalescent models we derive to take into account vector dynamics and spatial structure
reveal that these ecological complexities can substantially affect coalescent rates among lineages. We show that
incorporating these additional ecological complexities into coalescent models can also greatly improve estimates of

historical population dynamics and lead to new insights into the factors shaping viral genealogies.
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Introduction

The field of phylodynamics is concerned with how various
ecological and evolutionary processes act or interact to shape
genealogies and patterns of genetic diversity (Grenfell et al.
2004; Volz et al. 2013). A major focus of phylodynamics has
also been on what can be considered the inverse problem—
given a genealogy, can the processes that generated the ge-
nealogy be inferred? With respect to this question, most effort
has been focused on inferring the demographic history of
populations from genealogies using coalescent-based meth-
ods such as the popular Bayesian Skyline approach (Strimmer
and Pybus 2001; Drummond et al. 2005). These methods have
become especially popular among epidemiologists studying
the population dynamics of infectious diseases, particularly
rapidly evolving RNA viruses like influenza, dengue, hepatitis
C, and HIV (Pybus et al. 2001; Rambaut et al. 2008; Gray et al.
2009; Bennett et al. 2010).

Infectious diseases also present an opportunity to test
phylodynamic methods in situations where epidemiological
data like time series of case reports are available alongside
sequence data, allowing phylodynamic reconstructions of
population dynamics to be compared against patterns
observed through hospital- or community-reported inci-
dence. Reassuringly, in many cases, phylodynamic estimates

have been in line with observed disease dynamics. A very
striking example of such congruence was provided by
Rambaut et al. (2008), who reconstructed seasonal influenza
A dynamics consistent with the strongly annual fluctuations
observed in surveillance data. Phylodynamic methods have
also been used to successfully reconstruct the early, exponen-
tial growth phase of emerging epidemics (Pybus et al. 2007;
Lemey et al. 2003; Dearlove and Wilson 2013). Yet, in other
cases, phylodynamic estimates have differed widely from
observed or expected disease dynamics. This has often been
the case with pathogens undergoing complex seasonal or
multiannual dynamics (Amore et al. 2010; Bennett et al.
2010; Siebenga et al. 2010; Lin et al. 2013). Although the in-
ability to capture fluctuations in population size at fine tem-
poral resolution can partially be attributed to insufficiently
dense sampling, cases have even been found where dynamics
inferred from genealogies are out of phase with case report
data (Bennett et al. 2010).

Discrepancies between phylodynamic estimates and
observed dynamics highlight some of the technical issues
that need to be addressed if phylodynamic methods are to
become a reliable tool in epidemiology and other fields. One
major concern is whether the coalescent models often used
in phylodynamic inference are appropriate for populations
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undergoing complex population dynamics, as is often the
case for infectious diseases. This is important for inference
because it is the coalescent model that provides the probabil-
istic framework necessary to compute the likelihood of a
particular  demographic model given a genealogy.
Coalescent models commonly used in traditional population
genetics assume that the coalescent rate is inversely propor-
tional to the effective population size N.. For infectious
diseases, changing transmission rates can also affect coales-
cent rates (Volz et al. 2009; Frost and Volz 2010). Therefore,
the dynamics of N, inferred from genealogies using standard
coalescent models need to be interpreted carefully for path-
ogens as they may not reflect the true underlying disease
dynamics. Additional ecological complexities can also
seriously bias estimates if not properly taken into account.
For example, different forms of population structure can bias
estimates obtained using coalescent models that do not take
into account the possibility of different lineages being in dif-
ferent populations (Carrington et al. 2005 Pybus and
Rambaut 2009; Heller et al. 2013). These issues make it diffi-
cult to assess whether inferences drawn from phylodynamic
analyses are reliable or are, at least in part, artifacts of the
coalescent models used for inference.

To explore some of these issues, we used dengue virus as a
case study in phylodynamic inference. Dengue is a mosquito-
borne flavivirus and has been the subject of several previous
phylodynamic studies, which have had various degrees of
success reconstructing dengue’s complex epidemiological dy-
namics (Schreiber et al. 2009; Bennett et al. 2010; McElroy
et al. 2011; Raghwani et al. 2011). In this article, we limit our
attention to dengue serotype 1 (DENV-1) in southern
Vietnam, for which a large number of sequence samples
and reliable hospitalization data are both available.

We were also interested in DENV-1 because, as shown
below, we were unable to reconstruct the highly seasonal
incidence patterns observed in hospitalization data using
Bayesian Skyline methods. Although there are many plausible
explanations for this discrepancy, we explored three factors
particularly relevant to dengue. These were as follows:
1) Dengue’s seasonality and nonlinear transmission dynamics,
which lead to rapid fluctuations in dengue incidence;
2) vector-borne transmission and the population dynamics
of mosquitoes; and 3) spatial structure in the host population
arising from the spatial heterogeneity of southern Vietnam.
Although all three of these factors play a crucial role in den-
gue’s ecological dynamics, it is less clear how each factor acts
to shape viral genealogies and therefore affects inferences
drawn using coalescent-based methods.

To understand how each of these factors affects phylody-
namic estimates drawn from the DENV-1 genealogy, we
used a mechanistic modeling framework that allowed us to
formulate each of the three proposed factors as a simple
compartmental epidemiological model: a seasonal suscepti-
ble-infected-recovered (SIR) model, a vector-borne SIR model,
and a spatially structured SIR model. We then derived coa-
lescent models corresponding to each of the epidemiological
models using the framework presented in Volz et al. (2009)
and Volz (2012). With these coalescent models, we were able

to directly fit each of the epidemiological models to the
DENV-1 genealogy and explore how each factor affects the
coalescent process. By comparing the relative fit of each
model to the genealogy, we were able to gain insight into
which factors are most important in shaping the DENV-1
genealogy. Moreover, the best-fitting epidemiological
models did much better than standard coalescent models
in reconstructing population dynamics consistent with the
dengue hospitalization data, showing that incorporating
mechanistic modeling approaches into phylodynamic infer-
ence can greatly improve estimates of historical population
dynamics.

Results

Dengue is hyperendemic in southern Vietnam with all four
serotypes commonly circulating together. Previous epidemi-
ological studies have shown that incidence is consistently high
in the region with an annual attack rate in children estimated
to be approximately 10% (Thai et al. 2005, 2011). Case reports
collected at hospitals in Ho Chi Minh City (HCMC) between
2003 and 2008 indicate that transmission can occur year-
round, although incidence is highly seasonal with a strong
annual periodicity (fig. 1A; Materials and Methods).

The hospitalization data shown in figure 1A include all four
serotypes but may not be representative of any particular
serotype. We therefore used viral isolates serotyped using
reverse transcriptase-polymerase chain reaction (RT-PCR) to
determine the fraction of isolates belonging to each of the
four dengue serotypes over time (Materials and Methods). As
shown in figure 1A, the proportion of DENV-1 isolates dra-
matically increased from around 2004 onward. This trend is
consistent with regional level data that indicate DENV-1
replaced DENV-2 as the dominant serotype in southern
Vietham while the relative abundances of DENV-3 and
DENV-4 remained low over this period of time (Vu et al.
2010). Because of the predominance of DENV-1 over the
time period studied, we focused on this serotype in our phy-
lodynamic analysis, using the fraction of DENV-1 viral isolates
to estimate monthly DENV-1 incidence from the hospitaliza-
tion data (fig. 1A). Although the hospitalization data are likely
representative of DENV-1 dynamics, the total incidence of
DENV-1 is likely much higher because only a small fraction
of dengue cases result in hospitalization.

To determine whether we could reconstruct the dynamics
observed in the dengue hospitalization data from sequence
data, we inferred the genealogy of 237 DENV-1 whole genome
sequence samples collected between 2003 and 2008 from
dengue patients living throughout southern Vietnam
(Materials and Methods). The maximum clade credibility
(MCC) genealogy for these samples is shown in supplemen-
tary figure S1, Supplementary Material online. Figure 1B
shows the population dynamics inferred, along with the ge-
nealogy, using BEAST in the form of a Bayesian Skyline Plot
(BSP). Although we do recover the increase in DENV-1 that
occurred starting around 2004, other aspects of the dynamics
observed in the hospitalization data are absent in the BSP.
Most noticeably, the small fluctuations of DENV-1 inferred
from the genealogy do not seem consistent with the large
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Fic. 1. Population dynamics of dengue in southern Vietnam. (A) Absolute number of dengue hospital admissions each month in HCMC (black), yearly
relative abundance of DENV-1 among RT-PCR positive cases (blue), and the extrapolated number of DENV-1 hospitalizations (dashed blue). (B) BSP
inferred from the DENV-1 sequences. Black lines show the median posterior estimates and shaded red regions give the 95% credible intervals.
(C) Incidence inferred under the seasonal SIR model from the DENV-1 genealogy. Incidence estimates are reported as the absolute number of
cases occurring each month. The dashed gray line shows the median estimate obtained from the HCMC-specific genealogy. (D) Incidence inferred
under the vector-borne model. (E) Incidence inferred under the spatially structured model in HCMC. (F) Incidence inferred under the combined model
with vectors and spatial structure.

seasonal fluctuations in the hospitalization data (fig. 1A seasonal fluctuations should be recoverable given the current
and B). Although in theory this could be due to inadequate sample size (simulations not shown). Aside from the discrep-
sampling, exploratory simulations using sequence data simu- ancy in seasonal dynamics, the BSP also shows DENV-1 inci-
lated under dengue-like dynamics showed that the large dence peaking in 2006 and then declining whereas the
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hospitalization data shows the peak in seasonal incidence
increasing each year from 2004 to 2008.

Because the sequence samples were collected from
patients living within a large geographic region, we also
tried to reconstruct DENV-1 dynamics only within HCMC,
reasoning that it may be easier to reconstruct seasonal
dynamics on a more limited spatial scale than all of southern
Vietnam. To do so, we performed a second Bayesian Skyline
analysis with a genealogy from which all non-HCMC samples
were removed. However, the Bayesian Skyline reconstruction
of dynamics within HCMC also failed to recover the large
seasonal fluctuations in DENV-1 incidence (supplementary
fig. S2, Supplementary Material online).

Seasonality

Given the large discrepancy in seasonal dengue dynamics
between the BSP and the hospitalization data, we first
considered whether an epidemiological model that explicitly
considered seasonality and nonlinear transmission dynamics
might outperform the BSP. We therefore fit a SIR model
with seasonal forcing to the DENV-1 genealogy using a
coalescent model derived from the SIR model (Materials
and Methods).

The population dynamics inferred from the DENV-1 MCC
genealogy under the seasonal SIR model were qualitatively
very similar to the dynamics in the BSP, with the seasonal
fluctuations in incidence still an order of magnitude lower
than those observed in the hospitalization data (fig. 1C).
Coinciding with the small fluctuations in incidence, epidemi-
ological parameters estimated directly from the genealogy
also indicated very low seasonal amplitude (quantifying the
strength of seasonality) and a difficulty in identifying the
seasonal phase (fig. 2A and B). Incidence estimated from
the genealogy is also much higher than the number of hos-
pital admissions, which we expected based on the fact that
most dengue cases are not severe enough to require hospi-
talization. The basic reproduction number R, was estimated
to be slightly higher than three (fig. 2C), consistent with the
range of serotype-specific R, values previously reported for
dengue in southeast Asia (Ferguson et al. 1999; Thai et al.
2005). As in the BSP, the inferred dynamics show DENV-1
incidence peaking in 2006 and then steadily declining, at odds
with the continued growth in peak incidence each season
observed in the hospitalization data. Similar dynamics were
inferred from the genealogy containing only samples from
HCMC (fig. 1C).
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Fic. 2. Posterior densities of the parameters inferred from the DENV-1 genealogy. Solid red lines indicate the median and dashed red lines indicate the
95% credible intervals of the posterior densities. The parameter « is the seasonal amplitude, § is seasonal phase parameter, R, is the basic reproduction
number, M is the ratio of mosquito to human population sizes in the vector-borne model, and By is the transmission rate between populations in the
spatially structured model. (A-C) Estimates for the seasonal SIR model, (D-G) estimates for the vector-borne model, and (H-K) estimates for the

spatially structured model.
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To explore how uncertainty in the genealogy, especially
with respect to the coalescent times, might affect our
estimates, we additionally fit the seasonal SIR model to
ten random trees sampled from the BEAST posterior tree
distribution. Reconstructed dynamics did not significantly
differ between trees, suggesting estimates were largely
robust to phylogenetic uncertainty (supplementary fig. 3A,
Supplementary Material online). The seasonal SIR model
therefore appears unable to reconstruct dynamics consistent
with the hospitalization data regardless of the geographic
distribution of samples or the particular genealogy used for
inference.

Vector Dynamics

Dengue is a vector-borne virus spread by Aedes mosquitoes
and the seasonality in dengue transmission presumably arises
from fluctuations in mosquito population densities. Yet, the
seasonal SIR model fit above does not explicitly consider
vector-borne transmission or mosquito population dynamics.
To see whether ignoring the vector population in the coales-
cent model could be distorting population dynamic infer-
ences drawn from the genealogy, we fit a mechanistic
vector-borne SIR model with seasonality in mosquito birth
rates to the DENV-1 genealogy (Materials and Methods).

The population dynamics inferred from the DENV-1
genealogy under the vector-borne model show much larger
seasonal fluctuations in incidence and correspond to the
hospitalization data much better than those inferred under
the directly transmitted model (fig. 1D). These pronounced
seasonal fluctuations arise from an estimated amplitude
parameter that is much higher under the vector-borne
model than the directly transmitted SIR model (fig. 2D).
We were also able to reconstruct the sustained growth in
peak DENV-1 incidence each season through 2008, which
we were unable to capture using the BSP or the directly
transmitted model. Overall, a model comparison using
Bayes factors showed that the vector-borne model provided
a much better fit to the DENV-1 genealogy, with the posterior
odds highly favoring the vector-borne model over the directly
transmitted model (table 1).

We were also able to obtain much more precise estimates
of the seasonal phase parameter using the vector-borne
model (fig. 2E). The estimated phase coincides with a peak
in mosquito population densities occurring in May or June,
the same time at which Aedes aegypti densities peak in inde-
pendent data from the Pasteur Institute in HCMC (Coudeville
and Garnett 2012). Ry under the vector-borne model was
estimated to be slightly lower than three (fig. 2F), again

Table 1. Comparison of the Models Fit to the DENV-1 Genealogy.

Model Median Posterior® Bayes Factor”
Seasonal SIR —2,342.4 —
SIR + vector —2,271.1 71.0
SIR + space —2,253.9 88.3
SIR + vector + space —2,247.9 93.7

*Median log posterior probability.
®Log Bayes factor.
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consistent with the range of R, estimates in the literature
(Ferguson et al. 1999; Thai et al. 2005). We were also able
to obtain an estimate of the seasonal average of M, the ratio of
mosquito to human population sizes, at a value close to one
(fig. 2G). For comparison, estimates from other areas of the
world have reported the number of A. aegypti per person to
range from 0.2 to over 60.0, although most reported values fall
below one (Focks and Chadee 1997; Morrison et al. 2004;
Koenraadt et al. 2008; Jeffery et al. 2009).

To gain intuition about why the vector-borne model was
able to capture the population dynamics of DENV-1 better
than the directly transmitted model, we studied the coales-
cent process for a vector-borne pathogen in the supplemen-
tary appendix, Supplementary Material online. Our
mathematical analysis revealed that a vector-borne pathogen
will in general have a lower rate of coalescence than a directly
transmitted pathogen, although how much lower depends
on the ratio of mosquito to human population sizes, M. As M
increases, so does the number of infected mosquitoes.
A larger number of infected mosquitoes decrease the coales-
cent rate in a way similar to how larger population sizes
decrease the coalescent rate in standard population genetics
models. Thus, the larger M is, the lower the coalescent rate for
a vector-borne disease will be relative to directly transmitted
pathogen, although the relationship between M and the co-
alescent rate is nonlinear (supplementary fig. S4,
Supplementary Material online).

The seasonal fluctuations in the coalescent rate also
become increasingly damped for the vector-borne model rel-
ative to the direct transmission model as M increases (fig. 3).
At high values of M, the coalescent rate is low year-round
because the number of infected mosquitoes remains large
year-round. The damped fluctuations in the coalescent rate
will result in coalescent events being more uniformly distrib-
uted throughout the year in the genealogy, which will be
interpreted as small fluctuations in human incidence under
a coalescent model for a directly transmitted pathogen. It is
therefore possible for a vector-borne pathogen to induce
large seasonal fluctuations in human incidence, but to infer
low-amplitude oscillations in human incidence under a
coalescent model that ignores the vector population.
Interestingly, our estimate of M around one falls in a part
of parameter space in which this would likely occur. These
results therefore explain why the vector-borne model was
able to better reconstruct the highly seasonal patterns of
human DENV-1 incidence.

We also note that, on average, incidence inferred under the
vector-borne model was approximately 10% lower than
under the direct transmission model. This makes sense
given the lower rate of coalescence for a vector-borne path-
ogen. Under both coalescent models, there is a certain
number of infected humans that maximizes the likelihood
of observing a given coalescent event. However, for the
vector-borne model, this number of infected humans needs
to be lower to increase the coalescent rate to compensate for
the effect of the vector. To have fewer infected humans, the
basic reproduction number Ry, is estimated to be lower under
the vector-borne model (fig. 2F). This in turn likely explains


http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
if 
;
;
;
;
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
s
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/mst203/-/DC1
about 
 in order 
 In order 
to 

Reconciling Phylodynamics with Epidemiology -

doi10.1093/molbev/mst203

MBE

o 900

800}
700
600}

500

Prevalence

400}
300 AN\

200F

100+

150 200 250 300 350

Day of Year

100

Coalescent rate (per day)

3

x 10°
4 =
2
1:5
=
1
10.5
0 1 1 1
0 100 200 300
Day of Year

Fic. 3. Comparison of seasonal coalescent rates and mosquito population sizes for the direct transmission model and the vector-borne model. (A)
Simulated seasonal prevalence of the disease in humans and mosquitoes. The different colored lines show disease prevalence in mosquitoes assuming
different values of M. Prevalence in humans (dashed-gray) is also seasonal, and constrained to be the same for both the direct and vector-borne model
by keeping R, constant. (B) Seasonal coalescent rates for both models. The black line shows the seasonal coalescent rate for the direct transmission
model and the different colored lines are the coalescent rates for the vector-borne model.

why we were able to capture the continued rise in peak
DENV-1 incidence each season through 2008 under the
vector-borne model while incidence peaked too early under
the direct model. The higher R, estimated under the direct
transmission model causes the susceptible human population
to be rapidly depleted and therefore incidence to decline after
2006. In comparison, the lower R, estimated under the
vector-borne model allows for a more gradual depletion of
susceptible humans and therefore a sustained, gradual rise in
DENV-1 incidence each season.

Spatial Structure

There is considerable spatial heterogeneity in dengue trans-
mission dynamics across southern Vietnam, which includes
large urban centers like HCMC as well as the less densely
populated provinces to the north and west and the rural
Mekong Delta region to the south. In our third model, we
therefore considered how spatial structure may affect infer-
ences drawn from the DENV-1 genealogy. As a starting point,
we considered a spatially structured model with two popu-
lations: a HCMC and a non-HCMC population. Although
this simple model cannot account for all of the spatial het-
erogeneity in the region, including a non-HCMC population
may allow us to more accurately infer dynamics within
HCMC by controlling for the movement of lineages in and
out of the city. To fit this structured model, we used the
coalescent framework developed in Volz (2012) to compute
the probability of each lineage being in either the HCMC or
non-HCMC population conditional on the location of the
external lineages at the time of sampling (Materials and
Methods). Under this model, the coalescent rate between

different lineages can differ depending on each lineage’s prob-
ability of being in each population. For example, two lineages
with high probabilities of being in HCMC will have a higher
expected coalescent rate than two lineages with a high prob-
ability of being in different populations.

Incidence patterns inferred from the genealogy using the
spatially structured model show large seasonal fluctuations in
incidence consistent with the hospitalization data (fig. 1E).
The seasonality parameters and R, for the structured model
are shown in figure 2H-K. However, the dynamics inferred
under the spatially structured model show the highest sea-
sonal peak in incidence occurring in 2006, with subsequent
years having lower peak incidence. We therefore also fit a
combined model with both vector-borne transmission and
spatial structure. Incidence patterns inferred under the com-
bined model show both large seasonal fluctuations and
continued growth in peak incidence each season from 2004
to 2008, consistent with the hospitalization data (fig. 1F).
Parameter estimates for the combined model are shown in
supplementary figure 5, Supplementary Material online. Bayes
factor comparisons also showed that while both the vector-
borne and spatially structured model fit the genealogy signif-
icantly better than the unstructured model, the combined
model fits better than either of the two models individually
(table 1). The population dynamics reconstructed under the
best-fitting combined model also appear robust to phyloge-
netic uncertainty (supplementary fig. 3B, Supplementary
Material online).

The spatially structured model we fit above only assumed
seasonality in the HCMC population. However, both hospi-
talization and notifiable disease data (Cuong et al. 2013)
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indicate that all of Vietnam’s southern provinces experience
strong seasonal fluctuations in incidence. These data further
indicate that seasonal outbreaks begin and peak 1 to
3 months earlier in the provinces than in HCMC (supplemen-
tary fig. 6A and B, Supplementary Material online). We there-
fore fit a second model that included seasonality in both
the HCMC and non-HCMC populations and allowed the
amplitude and phase of seasonality to vary between the
two populations. Although this more complex model did
not fit the genealogy significantly better (Bayes factor < 1.0),
we were able to reconstruct the differences in seasonality
between the HCMC and non-HCMC populations observed
in hospitalization data (supplementary fig. 6C, Supplementary
Material online). The reconstructed incidence clearly shows
that the dengue season begins in the provinces about 1 to
3 months earlier than in HCMC. Thus, including spatial struc-
ture in the coalescent model not only allowed us to improve
our estimates of the population dynamics in HCMC, but to
detect spatiotemporal differences in dengue transmission
across the region.

Previous phylogeographic analyses of dengue in southern
Vietnam have found evidence for frequent movement of
lineages in and out of HCMC (Rabaa et al. 2010; Raghwani
et al. 2011). Consistent with these findings, we estimated a
relatively high between-population transmission rate (fig. 2K).

Using this rate along with the other estimated parameters
and population dynamics, we computed the probability of
each lineage being in HCMC over time (fig. 4). The mapping
of lineage state probabilities onto the tree indicated that
many different lineages have been imported and exported
in and out of HCMG; it is likely that some lineages have
even moved in and out of HCMC multiple times since
DENV-1 reemerged as the dominant serotype in the early
2000s.

To better understand how the movement of lineages in a
spatially structured population shapes the genealogy, we sim-
ulated dengue-like dynamics under the spatial SIR model with
parameters close to what we inferred from the DENV-1
genealogy (fig. 5A). The expected coalescent rates for two
hypothetical lineages sampled in HCMC are shown in
figure 5B. If we ignore the spatial structure of the population
and assume that the two lineages remain in HCMC over time,
the rate at which these lineages coalesce fluctuates between
high and low as the prevalence cycles between low and high,
giving the strong signal of seasonality we expect to see in the
timing of coalescent events.

In a spatially structured population, however, our two
hypothetical lineages may not remain in the same population
indefinitely going into the past because of movement of
lineages between populations. This results in a decline in

Year

Fic. 4. DENV-1 genealogy showing the probability that each lineage is in HCMC. Lineage state probabilities were computed under the spatially
structured model using the median posterior values of all parameters. The colored boxes at the tips indicate the population from which the lineage was
sampled. Red indicates HCMC and blue indicates the non-HCMC population.
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Fic. 5. (A) Simulated seasonal dynamics for a structured population with a focal (red) and global (blue) population representing the HCMC and non-
HCMC populations, respectively. (B) Expected coalescent rates for two lineages both sampled in HCMC at the end of year ten. The solid red line shows
the strong seasonal fluctuations in coalescent rates in HCMC under an unstructured model. The colored line is the coalescent rate under the spatially
structured model where the color shows how the probability of the lineages being together in the same population changes over time.

the probability that our two hypothetical lineages remain in
the same population as we recede into the past. As this hap-
pens, the coalescent rate decreases and the seasonal fluctua-
tions in the coalescent rate also dampen going back in time
(fig. 5B). In the very recent past, both lineages retain a high
probability of being in HCMC and so the coalescent rate
reflects the highly seasonal coalescent process in HCMC.
However, in the more distant past, the coalescent rate re-
mains low year-round because of the higher probability of the
lineages being in different populations. Thus, spatial structure
destroys the strong signal of seasonality we expect in the
timing of coalescent events in an unstructured population.
This likely explains why were able to infer strong seasonality
using the structured coalescent approach but were unable to
do so simply by removing samples from outside of HCMC
from the genealogy. The rapid movement of lineages in and
out of HCMC means that many of the lineages sampled in
HCMC were not in HCMC in the recent past. Only by taking
into account the probable location of lineages through time
can we detect the signal of seasonality in the timing of coa-
lescent events within a given population.

Discussion

Our phylodynamic analysis of DENV-1 shows that, while it is
possible to reconstruct complex population dynamics from

genealogies, additional ecological factors may need to be
included in coalescent models in order for demographic
inferences to be accurate. For DENV-1, we were unable to
detect the large seasonal fluctuations in dengue incidence
using the popular Bayesian Skyline method or even a coales-
cent model derived from a SIR epidemiological model that
allowed for seasonality. However, using models that included
either vector population dynamics or spatial structure in the
host population, we were able to successfully reconstruct
DENV-1 dynamics. The substantially better fit of these two
more complex models indicates that vector dynamics and
spatial heterogeneity likely play a large role in shaping the
genealogy of dengue.

More generally, our results add to the mounting body of
evidence that both population dynamics and structure can
strongly impact the shape of viral genealogies (Frost and Volz
2010; Bahl et al. 2011; Pybus et al. 2012; Duke-Sylvester et al.
2013; Robinson et al. 2013; Stadler and Bonhoeffer 2013).
When conducting phylodynamic analyses, this dependence
of phylogeny on ecology can be both good and bad. On the
upside, the strong influence of ecological factors means that
genealogies contain valuable information about the dynamics
and structure of populations that may be absent in other
sources of data. For example, we were able to infer the trans-
mission rate of DENV-1 between HCMC and the non-HCMC
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population, about which hospitalization records contain
no information. On the downside, our results for DENV-1
suggest that we may need to include ecological factors in co-
alescent models that may not be of primary interest to us or
we know little about when inferring population dynamics
from genealogies.

Although it is difficult to know a priori what ecological
factors need to be included in a coalescent model for a par-
ticular pathogen, different factors can be tested by formulat-
ing them in terms of a mechanistic model that can be fit to
genealogies through the appropriate coalescent model. These
models do not need to be very complex—our vector-borne
model and spatial model were both very simple. The appro-
priate coalescent model can then be derived from the for-
ward-time model using the coalescent framework of Volz
(2012). Different models can then be compared using
model selection, as we did using Bayes factors. The advantage
of this approach is that mechanistic insights into the factors
shaping genealogies can be found, increasing our general
knowledge about which factors are most important in shap-
ing the genealogies of different pathogens.

For dengue, it is interesting to consider why vector-borne
transmission and spatial structure had such a large impact on
our estimates. Although mosquitoes play an integral role in
dengue’s ecological dynamics, it is not clear from standard
coalescent theory why the vector population needs to be
considered. The pairwise coalescent rate under most standard
population genetics models depends only on the population
size. If we assume that the population size for an infectious
pathogen is equivalent to the number of infected hosts, we
might think that the coalescent rate should show large fluc-
tuations as the number of infected humans rises and falls.
However, the coalescent model derived from the vector-
borne SIR model tells us that it is not only prevalence in
the human population that is important, but that mosquito
population densities are also important. As the mosquito
population increases so too does the number of infected
mosquitoes, resulting in a lower probability that a given lin-
eage in a human will coalesce with a given lineage in a mos-
quito. If mosquito population densities are high year-round,
the coalescent rate will remain low year-round even if there
are large fluctuations in human infections. Thus, unless the co-
alescent model includes the vector, estimates of the strength
of seasonality will be biased.

Given the large amount of spatial heterogeneity in dengue
dynamics in southern Vietnam and the widespread move-
ment of people in the region (Rabaa et al. 2010; Raghwani
et al. 2011), it does not seem too surprising that including
spatial structure in the coalescent model improved our ability
to reconstruct population dynamics in a particular popula-
tion like HCMC. In highly structured populations, lineages in
different isolated communities may have little probability of
coalescing with one another, especially if transmission be-
tween those communities is rare. In this case, the distribution
of coalescent events over the genealogy will depend more on
the spatial structure of the population than on the dynamics
within any particular community. This is one of the reasons
why phylodynamic estimates of population sizes in spatially
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structured populations are usually taken to be a measure of
the relative genetic diversity of the population, which may not
reflect the true population dynamics (Carrington et al. 2005;
Pybus and Rambaut 2009). However, in many cases we may
not be interested in patterns of relative genetic diversity but
actually want to reconstruct the population dynamics within
a particular focal population. As we showed for HCMC, it is
possible to reconstruct the dynamics in a focal population by
taking into account the movement of lineages and their prob-
able locations through time in the coalescent model.
Remarkably, including spatial structure in the coalescent
model even allowed us to detect the short lag in time be-
tween the beginning of the dengue season in the provinces
and the beginning of the seasonal outbreak in HCMC.

Our experience with DENV-1 may also shed some light on
why phylodynamic estimates of seasonal population dynam-
ics have been successful for some pathogen populations but
not others. Annual seasonal dynamics have been inferred
from viral sequence data before, most notably for influenza
A in temperate regions (Rambaut et al. 2008). However, in the
case of influenza, there is no year-round transmission in tem-
perate regions and the viral population is seeded by imported
viruses each year (Nelson et al. 2007; Bedford et al. 2010).
Therefore, looking back in time, all lineages sampled during
a given season that descended from one of the imported
lineages will coalesce at the beginning of the season.
Because of this, influenza genealogies contain a strong signa-
ture of exponential growth each year—seasonality is so strong
that it masks the effects of global population structure on the
genealogy. However, if prevalence varies seasonally but the
pathogen can still persist in the focal population year-around,
accounting for population structure might be necessary. In
less seasonal populations, some lineages may remain in the
focal population for many seasons going into the past while
other lineages may have left the focal population, obscuring
the local population dynamics in the genealogy. This may
account for why previous phylodynamic studies of popula-
tions with seasonal dynamics but year-round persistence
were unable to reconstruct accurate seasonal fluctuations
in prevalence from genealogies (Amore et al. 2010; Bennett
et al. 2010). In such cases, it would be interesting to see if our
strategy of subdividing the population into a global and a
focal population in the coalescent model would improve
estimates of seasonality.

Adding ecological realism to our coalescent models greatly
improved our ability to accurately infer DENV-1 dynamics,
but do our estimates of dengue incidence accurately reflect
the true number of dengue infections? If they do, it would be
of great significance to dengue epidemiology, as determining
overall disease burden remains challenging because clinical
cases represent only a small fraction of all cases. However,
we are somewhat skeptical that our estimates accurately re-
flect the true incidence of dengue because there are several
ecological factors that we did not consider in our models that
could bias our estimates. For one, our models assume that
there is no heterogeneity in transmission rates, whereas in
reality there is likely a large amount of variation in the rate at
which different mosquitoes bite and the rate at which
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different humans are bitten (Scott and Morrison 2010).
Variation in transmission rates will increase coalescent rates,
akin to how reproductive variance reduces effective popula-
tion size and increases coalescent rates in standard popula-
tion genetics models (Criffiths and Tavare 1994; Pybus et al.
2001; Charlesworth 2009; Koelle and Rasmussen 2012).
Transmission heterogeneity would therefore cause us to un-
derestimate the true number of infections from the geneal-
ogy. One in theory could use the ratio of the observed
number of infections to the estimated effective population
size to infer the extent of transmission heterogeneity, as was
done by Magiorkinis et al. (2013), but again for dengue we
have no way of knowing the true number of infections. We
also did not consider fine-scale spatial structure within
HCMC and the provinces. In contrast to the effect of trans-
mission variance, unaccounted for spatial heterogeneity
would decrease the rate of coalescence, similar to an increase
in the effective population size in standard population genet-
ics models (Wright 1943; Beerli and Felsenstein 2007; Laporte
and Charlesworth 2002). Thus, if there is strong local spatial
structure, our estimates of incidence will be biased upwards. It
is possible that local population structure counteracts the
affects of variable transmission rates so that these two sources
of potential bias cancel each other out, but the relative
magnitude of each is unknown. We therefore urge caution
in interpreting our estimates as representative of the true
number of dengue cases.

There are certainly many other ecological factors that
could distort inferences from genealogies that we did not
consider for DENV-1. Notably, we did not consider interac-
tions between DENV-1 and the remaining three dengue
serotypes, or interactions between different DENV-1 geno-
types. However, there was only a single dominant DENV-1
genotype circulating in the population and single-serotype
SIR models were sufficient to capture the rise in DENV-1
incidence that occurred in Vietnam during the period we
considered. However, we cannot rule out selection acting
within this genotype. Theoretical work has shown that both
purifying and directional selection increases coalescent rates
deeper in the genealogy, similar to a decrease in the past
effective population size (O’Fallon et al. 2010; Walczak et al.
2012; Neher and Hallatschek 2013). Selection could therefore
result in a spurious inference of population growth, but we
believe it is far more likely that the rise in DENV-1 inferred
from the genealogy reflects the actual rise in DENV-1
observed in the hospitalization data. In the future, however,
it would be interesting to look at multistrain models that
could encompass the competitive and facilitative interactions
between different dengue genotypes and serotypes, as long as
sufficient data are available.

We end by noting that the methods we used to estimate
population dynamics and parameters from the DENV-1
genealogy could be greatly improved upon in the future.
One of the shortcomings of the methods used here is that
phylogenetic uncertainty in the genealogy is not fully taken
into account. For DENV-1, the availability of whole genome
sequence data meant that there was relatively little uncer-
tainty in the genealogy and we showed our phylodynamic

estimates were robust to this level of uncertainty. But in other
cases where sequence data are less informative about the
genealogy, phylogenetic uncertainty will need to be consid-
ered. Another shortcoming is that we only fit deterministic
epidemiological models. Although methods exist for fitting
stochastic models to genealogies, these methods assume that
the population is unstructured such that all lineages can be
assumed to be in the same population, and therefore cannot
yet be applied to the type of structured coalescent models
used here (Rasmussen et al. 2011). For dengue in southern
Vietnam, stochasticity can reasonably be ignored because the
large number of infections and the strong seasonal dynamics
ensure that dynamics are unlikely to widely differ from what is
expected under deterministic models. Yet, in other cases,
stochasticity can play an important dynamical role, like at
the beginning of epidemics when prevalence is low. As we
have shown, fitting mechanistic models to genealogies can
improve our understanding of the forces shaping genealogies
and improve phylodynamic estimates; extending current
methods to include phylogenetic uncertainty and stochasti-
city will help to further improve the robustness of phylody-
namic inference.

Materials and Methods

Epidemiological Data

Dengue hospital admission data were compiled from the
Hospital for Tropical Diseases and Children’s Hospitals 1
and 2 in HCMC, as described in Anders et al. (2011). We
report the absolute number of dengue hospital admissions
occurring each month. RT-PCR data on relative serotype fre-
quencies is from Vu et al. (2010).

Sequence Data and Tree Reconstruction

Whole-genome viral sequences were obtained through
the Broad Institute’s Genome Resources in Dengue (GRID)
website  (www.broadinstitute.org/annotation/viral/Dengue/
Home.html, last accessed October 29, 2013). For our analysis,
237 sequences were randomly subsampled from the larger set
of 757 sequences used in the analysis of Vu et al. (2010). This
larger set of sequences contained many samples collected
during the same dengue season. We therefore subsampled
sequences in years where large numbers of samples were se-
quenced so that approximately 40 sequences were included
from each year between 2003 and 2008. Including more se-
quences did not appear to have any substantial effect on the
population dynamics inferred from the genealogy. For each
sequence we provide the Broad Institute’s ID, the GenBank
accession number, the date of isolation and whether the
sample was isolated from an individual identified as living
in HCMC in supplementary table S1, Supplementary
Material online.

The DENV-1 genealogy was inferred using the Bayesian
MCMC methods available in BEAST version 1.6.1
(Drummond and Rambaut 2007). Phylogenetic inference
was performed using a General Time Reversible substitution
model with gamma rate heterogeneity across sites and a strict
molecular clock across lineages. Coalescent times inferred
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under the strict molecular clock were very close to those
inferred under a relaxed clock. A Bayesian Skyline prior was
chosen as the tree prior with 20 different population size
intervals (Drummond et al. 2005). Including more population
size intervals did not substantially change the BSPs.

Phylodynamic Inference

For each of the three mechanistic models considered, we were
interested in estimating the posterior density of parameters 0
and latent state variables x;.7 given the fixed DENV-1 gene-
alogy G. The variables in x;.1 track the state of the population,
such as the number of susceptible and infected individuals in
the population. We can compute the trajectory of all state
variables in x;.7 given a particular set of parameters 6 by
forward simulating the population dynamics from the deter-
ministic ordinary differential equations (ODEs) that define
the epidemiological model. For efficiency, forward simulations
were performed using the Euler method of numerical inte-
gration with a sufficiently small integration time step.

Given a particular parameter set 6 and population state
trajectory x1.7, we need to be able to compute the likelihood
of the coalescent model given the genealogy to compute the
posterior probability of 8 and x;.r. Methods for computing
this likelihood for generic state space models were described
in Rasmussen et al. (2011). For all of the coalescent models
we consider here, the likelihood can be computed using an
exponential probability distribution with rate parameter /,
the expected coalescent rate, which we derive for each
model below.

A Metropolis—Hastings algorithm was used to sample
from the posterior density of 6 and x;.7. For each iteration,
new parameters were proposed and either accepted or re-
jected based on the posterior probability of the parameters
and the state trajectory simulated under the model. Uniform
priors were placed on all parameters. The algorithm was
tested on multiple genealogies simulated under each model
before being applied to the DENV-1 genealogy. The algorithm
was implemented in the program EpiTreeFit and Java source
code is available from the project website (http://code.google.
com/p/epitreefit/, last accessed October 29, 2013).

Bayes factors were used to compare the fit of different
models to the DENV-1 genealogy. Bayes factors give the
ratio of posterior to prior odds favoring one model over
another and thus serve as a summary of the evidence pro-
vided by the data in favor of a given model (Kass and Raftery
1995). To compute Bayes factors from the MCMC samples,
we used the standard harmonic mean estimator, which takes
the harmonic mean of the posterior probabilities of the
MCMC samples. Although the harmonic mean estimator is
known to be unstable when MCMC methods are used to
integrate over a very high-dimensional or complex parameter
space (Lartillot and Philippe 2006), we found that Bayes fac-
tors computed from different MCMC runs were quite stable,
with variances less than one.

Epidemiological and Coalescent Models

Below, we describe the three epidemiological models we fit
to the DENV-1 genealogy and show how the corresponding
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coalescent model for each of these model can be derived
using the coalescent framework of Volz et al. (2009) and
Volz (2012).

Seasonal SIR Model

The first model we consider is a simple, unstructured SIR
model with direct transmission between humans for a
single dengue serotype. By considering DENV-1 dynamics in
the absence of the other DENV serotypes, we are assuming
that susceptibility to and infectivity with DENV-1 is not, or
is only weakly, impacted by the other DENV serotypes over
this time period. The model is given by the following system
of ODEs:

ds S
EZMN_'B(t)NI_MS (1a)
dl S

= BOZ = G v (1b)
drR

gl vl — uR (1¢)

where u is the human birth and death rate, v is the recovery
rate in humans, and S(t) is the seasonally varying transmis-
sion rate. This transmission rate is given by the following

equation:
B(t) = B(1 ra cos<$>>, 2

where B is the average transmission rate over the entire year,
o is the seasonal amplitude parameter, and & controls the
seasonal phase. R, in this model is given by M‘iv.

To reduce the number of parameters in the model that
need to be estimated directly from the genealogy, we fixed
several parameters available from other demographic or clin-
ical data. We fixed the human birth/death rate p at % per
year, reflecting the current birth rate in Vietnam, and the
human population size at 10 million to reflect the population
of HCMC, which was officially 7.5 million in 2007 but likely
much larger (General Statistics Office of Vietnam 2008). The
recovery rate v was set at% per day, consistent with observed
durations of viremia between 2 and 12 days (Gubler et al.
1981; Tricou et al. 2011). The free parameters in the model
that we estimated were the average transmission rate 3, the
seasonal amplitude «, the seasonal phase §, and the initial
conditions for the number of susceptible and infected indi-
viduals in the population.

As shown in Volz (2012), the pairwise rate of coalescence /4
for an unstructured SIR model depends on the transmission
rate, as well as the number of infected individuals and the
fraction of the population susceptible to infection:

_ 2605
.
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Vector-Borne Model

Our vector-borne transmission model for an unstructured
human population is given by the following ODEs:

ds,, S
=0 — N — Boh =21y — [4nShs 4
qr = MnN B "N hSh (4a)
dI
= ﬁvh — (itn + Vi), (4b)
dsv I
. = Bv t) — vsvi - vSVa 4
2= B0~ A= (4)
di, Ih
Y BSe 4d
R Bh N;, 1% (4d)

The subscripts “h” and “v” denote variables and parameters
for humans and vectors, respectively. B, is the vector birth
rate, which we assume varies seasonally. The force of infection
to both humans and mosquitoes is frequency-dependent
with respect to humans. The transmission rates S, and
By are proportional to the per capita biting rate of a mos-
quito times a factor that determines the probability of a bite
being infectious. For this model, Ry = BrfisN _ 56 shown

H(fen + vh)Np
in Keeling and Rohani (2008).
We varied the size of the mosquito population by sinusoi-
dally forcing the vector birth rate B,:

B,(t) = B, (1 + a cos (g)), (5)

where B, is the seasonal average of B,. We set B, = j,Ny, s0
that the average seasonal mosquito population size does not
change over time. However, because we do not know the
size of the mosquito population N,, we redefine B, as equal
to uMNy, where M is a free parameter in the model that
represents the ratio of the mosquito population size to the
human population size.

When fitting the vector-borne model, we fixed the human
birth and death rate uy,, population size Ny, and recovery rate
Vp, at the same values as in the directly transmitted model. We
also fixed the vector death rate u, at % per day, which was
chosen to represent the average of the daily mortality rates
reported in the literature for A. aegypti adult females
(Sheppard et al. 1969; McDonald 1977; Harrington et al.
2001). We initially allowed the transmission rates S, and
Bhy to differ depending on the directionality of transmission
but model comparisons showed that a model with asymmet-
ric transmission rates did not fit the genealogy significantly
better than a model with symmetric rates (Bayes factor <3.0).
We therefore only estimated a single transmission rate, 8. The
other estimated parameters were seasonal amplitude «, the
seasonal phase §, the ratio of mosquitoes to humans M,
and the initial conditions for the number of susceptible and
infected humans in the population.

Given the forward-time dynamics, we need to derive the
rate of coalescence under the vector-borne model. However,
the population is now structured because viral lineages
can either be in an infected human or an infected mosquito.
We therefore use the structured coalescent framework of

Volz (2012), who showed that for a generic structured
population where lineages can be in any of m different
states, the rate of coalescence A; for two lineages i and j is

Z Z f_ lkpjl + P:Iij) (6)
k I YieY

where pj is the probability that lineage i is in state k and p;
is the probability that lineage j is in state I. f, is the rate at
which lineages are transmitted from state k to state | and Yy
and Y, are the total number of infected individuals in states k
and |, respectively.

Adapting equation (6) to the vector-borne model, the rate
of coalescence becomes

S I
o ﬁvh ,\T:Iv + ,Bhvsv ,\Thh
i =
’v’h

(pivpjh + Pithv)- ()

From equation (7), we can see that we need to compute
the probabilities that lineages are in either an infected
vector or human. We discuss how these lineage state proba-
bilities can be computed in the supplementary appendix,
Supplementary Material online.

Spatially Structured Model

Our spatially structured model partitions the total population
into two subpopulations, which we refer to as the focal
and global populations. For our analysis of DENV-1, the
focal population corresponds to HCMC and the global
population to the non-HCMC population. The model is
given by the following ODEs:

dS¢

— = uNf — ,Bff(t)

" If - ,Bgf(t) — uSs,  (8a)

dlf = ﬂff(t) ’f + ﬂgf(f) — (L + ), (8b)

ds S
—_ MNg — ﬂgg(t)N_g’g - rBfg(t)N_ng — USg (&)

dt

dlg

= P L B0 G (6

We assume that the human birth/death rate & and recovery
rate v is the same in both populations, fixed at the values
used for the previous two models. The global population
size Ny was set at 25 million to reflect the population size
of the southernmost 20 provinces excluding HCMC (General
Statistics Office of Vietnam 2008).

Transmission between the two populations occurs when
an infected individual from one population contacts a
susceptible individual in the other population. Bayes factor
comparisons revealed that a model with separate transmis-
sion rates By and Brg did not fit the DENV-1 genealogy
significantly better than a model with a single between-
population transmission rate S, (Bayes factor <3.0). We
therefore set By, = Bg = Brg. However, the transmission
rates within the focal population B¢ and global population
Bgg are allowed to differ.
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We first fit a model with seasonality in the focal population
using the same sinusoidal forcing function as in equation (2)
and assuming no seasonality in the non-HCMC population.
For this model, we estimated the transmission rates, S, Bgg,
and By, as well as the seasonality parameters « and § for the
focal population. We also estimated the initial number of
susceptible and infected individuals in the focal population
but, to reduce the number of parameters being fit, we set the
initial conditions for the global population to their expected
values at endemic equilibrium. We also fit a second model
that allowed for seasonality in both populations. In this case,
we estimated the seasonality parameters o and o for both
populations, as well as the initial conditions in the non-
HCMC population. Although Bayes factors indicated that
the more complex model with seasonality in both popula-
tions did not fit the genealogy significantly better, we retain
this parameterization because it allowed us to detect the
differing seasonal phase between populations.

We can again use the coalescent rate given in equation (6)
to derive the coalescent rate for our spatially structured
model. For two lineages i and j the pairwise rate of coales-
cence is as follows:

) m M Bl
Aj = ;Z/: ’k'\ll; (Pipy + pipj) - ®)

In this case, there are only two populations and the subscripts
k and | refer either to the focal or the global population. Given
our epidemiological model, the lineage state probabilities pj
can be computed backward in time using equation (42) in
Volz (2012), given the state of each lineage at the time of
sampling.

Supplementary Material

Supplementary appendix, table S1, and figures S1-S6 are
available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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