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Abstract: Stem cells are promising cell source for treatment of multiple diseases as well as myocardial 
infarction. Rabbit model has essentially used for cardiovascular diseases and regeneration but 
information on establishment of induced pluripotent stem cells (iPSCs) and differentiation potential 
is fairly limited. In addition, there is no report of cardiac differentiation from iPSCs in the rabbit model. 
In this study, we generated rabbit iPSCs by reprogramming rabbit fibroblasts using the 4 transcription 
factors (OCT3/4, SOX2, KLF4, and c-Myc). Three iPSC lines were established. The iPSCs from all 
cell lines expressed genes (OCT3/4, SOX2, KLF4 and NANOG) and proteins (alkaline phosphatase, 
OCT-3/4 and SSEA-4) essentially described for pluripotency (in vivo and in vitro differentiation). 
Furthermore, they also had ability to form embryoid body (EB) resulting in three-germ layer 
differentiation. However, ability of particular cell lines and cell numbers at seeding markedly influenced 
on EB formation and also their diameters. The cell density at 20,000 cells per EB was selected for 
cardiac differentiation. After plating, the EBs attached and cardiac-like beating areas were seen as 
soon as 11 days of culture. The differentiated cells expressed cardiac progenitor marker FLK1 (51 ± 
1.48%) on day 5 and cardiac troponin-T protein (10.29 ± 1.37%) on day 14. Other cardiac marker 
genes (cardiac ryanodine receptors (RYR2), α-actinin and PECAM1) were also expressed. This study 
concluded that rabbit iPSCs remained their in vitro pluripotency with capability of differentiation into 
mature-phenotype cardiomyocytes. However, the efficiency of cardiac differentiation is still restricted.
Key words: BMP4, cardiac differentiation, iPSC, rabbit, stem cells

(Received 7 May 2018 / Accepted 10 July 2018 / Published online in J-STAGE 8 August 2018)
Address corresponding: T. Tharasanit. e-mail: Theerawat.t@chula.ac.th
Supplementary data: Video of rhythmic beating area derived rabbit iPSCs can be found online at http://dx.doi.org/10.17632/5n3dgm5bs5.1
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License 
<http://creativecommons.org/licenses/by-nc-nd/4.0/>.

Exp. Anim. 68(1), 35–47, 2019

©2019 Japanese association for laboratory animal Science

http://creativecommons.org/licenses/by-nc-nd/4.0/


P. PHAKDEEDINDAN, ET AL.36

Introduction

induced pluripotent stem cells (iPScs) as well as 
embryonic stem (eS) cells are pluripotent stem cells 
that have unlimited self-renewal and capability to dif-
ferentiate into all three germ layers and their derivatives 
[44]. the iPScs are expected cell source for cell replace-
ment therapy in several diseases including cardiac mal-
function. Successful transplantation of cardiomyocyte-
like cells derived from iPScs has been demonstrated to 
improve cardiac structure and electrophysiological 
functions in small rodent models [25, 31]. these rat 
models, however, have short lifespan and different 
cardio-physiology comparing with human. therefore, 
translational knowledge from these species to human 
application is rather difficult [37]. Rabbit is middle-sized 
animal model that is commonly used to study cardio-
vascular diseases, especially atherosclerosis and myo-
cardial abnormalities as molecular mechanisms in car-
diac diseases are closely similar to human [9, 38]. 
however, information on generation of rabbit iPScs has 
been limited as only few laboratories have demonstrat-
ed the possibility on establishment of rabbit iPScs. in 
addition, there is no information on in vitro cardiac dif-
ferentiation in rabbit. BMP4 has been used to promote 
differentiation of pluripotent stem cells into cardiac cell 
lineage [22]. the BMP4 induces mesoderm formation 
via eRk pathway and up-regulates the mesoderm mark-
ers (Brachyury and Fetal liver kinase 1) [3, 22]. Fetal 
liver kinase 1 (Flk1), an early receptor tyrosine kinase, 
is useful surface marker for determining mesodermal 
cells [8, 12, 30, 50]. Flk+ cells derived from pluripotent 
cells could develop into cardiomyocyte, hematopoietic 
and endothelial cells [19, 21, 32, 35]. Furthermore, the 
BMP4 also promotes gene expressions of cardiac pro-
genitors (NKX2.5 and GATA4) [43] and enhances car-
diac differentiation via MAP kinase, Tak1 and Smad 
family [1, 26]. the action of BMP4 to drive mesodermal 
differentiation of cardiac lineage can be efficiently pro-
moted by three-dimension cell aggregation via embryoid 
body (eB) formation [23]. it has been reported in mouse 
that relatively large EB size (around 450 µm) promoted 
cardiac differentiation better than smaller size EB (150 
µm) [17]. However, the effects of cell seeding density 
and EB size in relation to cellular aggregation (EB for-
mation) and cardiac differentiation have yet to be stud-
ied in rabbit model. in this study, we aimed at establish-
ing induced pluripotent stem cells in rabbit and examined 

in vitro differentiation of rabbit iPSCs toward cardiac 
lineage.

Materials and Methods

Reagents and animals
all chemicals were purchased from invitrogen life 

technologies (carlsbad, ca, uSa), otherwise indicated. 
icR mice and new Zealand white rabbits were pur-
chased from the national laboratory animal center 
(Mahidol university, thailand). BalB/c nude mice were 
purchased from nomura Siam international co., ltd. 
(Bangkok, thailand). animal maintenance, care, and use 
procedures were performed according to the animal eth-
ics Approval of Chulalongkorn University (No.1673036).

Generation of rabbit induced pluripotent stem cells
the plasmids for retrovirus vectors were purchased 

from addgene (www.addgene.com); pMXs-hoct3/4 
(Cat# 17217), pMXs-hSOX2 (Cat# 17218), pMXs-
hKLF4 (Cat# 17219) and pMXs-hc-MYC (Cat# 17220). 
the virus was produced using pMXs-vector (16 µg) and 
pvSv-g (4 µg) in 293gP cells by X-tremegene Re-
agents (Roche, Mannheim, germany) according to 
manufacturer’s instructions. Rabbit embryonic fibro-
blasts (ReF) were transfected twice with retrovirus in 
the presence of 4 µg/ml polybrene (Sigma aldrich, wi, 
uSa). the transfected ReF were dissociated and seeded 
at a density of 1,000 cells per cm2 on mitomycin inacti-
vated MEFs (mouse embryonic fibroblast). The iPSC 
medium was composed of dMeM/F12 containing 20% 
(v/v) knockout serum replacement (kSR), 1 mM l-
glutamine, 1% (v/v) non-essential amino acids (neaa), 
0.1 mM β-mercaptoethanol, 1,000 IU/ml Leukemia in-
hibitory factor (liF, Millipore, ca, uSa) and 10 ng/ml 
basic fibroblast growth factor (bFGF, R&D Systems, 
Mn, uSa). the induced pluripotent stem (iPS) cell-like 
colonies were observed on day 7–21 post-transduction. 
the iPS primary colonies were examined under a phase 
contrast microscope (olympus, Shinjuku, Japan). the 
iPSCs were continuously subcultured by enzyme (Try-
pletM Select). in all cases, culture condition was per-
formed at 37°C in a humidified condition of 5% CO2 in 
atmosphere. To determinate of reprogramming efficien-
cy (Re), transfected ReF were passaged and seeded at 
a density of 600 cells/cm2. total primary colonies (larg-
er than 100 µm) were examined for alkaline phosphatase 
(ALP) activity and counted on day 7 after reprograming. 
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Re was calculated by the following formula.

  1 00
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total of transfected seeding c l
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×

=

to evaluate the percentage of rabbit iPSc line estab-
lishment (% riPScl). ten colonies derived transfected 
ReF were selected randomly for iPSc establishment and 
characterization. % riPSCL was calculated by the fol-
lowing formula.

     1 00% 
    
a number of cell linesriPSCL

a number of selected colonies
×

=

Karyotyping and G-banding
Rabbit iPScs were disassociated and centrifuged at 

200 × g for 5 min. The cell pellet was incubated at 37°C 
for 20 min in 0.075 M KCl. The cells were washed twice 
and fixed with a mixture of acetic and methanol (1:3) on 
ice. they were dropped vertically onto a glass slides and 
stained with 10% (v/v) giemsa solution. numbers of 
chromosome from at least 20 metaphase spreads were 
evaluated under a light microscope. For g-banding, the 
slides containing metaphase spreads were aged for at 
least 1 week, then the chromosomes were partially di-
gested with 0.05% trypsin-edta, stained with giemsa 
and analyzed under a light microscope.

Reverse transcriptase polymerase chain reaction (RT-
PCR)

REF, rabbit iPSCs and differentiated cells were sam-
pled and stored at −80°C prior to analysis. RNA was 
extracted using an Rneasy Mini kit (Qiagen). the 

amount of Rna and purity were measured by nanodrop 
2000 spectrophotometer (ThermoFisher Scientific, DE, 
uSa). dnase i (Promega, wi, uSa) was used to elim-
inate contaminated dna. cdna synthesis (Rt+) was 
performed using SuperScript iii kit (invitrogen) accord-
ing to the manufacturer’s instructions. negative control 
was performed as described above without superscript 
III reagents (RT−). cDNA was performed using the spe-
cific primers listed in Table 1. the PcR cycles were as 
follows: initialization at 95°C for 2 min, followed by 30 
PCR cycles of denaturation at 95°C for 30 s, annealing 
step at 55–64°C for 30 s and extension step at 72°C for 
30 s. to determine the downregulation, the presence of 
exogenous genes (hOCT3/4, hKLF4, hSOX2 and hc-Myc) 
was investigated in ReF and rabbit iPSc line R1, R2 and 
R3 at passage 17 using RT-PCR analysis. This was per-
formed simultaneously with the expression of endoge-
nously rabbit pluripotent genes (OCT3/4 and NANOG). 
Mixture of extracted plasmid (pMXs-hoct3/4, pMXs-
hSOX2, pMXs-hKLF4 and pMXs-hc-MYC) were served 
as positive control in study of exogenous expression.

Alkaline phosphatase and immunofluorescent staining
The cells were washed with phosphate buffered saline 

(PBS) and then fixed with 4% (w/v) paraformaldehyde 
(PFa) for 15 min. alkaline phosphatase (alP) activity 
was tested using alkaline Phosphatase kit (Sigma-al-
drich, Mo, uSa) following the manufacturer’s instruc-
tions. The pink-to-red colored colonies were classified 
as positive to alP activity. to investigate protein expres-
sion, the cells were passaged onto a cover slip and then 

Table 1. Primers used in polymerase chain reaction (PcR) in this study

Forward (5’–3’) Reverse (5’–3’) Product 
size (bps) tm accession number or 

reference

OCT3/4 ccttcgcaggggggccta catgggggagcccagagca 161 55 [15]
NANOG cactgatgcccgtggtgccc agcggagaggcggtgtctgt 94 60 [36]
SOX-2 agcatgatgcaggagcag ggagtgggaggaagaggt 270 55 XM_008266557.2
KLF4 tccggcaggtgccccgaata ctccgccgctctccaggtct 131 55 [36]
hOCT3/4 gttgctctccaccccgactcctgcttc gagaaccgagtgagaggcaac 376 60 [5]
hSOX2 ccagatcccgcacaagagtt caagaggcgaacacacaacg 264 60 [44]
hKLF4 ggctgatgggcaagttcg ctgatcgggcaggaaggat 416 60 [5]
hc-Myc gcagcgactctgaggaggaacaa ttttccttacgcacaagagttccgt 581 60 [5]
GBX2 aacgcgtgaaggcgggcaat tgctggtgctggctccgaat 118 55 [36]
PAX6 gaacagacacagccctcaca tcgtaactccgcccattcac 160 55 NM_001082217.1
PITX2 aaccttacagaagcccgagt ggaaactcttggtggacagc 217 55 XM_008267481.1 
CFTR cacaattgaaagcaggtggga gttgctgtgaggtatggagg 225 55 NM_001082716.1 
PECAM1 agaggagctggagcaggtgttaat gctgatgtggaacttcggaacaga 145 55 [36]
α-actinin ccatataagctggaaggacg gtacttctctgccacatcaa 139 55 XM_002719521.3
RYR2 gagcaacggaggactgttca tgacgtagtcggaatggctg 134 55 NM_001082757.1
GAPDH tggtgaaggtcggagtgaac atgtagtggaggtcaatgaatgg 121 55 nM_001082253.1
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fixed with 4% (w/v) PFA. The cells were permeabilized 
if necessary in mixture of 0.1% triton X-100, 2% bovine 
serum albumin (BSA) in PBS and the non-specific bind-
ing was blocked with 2% BSa. the cells were incu-
bated at 4°C with primary antibodies overnight. The 
primary antibodies in this study included oct-3/4 
(SC8628, Santa Cruz Biotechnology, TX, USA , 1:100), 
SSEA-4 (ab16287, Abcam, Cambridge, UK , 1:50), 
FLK1 (SC393163, Santa Cruz Biotechnology, 1:100) 
and cTnT (troponin T, ab33589, Abcam, 1:100). The 
samples were then stained with secondary antibody cor-
responding to the primary antibodies used. the 4’, 
6’-diamidino-2-phenylindole (daPi) in mounting me-
dium (vectaShield® Mounting Medium, vector 
Laboratories, CA, USA) was used to visualize the nu-
cleus. the negative control was performed as described 
above without primary antibody. A fluorescent micro-
scope (BX51, olympus) and dP2-BSw software were 
used for visualization and record the samples.

In vitro differentiation
Differentiation was performed using a hanging drop 

technique in order to promote cell aggregation into three-
dimension structure referred as embryoid bodies (eBs). 
The iPSC lines R1, R2 and R3 (passage 22–25) were 
dissociated and seeded in each culture drop (20 µl) at 
the density 20,000 cells in dMeM/F12 medium contain-
ing 15% (v/v) FBS. to examine the in vitro differentia-
tion, there different techniques were used. Firstly, we 
investigated the presence of endogenously pluripotent 
genes (OCT3/4, NANOG, KLF4 and SOX2) in the cell 
lines after EB formation for 2 and 7 days. Secondly, gene 
expressions of three-germ differentiation were addition-
ally examined on day 7 of EB plating using RT-PCR. 
these included the expressions of ectoderm (PAX6 and 
GBX2), mesoderm (PECAM1) and endoderm (PITX2 
and CFTR). the presence of proteins associated with 
three-germ layer differentiation was demonstrated by 
immunohistochemistry (leica Microsystems Bond-
MaX System). in brief, the eBs (day 14 of culture) were 
fixed with 4% (w/v) PFA. They were embedded in paraf-
fin and cut at a thickness of 4 µm. the slides were incu-
bated with Bond dewax Solution (leica Microsystems) 
for 60 min at 60°C. The epitopes of the antigens were 
retrieved with Bond epitope Retrieval Solution 2 (leica 
Microsystems) for 30 min at 100°C. The slides were 
separately incubated with primary antibodies including 
mouse monoclonal anti-glial fibrillary acidic protein 

(anti- GFAP, 6F2, DAKO, 1:2,400), anti-Vimentin (V9, 
CellMarque, CA, USA , 1:400) and anti-β-catenin (14, 
CellMarque, CA, USA , 1:500) at 25°C for 40 min and 
followed by 3 consecutive rinses with a Bond wash So-
lution (leica Microsystems). hydrogen peroxide (3%) 
was then applied for 5 min and rinsed 3 times. Post pri-
mary polymer (leica Microsystems) were applied for 8 
min. the slides were washed, followed with Poly-hRP 
igg (leica Microsystems) for 8 min, and rinsed 3 times. 
The diaminobenzidine chromogen was applied for 4 min 
followed by 3 deionized water rinses. Slides were coun-
terstained with hematoxylin for 5 min. isotype Mouse 
igg1, kappa monoclonal (ab91353, abcam, cambridge, 
uk) were used instead of the primary antibody for the 
negative control. Brain tumor, appendix and tonsil were 
used as positive controls for gFaP, vimentin and 
β-catenin, respectively.

Teratoma formation
to generate teratomas, 5 × 106 of rabbit iPSc lines 

(R2 and R3 passage 22) were subcutaneously injected 
into six 8-week-old BalB/c nude mice (3 mice per cell 
line). Around 6–8 weeks after transplantation, the tera-
tomas were observed and dissected. the masses were 
fixed in 4% (w/v) PFA. The samples were embedded in 
paraffin and cut at a thickness of 4 µm. the samples were 
deparaffinized and stained with hematoxylin and eosin 
(he staining). the slides were examined under a light 
microscope by an experienced pathologist.

Cardiac differentiation
The protocol for cardiac differentiation via hanging 

drop technique was performed as previously described 
[42] with minor modification. Briefly, iPSC lines R1, R2 
and R3 (passage 22–25) were dissociated and allowed 
to aggregate into three-dimension in eB medium which 
was composed of dMeM/F12 medium supplemented 1 
mM l-glutamine, 1% (v/v) neaa, 0.1 mM 
β-mercaptoethanol, BMP4 (10 ng/ml) and 15% (v/v) 
FBS (hyclonetM, Utah, USA). To optimize for cardiac 
differentiation, hanging drop technique was performed 
using different cell density of 1,000, 3,000, 5,000, 10,000 
and 20,000 cells per droplet (day 0). the eBs were har-
vested from hanging drop on day 2 and cultured as sus-
pension. an olympus ckX41 inverted microscope was 
used for phase-contrast imaging of EBs at 72 h post EB 
culture. the cross-sectional diameters of eBs were mea-
sured by ImageJ (https://imagej.nih.gov/ij/). For further 
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examination of cardiac differentiation, optimal starting 
cell seeding density were selected. hanging drop was 
performed with eB medium combined BMP4 treatment. 
the eB were harvested from hanging drop into suspen-
sion with 10 ng/ml BMP4 treatment on day 2. on day 3, 
the eBs were further plated onto gelatin coated dishes 
or coverslips with eB medium without BMP4. on day 
5 of differentiation, the plating EB on gelatin were di-
gested using trypletM Select (1X) into small clump or 
single cells, and the cells were counted for cardiovascu-
lar progenitor surface marker, Flk1. the proportion of 
Flk1 positive cells were evaluated by the number of 
cells positive to Flk1 in relation to the total cell num-
bers (at least 100 cells, three independent experiments 
of each cell line). to study mature cardiomyocyte mark-
er (ctnt) plating eB on day 14 of iPSc cell lines R1, 
R2 and R3 were used. the plating eB on gelatin coated 
dishes were digested were counted for cardiomyocyte 
marker ctnt (at least 100 cells, four independent ex-
periments of each cell line). the immunolabeling for 
Flk1 and ctnt was performed as previously described. 
the cells positive ctnt on coverslips were photographed 
using a fluorescent microscope (BX51, Olympus) and 
dP2-BSw software. in addition, cardiac gene (cardiac 
ryanodine receptors (RYR2), α-actinin and PECAM1) 
were studied in all cell lines using the same protocols. 
Briefly, the plating EB on day 14 were mechanically 
harvest form gelatin coated dishes. the mRna was ex-
tracted and Rt-PcR analysis were performed as previ-
ously described. The differentiated cells were observed 
daily and the remaining of differentiated cells besides 
harvested samples in all experiments were observed for 
cardiac beating area until day 21. the medium was 
changed in plating EB every 2–3 days until harvest.

Statistical analysis
data of eB diameters are represented as mean ± Sd. 

data for Flk1 and ctnt positive cells are represented 
as mean ± SEM. The statistical differences among ex-
perimental groups were analyzed by one-way Analysis 
of variance and tukey’s Multiple comparison test 
analysis using graphPad Prism (www.graphpad.com). 
P value less than 0.05 (P<0.05) was considered statisti-
cally significant.

Results

Several primary colonies were observed as soon as 4 

days post transfection. The reprogramming efficiency 
calculating from number of transfected fibroblasts that 
gave rise to alP positive colonies was 0.191%. three 
cell lines were established (referred to as R1, R2 and R3 
cell lines) and the percentage of riPScl was 30%. these 
cell lines maintained eS-like morphology with positive 
alP staining for over 35 passages without losing their 
proliferative activity. Rabbit iPSc colonies demonstrat-
ed distinct boundary between the colonies and feeder 
cells (Fig. 1a). the colonies contained iPScs having 
high nuclear per cytoplasm ratio and prominent nucleo-
li. the colonies were strongly positive to alP (Fig. 1B) 
and to oct-3/4 and SSea-4 proteins (Figs. 1c and d). 
Rt-PcR also indicated that they endogenously expressed 
pluripotent genes (OCT3/4, SOX2, KLF4 and NANOG, 
Fig. 1F). karyotyping and g-banding analysis revealed 
that the cell lines had normal chromosome numbers 
(n=44, Fig. 1g). human exogenous genes (hOCT3/4, 
hKLF4, hSOX2 and hc-Myc) were absent in all rabbit 
iPSc cell lines (R1, R2, and R3), while the endogenous 
pluripotent genes OCT3/4 and NANOG were presented 
(Fig. 1e). all rabbit iPSc lines could form 3-dimension 
structure by mean of embryoid body formation (Fig. 2a). 
this property of the rabbit iPSc cell lines coincided with 
the down regulation of pluripotent genes (OCT3/4, 
NANOG, KLF4 and SOX2). NANOG expression was 
completely downregulated by day 2 of eB formation, 
while KLF4, SOX2 and OCT3/4 were still expressed (Fig. 
2c). although KLF4 and SOX2 genes were continu-
ously expressed on day 7 of EB culture, the expression 
of OCT3/4 gene was abolished at this time point. Simul-
taneously, the EB culture led to the differentiation of 
rabbit iPS cells indicating by the expressions of ectoder-
mal (GBX2, PAX6), mesodermal (PECAM1) and endo-
dermal markers (PITX2, CFTR) (Fig. 2B). Furthermore, 
the culture of eBs for 14 days also resulted in the dif-
ferentiation of the iPS cells into three-germ layer struc-
ture as shown in Fig. 2d. the immunohistochemistry of 
eBs revealed the presences of protein expressions of 
ectoderm (gFaP), mesoderm (vimentin) and endoderm 
(β-catenin) markers in all cell lines (Fig. 2D).

two rabbit iPS cell lines (R2 and R3) were used to 
demonstrate the capability of in vivo differentiation. 
these two cell lines were capable of in vivo differentia-
tion by mean of teratoma formation after cell transplan-
tation into immunocompromised mice. however, the R3 
cell line had greater incidence of teratoma formation 
(2/3, 66.67%) when compared with the R2 cell line (1/3, 
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Fig. 1. Characterization of rabbit iPSCs (A) the colony morphology of rabbit iPSC line R3 at passage 18 (B) ALP 
staining of rabbit iPSc line R3 at passage 18. (c) the rabbit iPScs were positive stained with oct-3/4 
(green) located in nucleus and co-staining with daPi (blue). Scale bar represents 60 µm. (d) the rabbit 
iPSCs were positive stained with stage specific embryonic antigen-4 (SSEA-4) at cell membrane, nucleus 
were stained with daPi (blue). Scale bar represents 60 µm. (e) absence of expression of exogenous plu-
ripotent genes (hOCT3/4, hSOX2, hKLF4 and hc-Myc) in rabbit embryonic fibroblasts (REF) and rabbit 
iPSC line R1, R2 and R3 at passage 17. Mixture of extracted plasmid were served as positive control. (F) 
expression (Rt+) of endogenous pluripotent genes (OCT3/4, SOX2, NANOG and KLF4) in rabbit iPSc line 
R1, R2 and R3 at passage 22. PcR without superscript iii reagents (Rt-) was performed as negative control. 
(g) g-banding of rabbit iPSc R2 at passage 22
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Fig. 2. In vitro differentiation in rabbit pluripotent cells. (A) Representative image of embryoid bodies derived 
from 20,000 cell density starting at day 3 in dMeM/F-12 containing 15% FBS. Scale bar represents 
100 µm. (B) gene expression of three germ layers; CFTR and PITX2 (endoderm), PECAM1 (mesoderm) 
and PAX6 and GBX2(ectoderm) in day 7 EBs derived from rabbit iPSC line R1 R2 and R3 at passage 
22. (C) Endogenous pluripotent genes in EB day 2 and day7. (D) Day 14 EB were fixed and stained 
with antibodies against GFAP, vimentin and β-catenin to identify specific cell lineages. Scale bar rep-
resent 20 µm. (e) he staining of teratoma section generated by rabbit iPScs demonstrated structures 
derived from three germ layer tissue: epidermis (left panel; ectoderm), cartilage (middle panel; meso-
derm) and gland-like structure (right panel; endoderm). Scale bar represent 50 µm.
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33.33%). The histological findings after the haematoxy-
lin and eosin staining confirmed the structures of tera-
toma that derived from three-germ layers of origin includ-
ing epidermis-like (ectoderm), cartilage-like (mesoderm) 
and gland-like (endoderm) structures (Fig. 2e).

For cardiac differentiation, all the cell lines could 
contribute to three-dimensional mass but the ability to 
form EB was different among the cell seeding densities 
and particular cell lines. in general, cell seeding density 
influenced the EB size. Low cell seeding density at 1,000 
cells per EB was insufficient to form EB in all cell lines. 
a cell line (R1) did not form the eB at 3,000 cells/eB 
(Fig. 3a-1). at 5,000 and 10,000 cell density, iPSc line 
R2 could form EB with larger size compared with R1 
and R3 lines (P<0.05, Figs. 3a-2 and 3). cell seeding 
density at 20,000 cells per EB increased EB size to the 
range of 326 to 467 µm which was previously reported 
to be optimal EB size for cardiac differentiation [17, 29]. 
this cell density (20,000 cells per eB) was therefore 
used for cardiac differentiation in this study. The average 
diameters of eBs obtained for 20,000 cells/eB were 
325.8 ± 7.32, 467.4 ± 8.68 and 463.33 ± 18.42 for iPSC 
line R1, R2 and R3, respectively. after eBs were cul-
tured for 72 h in the EB medium with BMP4, they were 
harvested and cultured onto gelatin coated dishes. the 
eBs were easily attached to the Petridish and cells were 
translocated from outermost area of the eBs to form 
multiple cell types and layers. On day 5 of differentia-
tion, a large proportion of cells (51 ± 1.48%) positively 
expressed with cardiovascular progenitor marker, Flk1 
(Figs. 3D-1 and 2). There was no significant difference 
among cell lines. the mean ± SeM of Flk1 positive 
cells were 53.33 ± 2.3%, 53.17 ± 1.58% and 46.49 ± 
2.5% for iPSc line R1, R2 and R3, respectively. later, 
the outer layer contained flat elongated cells while the 
center remained dense darkened area. the elongated cells 
were seen around day 7 of cardiac differentiation (Fig. 
3B). They formed filament-like structure and started to 
spontaneously beat around day 11 to 14 of culture (sup-
plementary data). in addition, these cells also expressed 
cardiac marker genes including RYR2, PECAM1 and 
α-actinin (Fig. 3C). For all cell lines, a small proportion 
of cells were positively stained with ctnt (10.29 ± 
1.37%) with striated structure, indicating morphology 
of mature cardiomyocytes (Fig. 3e). the mean ± SeM 
of ctnt positive cells in R3 was lowest (4.24 ± 0.16%, 
P<0.05). There was no significant difference between 
line R1 (14.45 ± 0.54%) and line R2 (12.19 ± 1.13%).

Discussion

in this study we established rabbit iPScs and demon-
strated that the iPSCs have differentiation potential to-
ward cardiac lineage. until recently, a limited number 
of rabbit iPSC lines have been reported [14–16, 36]. 
However, information on cardiac differentiation of these 
iPSc lines has not been demonstrated. Rabbit model was 
a valuable model for cardiac diseases in human [38]. the 
establishment of iPSc-based therapy for cardiovascular 
diseases in rabbit model has not yet been established due 
to the generation of rabbit iPSCs appeared to be difficult 
and the knowledge on signaling controls of cardiac dif-
ferentiation is fairly limited. all rabbit iPSc lines includ-
ing our cell lines were established using viral vectors 
with ectopic genes OCT3/4, SOX2, KLF4, and c-Myc 
[14, 36, 46]. although this technique may lead to muta-
tional genome integration [7], this viral transduction is 
most likely the robust method to introduce ectopic genes 
into the host genome [41]. in our study, downregulation 
of human exogenous genes (hOCT3/4, hKLF4, hSOX2 
and hc-Myc) was found in all cell lines, simultaneously 
with the presence of endogenous pluripotent genes 
OCT3/4 and NANOG. although the presence of exoge-
nous genes at differentiation may interfere the differen-
tiation process, the poor efficiency of cardiac differen-
tiation therefore appears to involve other factors rather 
than the existence of the exogenous genes. Our findings 
are in an agreement to previous reports that the establish-
ment of rabbit iPScs is very poor [15] and its pluripo-
tency is remarkably limited [16]. the reason for poor 
results of viral transduction in this species is still un-
known but the poor result is similar to previous reports 
demonstrating an inefficient viral (human immunodefi-
ciency virus) transduction in rabbit cells. this is likely 
to involve the process of gene transduction at a post- 
viral entry and pre-integration step [13, 20]. this seems 
to be species specific since gene transduction efficiency 
with green fluorescent protein expressing viral vectors 
into rabbit cells was around 5 to 6 times less efficiency 
compared to human, feline and porcine fibroblasts (un-
published data). in addition, the maintaining pluripotent 
factors of rabbit iPScs are poorly understood. this is 
critical for establishment of pluripotent cell line as par-
ticular species requires different signaling to promote 
and to sustain their pluripotency pathways. For instance, 
mouse embryonic stem cells needs to be maintained via 
liF/Stat-3 pathway [34] while human eSc mainly 
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requires bFGF for pluripotent maintenance [11, 27]. The 
rabbit iPScs established in this study demonstrated 
typical iPSC morphology (flat colony, Fig. 1A) which is 

resembled to human iPScs rather than dome-shaped 
mouse iPSCs. Furthermore, the findings also are in an 
agreement with other studies that rabbit iPScs are liF 

Fig. 3. Cardiac differentiation derived rabbit iPSCs. (A) Analysis of EB diameters at different cell seeding density. 
P value less than 0.05 (P<0.05) was considered statistically significant. The graphs were plotted with letter-
coded significant differences (a, b, c). (B) Cardiomyocyte-like cells derived iPSCs at day 14. Scale bar 
represents 50 µm. (c) gene expression of cardiac markers; cardiac ryanodine receptors (RYR2), α-actinin 
and PECAM1 in day 14 EBs derived from rabbit iPSC line R1 R2 and R3. (D) Differentiating cells at day 
5 were positively stained with mesodermal surface marker Flk1. Scale bar represents 100 µm (d-1) and 
20 µm (d-2). (e) cardiomyocyte-like cells were positively stained with cardiac troponin-t, ctnt. Scale 
bar represents 20 µm.
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and bFgF dependent [46]. the three cell lines estab-
lished in the current study had potential to develop into 
all three germ layers and also cardiac lineage, via cel-
lular aggregation using hanging drop technique. how-
ever, we found that the eB culture did not completely 
downregulate entire pluripotent gene as SOX2 and KLF4 
genes were found to continuously express on day 7 of 
eB culture, while the pluripotency controlled NANOG 
and OCT3/4 genes was completely downregulated. the 
finding is in an agreement with a report of human em-
bryonic stem cells that KLF4 could still be detected in 
the two-week cultured eB [6]. these results suggest that 
these genes do not only control pluripotency but also 
balance the cellular homeostasis. For example, the KLF4 
gene has been demonstrated to actively control cellular 
processes, such as apoptosis [10]. in addition, this study 
confirmed the capability of retroviral mediated rabbit 
iPS cell lines in in vitro and in vivo differentiation, in 
terms of gene and protein expressions in embryoid body 
and teratoma formation, respectively. The efficient dif-
ferentiation appears to associate with the downregulation 
or silence of exogenous genes used during iPS generation 
or when the exogenous pluripotent genes were over-
whelmed by other pluripotent endogenous genes [33, 
40]. In the current study, we differentiated rabbit iPS into 
cardiac cell fate via embryoid body formation. this tech-
nique is simple and has been reported to efficiently pro-
mote mesodermal transition and also cardiac differen-
tiation [29, 45], although mature cardiomyocytes can 
also be generated by other techniques such as mono-
layer format [28, 51] and direct transdifferentiation [18, 
39]. Using this technique, we demonstrated for the first 
time that the rabbit iPSCs can differentiate toward car-
diac lineages (Fig. 3). this capability highlights the pos-
sibility to use rabbit as a model for treating cardiac 
disorder in human. although all established iPSc lines 
were capable of forming eBs, this ability was dependent 
on cell density (cell number per eB) and cell line (Fig. 
3C). EB formation was inefficient for low cell density 
(1,000 and 3,000 cells per eB). this appeared to cause 
by the sensitivity of rabbit iPSCs on enzymatically 
single cell dissociation similar to human [2]. we opti-
mized the EB size to around 400 µm since the large eB 
size (300–450 µm) had been shown to promote cell dif-
ferentiation into cardiac lineage compared with smaller 
EBs [17, 29]. The large EB size allowed sufficient cel-
lular interactions and also microenvironments such as 
oxygen tension suitable for differentiation and prolif-

eration of cardiac progenitor cells [48, 49]. Furthermore, 
a larger size EB tended to preferentially elevate gene 
expression (NKX2.5, GATA4, WNT11, TBX5, NFATC1 
and NRG1) that are responsible for cardiogenic differ-
entiation [4]. The cardiac differentiation was also pro-
moted by addition of BMP4 during eB formation [22, 
45] as the BMP4 is the main regulator for cardiac me-
sodermal transition and regulates cardiogenesis via 
nkX2.5 and gata4 pathways [1, 26]. although these 
pathways have not been examined in rabbit iPScs, the 
protocol used in this study efficiently differentiated the 
iPScs (around 50%) into cardiac progenitor cells by 
means of Flk1 expression. however, only small popu-
lation could develop to mature cardiac phenotypes (ctnt 
positive beating cells). The low efficiency in differentia-
tion of mature cardiac cells may relate to the property 
of the specific cell lines used. The rabbit iPS cell lines 
used in this study appears to constantly express SOX2. 
the increased expression of SoX2 potentially guides 
the cell fate generally into neuroectodermal lineage. this 
condition inhibits mesodermal differentiation and there-
by limiting spontaneous cardiac differentiation [24, 47]. 
although BMP4 supplement could improve cardiac dif-
ferentiation of rabbit iPS cells, over all efficiency remain 
poor. this suggests that other factors appear to synergis-
tically interact with cardiac cell fate, rather than BMP4 
alone. it is interesting to examine whether or not other 
factors such as activin a, FgF2, vegF, gsk3 inhibitors 
and Dickkopf-1 will be needed for cardiac differentiation 
as previously reported in human [28, 50]. Further study 
for improving cardiac differentiation for rabbit iPSCs 
such as identification of molecular networks for cardiac 
differentiation should be investigated.

Conclusions
Rabbit iPSC lines can be differentiated into cardiac 

lineage via 3D-structure embryoid body. The optimiza-
tion of cardiac differentiation remains to be elucidated 
in order to improve its efficiency. The findings in this 
study highlight the possibility to generate mature car-
diomyocytes from rabbit iPScs for further use.
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