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1  |  INTRODUC TION TO SPINDLE 
ORIENTATION

The development of multicellular organisms begins post- fertilization, 
when rapid cell division occurs in the zygote. The division process is 
associated with the emergence of diverse cellular functions and as-
sembly of three- dimensional tissue structures, which rely partially 
on the orientation of spindle fibres.1,2 The directionality of appro-
priate cell division is established by the spindle orientation, which 
affects the precise tissue architecture of an organism.3– 5 Spindle 
misorientation results in various diseases including lissencephaly,6 
Huntington's disease7 and some cancers.8,9 Hence, the study of spin-
dle orientation will aid in understanding the connection between or-
ganismal development and human diseases.

Microtubule remodelling occurs during the formation of the spe-
cialized bipolar structure of the spindle fibres. Chromosomes are 

attached to the spindle microtubules at the kinetochore, which ap-
pears as a bridge between the poles. The astral microtubules inter-
act with cortical proteins linking the spindle poles to the cell cortex. 
Despite research progress in regulating spindle orientation in the 
past decades, the lack of a suitable universal model has been a key 
limitation in the study of spindle orientation, suggesting a need to 
develop an appropriate model. This review presents several causes 
of spindle misorientation and discusses the possible solutions.

2  |  MODEL S FOR STUDYING SPINDLE 
ORIENTATION

A correlation between the orientation of the division axis and cell 
fate has been discovered in Drosophila and Caenorhabditis ele-
gans10– 12 and has subsequently been studied in different species.13 
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Abstract
Proper spindle orientation is essential for cell fate determination and tissue morpho-
genesis. Recently, accumulating studies have elucidated several factors that regulate 
spindle orientation, including geometric, internal and external cues. Abnormality in 
these factors generally leads to defects in the physiological functions of various organs 
and the development of severe diseases. Herein, we first review models that are com-
monly used for studying spindle orientation. We then review a conservative heterotri-
meric complex critically involved in spindle orientation regulation in different models. 
Finally, we summarize some cues that affect spindle orientation and explore whether 
we can establish a model that precisely elucidates the effects of spindle orientation 
without interfusing other spindle functions. We aim to summarize current models used 
in spindle orientation studies and discuss whether we can build a model that disturbs 
spindle orientation alone. This can substantially improve our understanding of how 
spindle orientation is regulated and provide insights to investigate this complex event.
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First, budding yeast was used as a simple system to study asym-
metrical spindle polarity14 (Figure 1A). In budding yeast, asymmetric 
targeting of spindle poles to the mother and bud cell compartments 
orients the mitotic spindle along the mother- bud axis. This is due 
to intrinsic functional asymmetry, which generates two cells with 
different fates. Second, the asymmetric zygotic division and differ-
entiation during early embryogenesis have been investigated in the 
nervous system of flies15 (Figure 1B). Third, mouse skin progenitors, 
mouse and chick neuroepithelial cells, and fish epiblast cells have 
been employed to explore the proliferation and differentiation of 
epithelial cells16– 18 (Figure 1C– F). These in vivo models are impor-
tant in assessing new regulators and cellular processes associated 
with development.

However, in vitro models have more advantages in observing in-
tracellular changes using microscopic analysis. The frequently used 
in vitro models include cells cultured on fibronectin- coated plates 
on micropatterns, or using three- dimensional (3D) culture methods 
(Figure 1H,I). Among these, cells cultured using 3D systems have 
been used to study epithelial morphogenesis and lumen formation 
(Figure 1G). For example, cell polarity with spindle orientation has 
been evaluated using Madin– Darby canine kidney cells19 or human 
umbilical vein endothelial cells grown in Matrigel.20 Defects in spin-
dle orientation lead to the formation of cysts with multiple lumina 
and inhibit angiogenesis.21– 23 Furthermore, using cells cultured on 
fibronectin or micropatterns, changes in spindle orientation have 
been identified by assessing the distribution of actin retraction fi-
bres and astral microtubules.24,25 These findings are critical for the 
diagnosis and treatment of relative diseases.

3  |  CONSERVATIVE HETEROTRIMERIC 
COMPLE X , G ɑI-  LGN- NUMA , CONTROL S 
SPINDLE ORIENTATION IN DIFFERENT 
MODEL S

A conserved heterotrimeric complex, Gɑi- LGN- NuMA, is report-
edly involved in regulating spindle orientation both in vivo and in 
vitro.26– 28 In this complex, LGN is an adaptor molecule of Gɑi. It 
consists of three main domains: N- terminal TPR domain, central 
‘linker’ domain and C- terminal GPR domain.29 During mitosis, Gɑi 
is anchored to the membrane by its membrane- anchored subunits 
and interacts with the GPR domain of LGN. N- terminal TPR domain 
mediates interactions with multiple binding proteins such as NuMA. 
A functionally unknown ‘linker’ domain connects the two parts to-
gether.30 Consequently, this complex can locate a specific region of 
the subcortical domain and recruit the minus- end- directed micro-
tubule motor protein, dynein, directly. Dynein movement along the 
astral microtubule can generate a pulling force on the spindle pole, 
orienting the spindle at an appropriate plane and position31 (Figure 2).

Besides, the coiled- coil domain of NuMA has been verified as a 
hairpin that can interact with LGN, dynein and microtubules simulta-
neously.32 Cortical localized NuMA is also frequently observed in di-
viding cells,33 which require NuMA phosphorylation.34 Similarly, Gɑi 

subunits localizing to the plasma membrane are myristoylated. The 
modified Gɑi protein attaches to the cortex providing an anchor to 
the TPR domain of the LGN complex.35 Remarkably, this conserved 
complex is known as Gɑi- Pins- Mud in Drosophila and GOA1/GPA16- 
GPR1/2- LIN5 in C. elegans (Table 1).

4  |  FAC TORS REGUL ATING SPINDLE 
ORIENTATION

Specialized bipolar structures of spindle fibres are affected by sev-
eral factors. They can be roughly classified as internal, external and 
geometric cues. They have a considerable influence on the spindle 
orientation. However, they eventually affect spindle orientation ma-
chinery or cell cortex interactions with astral microtubules. Here, we 
discuss the different factors in detail.

4.1  |  Internal cues

The assembly of the spindle orientation machinery in the cell re-
quires an intact actin cortex and normal astral microtubules. The 
cortex can effectively generate a stable force to organize the spindle 
at appropriate angles.31 Latrunculin A or cytochalasin D treatments 
lead to spindle orientation defects, affecting cell fate.36 Additionally, 
remodelling the stiff actin during mitosis can provide sufficient force 
to pull the spindle orientation machinery.37,38 However, the precise 
location where this force is generated is not known. Furthermore, 
abnormal astral microtubules perturb the spindle dynamics and 
stability, or interaction with cortical proteins, leading to misorien-
tation, irrespective of their defective nucleation/anchoring.39– 41 In 
addition, some proteins and kinases in the cell can contribute to the 
formation or stabilization of microtubules, thereby affecting spindle 
assembly or functions. For example, cylindromatosis is a deubiquit-
inating enzyme, which directly binds to the microtubules and regu-
lates astral microtubule stability and dynamics via lysine 63- linked 
ubiquitin hydrolysis.42 Polycomb repressive complex 1, a minus- end 
kinesin protein of the microtubule, is also important for the proper 
assembly, dynamics and positioning of the mitotic spindle.43,44

4.2  |  External cues

Extracellular signals from the cell surface can control spindle ori-
entation. The extracellular matrix (ECM), a structure composed of 
proteins and polysaccharides secreted by cells, is located on the cell 
surface or between cells and affects spindle orientation directly or 
indirectly.45,46 One of its components, β- integrin, can interact with 
focal adhesion kinase and talin to regulate spindle alignment.47,48 
Besides, β- integrin knockout mice display random spindle orienta-
tion during skin stratification49 and luminal formation.50 β- Integrin 
has been proved to be a key element in establishing apical- basal 
polarity for spindle orientation and the relative molecular location 
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F I G U R E  1  Frequently used models for studying spindle orientation in vivo and in vitro. In vivo models to evaluate spindle orientation in 
budding yeast (A), Drosophila neuroblasts (B), C. elegans zygote (C), zebrafish epiblasts (D), vertebrate neuroepithelium (E) and mouse skin 
progenitors (F). In vitro spindle orientation models of cultured MDCK/HUVECs in Matrigel for real- time observation of intracellular changes 
using microscopy (G), cells on fibronectin substrate (H) or micropatterns (I). Conserved polarized factors with different names of homologues 
in model organisms. Light pink or green represents relevant polar factors in different models. Their asymmetrical spatial distribution at the 
cell pole will generate two cells with different fates
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of LGN, NuMA and ɑPKC.27 Besides β- integrin, other ECM com-
ponents such as exopolysaccharides are involved in spindle orien-
tation through sulfation and uronic acid epimerization.51 During 
mitosis, JAM- A control spindle orientation through Cdc42, further 
regulating cortical dynein localization.52 Caveolin- 1 can translate 
the interphase adhesion geometry to mitotic spindle orientation in 
a RhoA- dependent manner.53 During kidney morphogenesis and re-
pair, renal tubular epithelial cells lacking the transmembrane recep-
tor Plexin- B2 or its semaphorin ligands fail to correctly orient the 
mitotic spindle, leading to severe defects in epithelial architecture 
and function.54 Interestingly, β- integrin, a transmembrane protein, 
can interact with the ECM and cortical molecules. Therefore, we 
speculate that β- integrin may act by transmitting messages from the 
ECM to the intracellular cortex, possibly regulating spindle orienta-
tion through microtubule- associated proteins or actin cytoskeleton 
interaction. Future studies are necessary to verify the difference in 
the role of β- integrin between normal cells and spindle misoriented 
cells.

4.3  |  Geometric and external force cues

In the past, cells were considered to divide along their longest axis. 
This is called the ‘Hertwig rule’. It has been indicated that the spindle 

in a mitotic cell can perceive cell shape changes to realign itself along 
the longest axis.55 Continuous remodelling allows sufficient space 
for the formation of the spindle. In cells cultured on fibronectin or 
micropatterns, the distribution of actin retraction fibres dictates 
the orientation of the spindle.22 Myosin 10 is considered the linker 
between actin and microtubules in this context.56 Considering the 
relationship between myosin and dynein proteins, the formation of 
the classical structure of the LGN/dynein complexes is a conserva-
tive mechanism of spindle orientation.57 Artificial altering of cell 
shapes causes chromosome missegregation.58 Moreover, changes 
in the spindle angles have been confirmed under external magnetic 
field actions,59 indicating that magnetic force can serve as a kind 
of external force to regulate spindle orientation. However, a recent 
study revealed that cell division orientation in vivo is not deter-
mined by cell shape but rather by local anisotropies in cell mechan-
ics.13,60 Studies have shown that the development of Drosophila 
wing is not dependent on its shape.61 Furthermore, tissue tension 
and non- interphase cell shape determine cell division, as confirmed 
in Drosophila follicular epithelium.62 This tissue tension at compart-
mental boundaries is actomyosin- driven tension.63,64 In summary, 
more external forces affect spindle orientation, which need further 
evaluation.

5  |  CONCLUSIONS AND PERSPEC TIVE

The findings on the molecular mechanisms that control the orien-
tation of the mitotic spindle reveal that the conservative hetero-
trimeric complex Gɑi- LGN- NuMA regulates spindle orientation in 
different species. However, the molecular interplay to regulate the 
recruitment and maintenance of LGN to the cellular cortex is still 
unknown. The knockdown of LGN or NuMA results only in weak 
spindle orientation phenotypes,65,66 suggesting an involvement of 
additional pathways. Additionally, different mechanisms in different 
tissues contribute to the process of spindle orientation regulation, 
highlighting the need to establish a universal spindle orientation 
model to study related issues.

A specialized bipolar spindle orientation machinery plays an 
irreplaceable role in regulating spindle angles.67 It relies on the 
interaction of astral microtubules with cortical proteins to dictate 
spindle position and orientation.68,69 Therefore, factors concern-
ing spindle morphology and/or behaviour are likely to affect their 

F I G U R E  2  Conservative heterotrimeric complex, Gɑi- LGN- 
NuMA, in spindle orientation controlling mechanism. Gɑi is 
anchored to the membrane at one end and interacts with the GPR 
domain of LGN. The TPR domain of LGN mediates the interactions 
with multiple binding proteins such as NuMA. Dynein directly 
interacts with NuMA and moves along with the astral microtubule 
towards the minus end. Therefore, an appropriate pulling force is 
generated in the opposite direction, which is necessary for proper 
spindle orientation

C. elegans85,86 Drosophila87 Vertebrates13

GOA1/GPA16 Gɑi Gɑi1, Gɑi2, Gɑi3

GPR1/2 Pins (partner of inscuteable, Rapsynoid) LGN (GPSM2, 
mPins)

Lin- 5 Mud NuMA88

– inscuteable Insc (mInsc)

Par369 Bazooka Par3

DLG- 1 Dlg17 Dlg1

TA B L E  1  Genes mentioned in this 
review and their homologues in different 
model organisms
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orientation.70– 72 Moreover, cortical determinants and astral mi-
crotubules are not passive participants during this process. They 
are the core structural components of the spindle orientation 
machinery. The cortical proteins tune external force transmission 
into cells to finely regulate the spindle orientation. Understanding 
cellular sensing for ‘external pressure signal’ and its transmittance 
into cells is essential. The transmembrane protein β- integrin is 
worth investigating to discover a more precise mechanism for reg-
ulating spindle orientation and establishing an extracellular con-
trollability model. In addition, most relative proteins interacting 
with microtubules, especially astral microtubules, have internal 
cues involved in spindle orientation regulation. Indeed, several 
proteins perturb spindle orientation by affecting astral microtu-
bules. For example, microtubule plus- end protein EB1 can stabi-
lize astral microtubules to regulate spindle orientation through 
phosphorylation.73 Human microcephaly ASPM protein is a spin-
dle pole- focusing factor that regulates orientation by affecting 
the dynamics of astral microtubules.74 Studying the differences 
between astral and other microtubules to control microtubule be-
haviour may be a new method of establishing a spindle orientation 
model. Meanwhile, protein kinases have been proposed to influ-
ence spindle orientation.75

Aurora- A kinase can regulate αPKC/Numb cortical polarity and 
spindle orientation to inhibit neuroblast self- renewal in Drosophila.76 
In fission yeast, mitogen- activated protein kinase ensures proper 
mitotic spindle orientation via the actin checkpoint.77 αPKC- 
mediated phosphorylation of apical Pins controls epithelial spindle 
orientation.78

Adenosine- 5′- monophosphate- activated protein kinase has 
been found to regulate mitotic spindle orientation through the phos-
phorylation of the myosin regulatory light chain.79 However, kinases 
contribute to cell signalling and complex life activities. Therefore, 
setting up a new spindle orientation model affected by kinases and 
their associated pathway will be useful.

Previous studies have compared cell division in vitro and tissue 
development in vivo under controlled spindle orientation.80– 84 The 
role of spindle orientation in normal and pathological development 
and homeostasis has been acknowledged. However, due to the lack 
of a suitable universal model, differential findings among the models 
cannot be confirmed. As spindle orientation is poorly understood, 
future work should aim at summarizing the similarities and differ-
ences. Overall, developing a universal spindle orientation model is 
necessary to study diseases and suggest possible treatments for pa-
thologies caused by spindle misorientation.
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