
Hallucinations and delusions—two diagnostic fea-
tures of psychosis shared across the spectrum of het-
erogeneous schizophrenia constructs—can be
described in terms of the pathophysiology of sensory
information processing: hallucination is the impaired
ability to classify representations as internally or exter-
nally generated, while delusion is the immutable link-
ing of representations with each other in the absence
of external dependency. The key anatomical systems
in higher-order information processing are the cortex,
thalamus, basal ganglia, and medial temporal lobe,
each of which is modulated by neurotransmitter pro-
jection systems. Preliminary evidence, concentrating
to date on the dorsolateral prefontal cortex, thala-
mus, and hippocampal region of the medial temporal
lobe, points to neural circuitry dysfunction within and
between each system in psychosis. This may account
for specific symptoms and associated cognitive deficits
such as memory impairment, attention deficit, and
language disturbance.

he psychiatric diagnoses dementia praecox
(Kraepelin) and group of schizophrenias (Bleuler) were
introduced to designate a group of psychiatric patients
with similar clinical features, disease course, and out-
come.1-3 The diagnostic criteria used to define schizo-
phrenia have varied over the last 100 years. They have
included several forms of hallucinations and delusions,
abnormalities of speech and motor activity, cognitive
deficits such as poor attention and impaired memory,
and affective disturbance.2,4 Schizophrenia is now diag-
nosed in about 1% of the population worldwide.5,6

In the 4th edition of his psychiatry textbook, published in
1893, Kraepelin proposed that three groups of patients,
diagnosed with catatonia (Kahlbaum),7 hebephrenia
(Hecker),8 and dementia paranoides, represent different
phenotypes of the same illness which he labeled dementia
praecox.3,9 We are still struggling to answer the two ques-
tions Kraepelin faced 100 years ago: How is schizophrenia
different from other psychotic conditions? Is schizophre-
nia one illness or does it represent different diseases?
The heterogeneity of the schizophrenia construct poses
a major hurdle for the study of disease mechanisms and
etiology.10 If the diagnosis covers a broad spectrum of
patients who might not share the same symptoms, then
the search for one etiology and pathogenesis that could
predict treatment response and outcome may be futile.
Therefore, schizophrenia researchers have attempted to
reduce the complexity of schizophrenia by defining sub-
types or dividing schizophrenia into one or more entities.
Emil Kraepelin subdivided dementia praecox into sub-
types based on the presence of one or more symptoms.
His last attempt at subdividing dementia praecox/schiz-
ophrenia produced 10 different “clinical forms.” The
Diagnostic and Statistical Manual of Mental Disorders
(DSM) has followed his tradition and the current ver-
sion (DSM-IV) recognizes three of his subtypes (para-
noid type, disorganized [ie, hebephrenic] type, and cata-
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tonic type) and supplements them with two new ones
(undifferentiated type and residual type). The Krae-
pelinian subtypes are defined by the presence, severity,
and duration of symptoms, but their validity has been
questioned.11 For example, all subtypes, except the para-
noid type, show poor temporal stability and might not
represent a trait characteristic.12-15

Bleuler acknowledged the heterogeneity of the schizo-
phrenia construct without providing a solution to this
puzzle16:

I call dementia praecox “schizophrenia” ... I use the word in
the singular although it is apparent that the group includes
several diseases ... so far we have been unable to discover
any natural lines of division within the described clinical
picture ... the subdivision of the group of schizophrenias is a
task for the future.

A different approach to the complexity of schizophrenia
can be traced back to the writings of John Russell
Reynolds (1828-1896) and John Hughlings Jackson
(1835-1911).17 Jackson proposed a model of abnormal
brain function in neurological and psychiatric disorders
based on the evolutionary theory that the brain had
developed to increasingly more complex levels. He sug-

gested that higher levels of brain function (eg, cortex)
control the function of lower levels (eg, subcortical struc-
tures, brain stem). Negative symptoms arise from the
paralysis of a given hypothetical level of brain function.
Positive symptoms arise when higher levels of brain
function are impaired and, due to a lack of inhibition,
lower levels become apparent, creating “symptoms” nor-
mally not observed. In Jackson’s view, “where there is a
positive symptom, a negative symptom must be.”17

The positive/negative dichotomy resonated in the com-
munity of schizophrenia researchers. It seemed reason-
able to divide the signs and symptoms of schizophrenia
into those that are characterized by the production of
abnormal behavior (positive symptoms) and those that
represent a deficiency of normal behavior (negative symp-
toms) (Table I).18-20 It was thought that the two symptom
dimensions could differentiate subtypes of schizophrenia.
More recently, statistical methods have been applied to
study the clustering of signs and symptoms in schizo-
phrenia. If some features occur together with other
symptoms more than is likely than by chance alone, then
they might share etiology and/or disease mechanisms.
Such studies have revealed two-, three-, four-, and five-
factor models.6,21-26

Localizing schizophrenic symptoms

Once subtypes of schizophrenia had been defined,
researchers attempted to localize the clinical features
to distinct brain regions or neural networks. Southard
published one of the first such models in the 1910s and
proposed that temporal lesions (especially left superior
temporal gyrus hypoplasia) are associated with auditory
hallucinations, parietal atrophy and sclerosis are asso-
ciated with catatonia, and frontal lobe aplasia or atrophy
is associated with delusions.27,28

More recently, the positive and negative symptoms were
associated with dysfunction of separate neural net-
works.29-31 For example, the positive symptoms of schizo-
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Selected abbreviations and acronyms

BF basal forebrain 
CA cornu ammonis 
DG dentate gyrus 
DLPFC dorsolateral prefrontal cortex
GABA gamma-aminobutyric acid
GAD glutamic acid decarboxylase
GAP growth-associated protein
LC locus ceruleus
MTL medial temporal lobe
NADPH-d nicotinamide adenine dinucleotide 

phosphate-diaphorase
PHG parahippocampal gyrus
R raphe nuclei
rCBF regional cerebral blood flow
SN substantia nigra
Sub subiculum
VTA ventral tegmental area

Positive Negative

Hallucinations Alogia

Delusions Affective blunting

Formal thought disorder (language) Avolition

Bizarre behavior Anhedonia

Attentional impairment

Table I. Signs and symptoms of schizophrenia.
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phrenia have been correlated with temporal lobe abnor-
malities such as volume reduction and increased blood
flow. Conversely, negative symptoms have been associ-
ated with decreased prefrontal blood flow.
Carpenter and colleagues have suggested that patients
with schizophrenia can be classified as deficit syndrome
patients (with enduring negative symptoms that are not
due to medication and/or depression) and nondeficit
patients.32 They have proposed that deficit patients show
more frontal lobe deficits than nondeficit patients, but
that both subgroups show temporal lobe abnormalities.33

So far, studies have reported differential impairment of
cognitive function,34-36 brain structure,37 and brain func-
tion38 in deficit and nondeficit schizophrenia.39

Localizing the signs and symptoms of schizophrenia to
neural networks relies on neuroscientific models of how
behavior is implemented in the brain. Here we will
describe a basic outline of brain–behavior relationships.
We will then use this framework to review studies of
the neural basis of schizophrenia.

The neural basis of psychosis

In order to develop models of how the brain gives rise to
psychosis, we need to define psychosis. Despite contro-
versy about the relative weight given to positive and
negative symptoms in the diagnosis of schizophrenia,2,40

all classification schemes have included two features,
hallucinations and delusions. These two symptoms pro-
vide the basis for the definition of psychosis as impaired
reality testing. The underlying premise in the definition
of psychosis is that the brain’s processing of informa-
tion, derived from the outside world, is perturbed in psy-
chosis. The processing of sensory information involves
three steps: the collection of sensory information
through perceptual modules, the creation of a represen-
tation, and the production of a response.
Sensory organs provide information about physical
attributes of incoming information. Details of physical
attributes (eg, temperature, sound frequency, or color)
are conveyed through multiple segregated channels
within each perceptual module. Integration of the highly
segregated sensory information occurs at three levels.
The first integration occurs in unimodal association
areas, where physical attributes of one sensory domain
are linked together. A second level of integration is
reached in multimodal association areas, which link
physical attributes of different sensory qualities

together; and a third level of integration is provided by
the interpretation and evaluation of experience.41 It is
at this third level of integration that the brain creates a
representation of experience that has the spatiotemporal
resolution and full complexity of the outside world.
Building on previous theoretical efforts,42-46 we propose
that the positive psychotic symptoms are due to an
imbalance in the generation of representations: (1) the
impaired ability to classify representations as internally
or externally generated (hallucinations); and (2) the
immutable linking of representations with each other in
the absence of external dependency (delusions).
Following the evaluation and interpretation of the repre-
sentation, the brain creates a response through a variety of
channels, eg, language, affect, and motor behavior.47,48 The
diagnosis of psychosis is based on the analysis of these
responses. For example, hallucinations, delusions, formal
thought disorder, and flat affect are defined by abnormal-
ities of the patient’s language and motor behavior.

Neural circuitry in schizophrenia 

Four anatomical systems (ie, the cortex, the thalamus,
the basal ganglia, and the medial temporal lobe) are
involved in higher order information processing. The
function of these four systems is modulated by several
groups of neurons that are characterized by their use of
a specific neurotransmitter. First we will provide an
overview of how these anatomical systems work
together during normal brain function. We will then
review, in detail, each of the four systems and how they
are perturbed in psychosis.
The thalamus is the gateway to cortical processing for
all incoming sensory information, here represented by
the three major systems: somatosensory, auditory, and
visual. The primary sensory cortex (S1, A1, V1) receives
sensory information from the appropriate sensory mod-
ules (sensory organ and thalamus).The association cortex
integrates information from primary cortices, from sub-
cortical structures, and from brain areas affiliated with
memory, to create the representation of experience.The
medial temporal lobe serves two major functions in the
brain: to integrate multimodal sensory information for
storage into and retrieval from memory and to attach
limbic valence to sensory information.The basal ganglia
are primarily involved in the integration of input from
cortical areas, particularly from the motor cortex. They
modulate the activity of thalamocortical projections,
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thereby creating a cortico-striato-pallido-thalamo-corti-
cal loop.
Four groups of densely packed neurons provide wide-
spread projections to many brain areas: cholinergic neu-
rons in the basal forebrain (BF) and brain stem;
dopaminergic neurons in the substantia nigra (SN) and
ventral tegmental area (VTA); noradrenergic neurons in
the locus ceruleus (LC); and serotonergic neurons in the
raphe nuclei (R).
The anatomical organization of the human brain gives rise
to several neural circuits, each affiliated with different
aspects of brain function. Over the last 100 years of psy-
chosis research, four major hypotheses have been put for-
ward that propose abnormalities of these neural circuits in
psychosis. (1) Beginning with Kraepelin, psychosis was
thought to be a dysfunction of the association cortex in the
frontal lobe, the dorsolateral prefrontal cortex (DLPFC).
(2) Based in part on the observation that temporal lobe
seizures often present with hallucinations and delusions,
abnormalities of the medial temporal lobe (MTL) were
proposed to explain the positive symptoms of psychosis.
(3) The occurrence of psychotic symptoms after the use of
amphetamine and cocaine, and the discovery that neu-
roleptic drugs block dopamine D2 receptors, gave rise to
the dopamine hypothesis. (4) More recently, the gluta-
matergic hypothesis, based in part on the fact that 
N-methyl-D-aspartate (NMDA) receptor antagonists, such
as ketamine and phencyclidine, can cause drug-induced
psychotic states, has been put forward.
We will review here the evidence that the four anatomical
systems (the cortex, the thalamus, the basal ganglia, and
the medial temporal lobe) and their modulation by the
neurotransmitter-specific projection systems are abnor-
mal in schizophrenia. Although other brain regions, eg,
the cerebellum, have also been implicated in the pathol-
ogy of schizophrenia,49 we will not review their role here.

Cortex

The association cortex of the human brain is a six-lay-
ered isocortex. Layers 2 and 4 are defined by a high den-
sity of small interneurons, ie, neurons that do not send
long-ranging projections to other cortical or subcortical
areas. In contrast, layers 3 and 5 are defined by a high
density of pyramidal cells, which collect input through
their dendrites and project to other cortical or subcorti-
cal areas. Interneurons are GABAergic cells (GABA:
gamma-aminobutyric acid) and exert an inhibitory influ-

ence on their targets (via GABAA receptors) whereas
pyramidal cells are glutamatergic and have an excita-
tory influence. Normal cortical function depends on an
intricate balance between GABAergic inhibition and
glutamatergic excitation.

Neuronal architecture

The anatomical and functional organization of the asso-
ciation cortex, especially the DLPFC, has been studied
extensively in schizophrenia.50 Volume reduction of the
association cortex in schizophrenia has been reported in
several postmortem and neuroimaging studies.50,51 How-
ever, there is no marked loss of neurons or increased
gliosis, a marker for the degeneration of neurons.49

Several subtle, yet significant, changes in the cortical
architecture have been reported. First, a small subset
of cortical neurons that express the enzyme nicoti-
namide adenine dinucleotide phosphate-diaphorase
(NADPH-d) was found to be decreased in the frontal
and temporal cortex and increased in number in the
underlying white matter.52-54 Similarly, the distribution
of the Cajal-Retzius cells was shifted to lower parts of
the first cortical layer.55 Second, increased cell density in
the frontal and occipital cortex has been described and
attributed to changes in cortical neuropil.56,57 Third, sev-
eral abnormalities of GABAergic interneurons have
been described: reduced release and uptake of GABA
at synaptic terminals,58 decreased expression of the
GABA-synthesizing enzyme glutamic acid decarboxy-
lase (GAD),59 altered expression of GABAA recep-
tors,60,61 and a reduction in axon cartridges of GABAer-
gic chandelier neurons, terminating on the initial
segment of pyramidal cell axons.62 Fourth, the dendritic
organization of frontal cortical areas has been found to
be abnormal.63 Fifth, the organization of synaptic con-
nections, studied with the growth-associated protein
GAP-43, was abnormal in frontal and visual associa-
tion cortices.64

Neurotransmitter systems

Cortical neurons are targets for ascending fibers arising
from the underlying white matter. Some of these inputs
originate from other cortical areas or from the thala-
mus. Others arise from neurotransmitter-specific pro-
jection systems, such as the dopaminergic neurons of
the VTA and the serotonergic neurons of the raphe
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nuclei. Modulation of cortical function, via the D1, D4,
D5, and 5-HT2A receptors, leads to the “fine tuning” of
information processing, for example, by increasing the
signal-to-noise ratio during corticocortical and thalamo-
cortical neurotransmission.65

The effect of DA on cortical neurons is conveyed by
three DA receptors, the D1, D4, and D5 receptors. The
D1 and D5 receptors are expressed primarily, but not
exclusively,66 on pyramidal cells, whereas the D4 receptor
is expressed primarily on GABAergic interneurons.67,68

Compared to typical neuroleptics, which have a high D2-
blocking ability, the atypical neuroleptics are much more
effective in blocking D4 receptors. It is not clear whether
some of the antipsychotic effects of atypical neuroleptics
are conveyed through the D4 receptors localized on
GABAergic interneurons of the association cortex, espe-
cially the DLPFC.69

Alterations of the GABAergic system59,60 and the D1
receptors of the DLPFC have been reported in schizo-
phrenia. The expression of cortical D1 receptors is
increased by the chronic treatment with typical neu-
roleptics.70 Of interest, a recent positron emission tomog-
raphy (PET) study found a reduction in cortical D1
receptors, which was correlated with the severity of neg-
ative symptoms and poor performance on the Wisconsin
Card Sorting Test.71

One serotonergic receptor, the 5-HT2A subtype, is of
relevance for the pathophysiology of psychosis.72 Hallu-
cinogens, eg, lysergic acid diethylamide (LSD), act as
agonists at the 5-HT2A receptor and several antipsy-
chotic compounds, especially the atypical neuroleptics,
block the activity of the 5-HT2A receptor. Several post-
mortem studies have reported a decrease in 5-HT2
receptors in schizophrenia, but others have not.73,74 A
recent PET study of neuroleptic-free patients with schiz-
ophrenia did not find any differences in the expression
of cortical 5-HT2 receptors in several cortical areas.74

Cortical function

Neuroimaging studies have revealed dysfunctional cor-
tical networks in schizophrenia.75-79 Regional cerebral
blood flow (rCBF) and glucose metabolism were found
to be abnormal in frontal cortex and temporal lobe struc-
tures at rest as well as during the performance of cogni-
tive tasks.There is, however, no pattern that is diagnostic
for schizophrenia. For example, frontal cortical activity at
rest was found to be lower by some investigators80-95 but

not by others,96-113 and temporal lobe activity at rest was
found to be decreased,91,104,109,114 normal,95 or increased.113,115

Similarly, frontal cortical recruitment during task per-
formance was found to be decreased in some stud-
ies80,84,85,106,112,116-122 but not in others.123-125

The clinical heterogeneity of schizophrenia might explain
why schizophrenia as a whole is not associated with a
pathognomonic abnormality of brain function.When the
signs and symptoms of schizophrenia are used to catego-
rize patients into two groups (positive and negative syn-
drome) or into distinct clusters, a more consistent pattern
of neural dysfunction in schizophrenia emerges. Frontal
cortex activity at rest correlates inversely with the degree
of negative symptoms,29,95,114,126-130 and left medial temporal
lobe activity at rest correlates positively with the severity
of psychopathology115,131 or the degree of reality distor-
tion.29,130 Similarly, decreased frontal cortex recruitment
during the performance of some cognitive tasks occurs
primarily in patients with negative symptoms.80,119

Thalamus

The thalamus serves several important functions in
information processing in the human brain.132 First, the
relay nuclei (ventral posterior lateral nucleus [VPL],
medial geniculate nucleus [MGN], lateral geniculate
nucleus [LGN]) relay sensory information from the sen-
sory organs to the appropriate areas of the primary sen-
sory cortex (S1, A1, and V1). Second, the association
nuclei, especially the mediodorsal (MD) nucleus, estab-
lish reciprocal connections with the association cortex.
Third, the motor nuclei (ventral) relay input from the
basal ganglia to the motor and premotor cortex.
Two abnormalities of thalamic function have been pro-
posed in schizophrenia. First, a breakdown of the sensory
filter could lead to an increased stimulation of primary
sensory cortical areas. Such a defective filter would impli-
cate abnormalities in the thalamic relay nuclei. Second,
dysfunction of the MD nucleus could lead to impairments
of cortical association areas, especially the DLPFC.
Direct evidence for an involvement of the thalamus in
the pathophysiology of schizophrenia is still limited.The
most convincing evidence comes from morphometric
studies, pointing to a volume reduction of the thalamus,
especially the MD nucleus,50,133 which has been attributed
to cell loss.133 A postmortem study reported a decrease in
parvalbumin-positive neurons in the anteroventral
nucleus, which would result in a loss of thalamocortical
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projections to the prefrontal cortex.134 Recently, some135,136

but not all,137,138 neuroimaging studies have revealed
smaller thalamic volume. In addition, thalamic metabo-
lism and blood flow were found to be impaired at rest
and during the performance of cognitive tasks.136,138,139 Of
interest, the decrease in metabolism during the perfor-
mance of a serial verbal learning test involved primarily
the region of the mediodorsal thalamic nucleus.138

Basal ganglia

The basal ganglia include the ventral striatum, the dorsal
striatum (caudate and putamen), and the globus pallidus.
The dorsal striatum (caudate, putamen) receives input
from motor cortex and projects to the globus pallidus.
The globus pallidus relays the neostriatal input to the
thalamus.The thalamus, in turn, projects back to the cor-
tical areas that gave rise to the corticostriatal projections,
thereby closing the cortico-striato-pallido-thalamo-corti-
cal loop.This loop is involved in the generation and con-
trol of motor behavior. In contrast, the ventral striatum
(the nucleus accumbens) is connected with the amygdala,
hippocampus, and hypothalamus, and is therefore con-
sidered part of limbic system. Reward and expectancy
behavior, and their derailment during drug addiction,
involve the recruitment of the nucleus accumbens.
All basal ganglia structures are modulated by neuro-
transmitter-specific projection systems, in particular by
dopaminergic neurons. Dopaminergic neurons of the SN
project to the neostriatum (nigrostriatal fibers) and
dopaminergic neurons of the VTA project to the nucleus
accumbens (mesolimbic fibers) and cortex (mesocorti-
cal fibers). The two major DA receptors in the dorsal
striatum are the D1 and D2 receptors. The nucleus
accumbens expresses primarily the D3 receptor.
The basal ganglia have been a focus of interest in psy-
chosis research for three reasons: as potential sites of
neuroleptic drug action at D2 receptors, as a potential
site for the generation of abnormal motor behavior dur-
ing psychosis (eg, catatonia), and as a site for pathology
in the limbic system.140-143

Dopaminergic afferents

The most extensive search has been at the level of
dopamine receptors. Earlier studies reported an
increased expression of D2 receptors, but there is now
good agreement by most studies that the D2 receptor

density is not abnormal in schizophrenia.144 One recent
study reported an increased expression of dopamine D3
receptors in the nucleus accumbens.145

In addition to studies of dopamine receptors, there have
been recent studies of dopamine release and intrasy-
naptic dopamine content in the striatum. Two groups
have independently reported that the intrasynaptic con-
tent of dopamine after treatment with amphetamine is
increased in schizophrenia.146-148 Thus, not a tonic increase
of dopamine release but an increased phasic release of
dopamine could be involved in the pathophysiology of
schizophrenia. In addition, the regulation of striatal
dopamine activity via afferent fibers originating in the
prefrontal cortex is impaired.149

Striatal structure

Several structural abnormalities of the basal ganglia in
schizophrenia have been reported. First, the volume of
basal ganglia structures was reported to be increased in
medicated schizophrenic patients.150-154 Striatal volume
increase is closely related to the treatment with typical
neuroleptics: basal ganglia volume is normal or even
decreased in newly diagnosed neuroleptic-naive
patients,155 increases over time during treatment with typ-
ical neuroleptics, and decreases after patients have been
switched to atypical neuroleptics.156-158 The mechanism of
this relationship is not clear. Second, recent postmortem
studies have provided evidence for an overall increased
number of striatal neurons159,160 and for a change in the
synaptic organization of the striatum, particularly the
caudate nucleus.161 Third, the number of nucleus accum-
bens neurons was found to be decreased.133

Medial temporal lobe

The medial temporal lobe contains the amygdala, the
hippocampal region, and superficial cortical areas that
cover the hippocampal region and form the parahip-
pocampal gyrus (PHG). The hippocampal region can
be subdivided into three subregions: the dentate gyrus
(DG), the cornu ammonis (CA) sectors, and the subicu-
lum (Sub). The neurons of the human hippocampal
region are arranged in one cellular layer, the pyramidal
cell layer. Most pyramidal cell layer neurons are gluta-
matergic whereas the small contingent of nonpyramidal
cells are GABAergic. The serial circuitry of the gluta-
matergic neurons provide the structural basis for long-
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term potentiation, a physiological phenomenon crucial
for formation of memory.
The PHG receives many projections from multimodal
cortical association areas and relays them to the hip-
pocampal region.162 Intrinsic connections within the hip-
pocampal region allow further processing before the
information is referred back to the association cortex.
The hippocampus is also closely connected with the lim-
bic system; Papez proposed that the hippocampal for-
mation be recruited via these connections to regulate
emotion or to modulate information processing by
attaching limbic valence to sensory stimuli.163,164

In contrast to the 100-year-long search for cortical pathol-
ogy in schizophrenia, studies of the medial temporal lobe
in schizophrenia are more recent. However, in a short
period of time, an extensive body of research has accu-
mulated. Here we will review the evidence for abnor-
malities of the hippocampal formation in schizophrenia.

Hippocampal structure

Many studies have found a subtle (about 5%) hippocam-
pal and parahippocampal volume reduction in schizo-
phrenia.51,165-168 Hippocampal volume reduction does not
correlate with the duration of illness or correspond to
schizophrenia subtypes such as deficit and nondeficit syn-
drome.37,169-171 In addition to changes in volume, changes in
hippocampal shape have recently been reported.172 Fur-
thermore, deficits of hippocampal structure (volume,
N-acetylaspartate levels) are also found in healthy, first-
degree relatives of schizophrenic patients.173-175

Most studies have found no change in the number of
hippocampal pyramidal neurons176-179 but nonpyrami-
dal cells in the hippocampus (especially in CA2 subre-
gion) seem to be reduced by 40%.180 Studies of the ori-
entation and position of pyramidal cells within the
cornu ammonis subfields and of entorhinal cortex layer
2 cells are inconclusive.181-185 There is evidence that the
intrinsic hippocampal fiber systems and the reciprocal
connections of the hippocampal formation are per-
turbed, leading to a loss of neuropil and an overall loss
of white matter.177,186-190 Synaptic organization is
changed, possibly indicating altered plasticity of the
hippocampus in schizophrenia.191-195 In addition to these
postmortem studies, magnetic resonance spectroscopy
studies have provided evidence for abnormalities of
membrane phospholipids and high-energy phosphate
metabolism in the temporal lobe.76,196-200

Neurotransmitter systems

Glutamate receptors of the kainic acid/amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid (KA/AMPA) sub-
type, primarily the GluR1 and GluR2 subunits, are
decreased in the hippocampus in schizophrenia.201-205

GABA-uptake sites are reduced and GABAA receptors
are upregulated, possibly due to the loss of GABAergic
hippocampal interneurons.58,206-208 In addition, serotoner-
gic 5-HT1A and 5-HT2 receptors are increased and 5-HT-
uptake sites are unchanged in the hippocampus in schiz-
ophrenia.209,210

Hippocampal function

The metabolism and blood flow of the hippocampus are
increased at baseline in schizophrenia.115,211,212 Further-
more, hippocampal and parahippocampal rCBF is
increased during the experience of psychotic symptoms
and correlates with positive symptoms (delusions, hallu-
cinations).131,213 Recently, we have shown that hippocam-
pal recruitment during the conscious recollection of
semantically encoded words is impaired in schizophre-
nia.214 Schizophrenic patients displayed increased levels
of hippocampal blood flow at rest and lacked the normal
modulation that predicts recall accuracy in control sub-
jects. In addition, there is also indirect215-217 evidence for
the contribution of hippocampal abnormalities to cog-
nitive impairments seen in schizophrenia.

Hippocampal lesion models of schizophrenia

Additional evidence for a contribution of hippocampal
dysfunction to the pathogenesis of schizophrenia is pro-
vided by hippocampal lesions in rodents and primates.
Hippocampal lesions produce behavioral states that
share some resemblance with schizophrenia (attentional
and memory deficits, stereotypic behavior, and hyper-
arousal) and behavioral changes are reversible by neu-
roleptic drugs.218 Such lesion models have been estab-
lished in adult rats,219-221 in neonatal rats,222-225 and in
nonhuman primates.226-229

Conclusion

In summary, the neuropathology of schizophrenia
remains elusive. However, postmortem and neu-
roimaging studies have provided evidence for the
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involvement of several neural networks in schizophre-
nia. Impaired nodes include the dorsolateral prefrontal
cortex, the thalamus, and the hippocampal formation.
Abnormalities in these structures might explain some
of the diagnostic features of schizophrenia as well as
the cognitive deficits often seen in schizophrenia, eg,

memory impairment, attentional deficits, and language
disturbance. The two leading pharmacological models
of schizophrenia, the dopamine and the glutamate
model, and their implications for the study of pharma-
cological responses in schizophrenia, will be discussed
in another article in this issue. ❑
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Modelos neurales de 
la esquizofrenia

Las alucinaciones y los delirios -dos caracterís-
ticas diagnósticas de las psicosis presentes a
través del espectro de los heterogéneos cons-
tructos de esquizofrenia- pueden ser descritos
en términos de los procesos de información
sensorial: la alucinación es el deterioro en la
capacidad de clasificar representaciones gene-
radas interna o externamente; en cambio, el
delirio es la unión inmutable de representa-
ciones con otras en ausencia de una depen-
dencia externa. Los sistemas anatómicos clave
en los procesos de información de orden supe-
rior son el córtex, el tálamo, los ganglios basa-
les y el lóbulo temporal medial, cada uno de
los cuales es modulado por sistemas de pro-
yección de neurotransmisores. Existen eviden-
cias preliminares que se concentran, a la fecha,
en la corteza prefrontal dorsolateral, el tálamo
y la región del hipocampo del lóbulo temporal
medial y apuntan a disfunciones de los circui-
tos neurales dentro y entre cada sistema en la
psicosis. Esto puede dar cuenta de síntomas
específicos y déficits cognitivos asociados como
deterioro de la memoria, déficit de la atención
y trastornos del lenguaje.

Modèles neurologiques de 
la schizophrénie

Les idées délirantes et les hallucinations – deux
symptômes de la schizophrénie, présents dans
toutes les formes hétérogènes de cette maladie
– peuvent être analysées sur le plan physiopa-
thologique comme un dysfonctionnement du
traitement des informations sensorielles : l’hallu-
cination est l’incapacité de définir si une repré-
sentation est d’origine intérieure (mentale) ou
d’origine externe et les idées délirantes sont dues
à l’établissement par le sujet d’une relation
immuable entre des représentations qui n’est pas
justifiée par les éléments extérieurs. Les struc-
tures anatomiques essentielles impliquées dans
les processus intellectuels sont le cortex, le thala-
mus, les ganglions de la base et le lobe temporal
médian, chacune étant modulée par des sys-
tèmes de projections neuronales utilisant des
neurotransmetteurs spécifiques. Les données que
nous avions réunies antérieurement, impliquant
jusqu’à présent le cortex dorsolatéral préfontal,
le thalamus et la région hippocampale du lobe
temporal moyen, soulignaient l’existence d’une
dysfonction des circuits neuronaux au sein de ces
structures et entre elles dans les psychoses. Ces
anomalies pourraient expliquer les symptômes
spécifiques  et les déficits cognitifs associés tels
que les troubles de la mémoire, les troubles de
l’attention et les troubles du langage.
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