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Bound exciton and free exciton 
states in GaSe thin slab
Chengrong Wei1,*, Xi Chen2,*, Dian Li2, Huimin Su1, Hongtao He1 & Jun-Feng Dai1

The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with 
incident light polarized perpendicular to c-axis of sample at 10 K. An obvious energy difference of 
about 34 meV between exciton absorption peak and PL peak (the highest energy peak) is observed. 
By studying the temperature dependence of PL and absorption spectra, we attribute it to energy 
difference between free exciton and bound exciton states, where main exciton absorption peak comes 
from free exciton absorption, and PL peak is attributed to recombination of bound exciton at 10 K. This 
strong bound exciton effect is stable up to 50 K. Moreover, the temperature dependence of integrated 
PL intensity and PL lifetime reveals that a non-radiative process, with activation energy extracted as 
0.5 meV, dominates PL emission.

The study of two-dimensional crystals has become a very popular topic in the field of condensed matter physics 
because of its novel phenomena and the potential for optoelectronic and electronic applications. Recently, a new 
class of 2D crystals, atomically thin metal chalcogenides (such as GaSe1, GaTe2,3 and InSe4), has attracted much 
attention. Take GaSe material as a representative example, it exhibits various interesting physics such as mag-
netism in p-type monolayer GaSe5, non-Markovian memory effects6, strong SHE effect in multilayer GaSe7–9, 
optical spin polarization1,10 and novel behavior of Landau levels in the presence of a Coulombic electron-hole 
interaction of bulk GaSe11–15. Actually, the study on GaSe 2D crystal could be traced back to 1958, when the 
exciton spectrum near fundamental absorption edge of bulk GaSe was first reported16. Free and bound exciton 
behavior in this system has always been discussed17,18 since its discovery. Here we report the remarkable energy 
difference between absorption peak and photoluminescence (PL) peak of GaSe slab at low temperature, which 
is about 34 meV at 10 K. By studying the temperature dependence of PL and absorption spectra, we attribute the 
absorption peak to free exciton absorption, and the PL peak to bound exciton recombination. So the energy dif-
ference of 34 meV origins from energy difference between free exciton and bound exciton states. Meanwhile, the 
temperature dependence of PL integrated intensity and PL lifetime shows that a non-radiative process contributes 
most in the PL emission at the temperature above 50 K.

The crystal of GaSe consists of covalently bonded layers by van der Waals stacking, and each layer contains 
four monoatomic sheets in the sequence of Se-Ga-Ga-Se. Bulk GaSe is generally known as an indirect semicon-
ductor, with the lowest conduction band minimum at M point and the highest valance band maximum at Γ​ point 
of the Brillouin zone. However, the energy difference between Γ​ and M points at the lowest conduction band is 
in the range of 10–20 meV, hence the direct band gap energy is just slightly greater than the indirect band gap 
energy. Due to weak interlayer interactions and high electron density within layers, exciton effect is prominent 
in monolayer and bulk GaSe material. According to Mooser’s theory, optical selection rules near Γ​ point could 
be explained by using an exciton (two-particle) picture. When spin-orbit coupling is ignored, orbital symmetries 
only allow direct transition near Γ​ point for the case of E/c, where E is the polarization of light and c is the c-axis 
of crystal. When spin-orbit interaction is considered, electron transition between the s-like upper most valence 
band and p-like lowest conduction band near the Γ​ point is dipole-allowed for the geometry of E ⊥​ c. In this case, 
the lowest states with total exciton spin S =​ 1 can be excited. Here we have explored the characteristics of the low-
est energy state by absorption and photoluminescence spectra based on the geometry of E ⊥​ c.

Mechanical exfoliated samples from high quality 2H-GaSe single crystals were used in the whole experiments9.  
The GaSe thin slab with length and width of about 1 mm and thickness of about 10μm was mounted on sample 
holder. The photoluminescence and absorption spectra in a transmission geometry were collected with temper-
ature ranging from 10 K to room temperature. During the PL measurement, GaSe slab was normally excited by 
a CW laser at wavelength of 532 nm. While in the absorption measurement, a supercontinuum white light laser 
was used. The PL and absorption spectra were obtained by a spectrometer equipped with a cooled charge-coupled 
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device (CCD). The direction of electric field of excited light for both PL and absorption measurement was per-
pendicular to the c-axis of samples. Besides, ultrafast PL spectra were also employed to study dynamics of 
electron-hole pairs of GaSe. Samples were excited by a pulsed laser with wavelength of 560 nm, pulse widths of 
150 fs and pulse repetition rates of 80 MHz. The time-resolved PL spectra were measured by a single photon ava-
lanche diode with photon timing resolution of 50 ps.

The black curve in Fig. 1a shows the absorption spectrum of a GaSe slab at 10 K. An unambiguous peak 
(2.12 eV) near the fundamental absorption edge of GaSe is observed under T =​ 10 K, which can survive even at 
room temperature. We attribute this sharp absorption peak to an excitonic transition, which was firstly observed 
in bulk GaSe in 1958 by Fielding Fischer and Mooser19. With increase in temperature, the peak position of exciton 
emission at band edge shifts from 2.12 eV at 10 K to 2.01 eV at 29 K. The temperature dependent energy shift of 
exciton peak obtained from absorption spectra is shown in Fig. 1b, where black squares are the experimental data 
and the red line is the theoretical fit. The fitting procedure was performed using Varshni empirical relationship:
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where Eg (0) is the band gap of GaSe slab at 0 K, A and B are constants referred to as Varshni coefficients. The 
constant A is related to the electron/exciton-phonon interaction and B is related with the Debye temperature of 
material, which is 251 K for GaSe.

PL spectrum (red curve) from GaSe slab at the same temperature (T =​ 10 K) is also shown in Fig. 1a. It is 
observed that the PL spectrum of thin slab consists of multiple lines, where three peaks of PL spectrum are iden-
tified at 2.086 eV, 2.064 eV and 2.032 eV respectively (shown in Fig. 1c). In PL spectrum, the highest peak energy 
is at 2.086 eV, which is 34 meV lower than that of exciton peak at 2.12 eV in absorption spectrum. There is no 
observable exciton emission in PL spectrum detected around 2.12 eV, which corresponds to the exciton absorp-
tion peak in absorption spectrum. In order to rule out the possibility of sample heating by the high-power pump 
laser applied, which may lead to red shift of PL peak, PL spectrum was also measured under different excitation 
light intensities. The position of the highest energy peak keeps at around 2.086 eV, independent of excitation light 
intensity ranging from 30 uw to 600 uw as shown in Fig. 1d. The excessive heat induced by absorption could be 
completely consumed by cold finger.

This discrepancy between the lowest peak position of PL spectrum and that of absorption spectrum is unusual 
in intrinsic semiconductor, but it has been frequently observed in the heavily doped semiconductors, where the 

Figure 1.  (a) Absorption and PL spectrum of GaSe slab at 10 K. (b) Exciton energy peak position (black 
squares) as a function of temperature. The solid red line represents the fitting curve by using Varshni empirical 
relationship = − .
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 (c) Muli-peak fitting of PL spectrum at 10 K, and energy of these three 

peaks are identified as 2.086 eV, 2.064 eV and 2.032 eV, respectively. (d) PL spectrum as a function of pump 
intensity ranging from 30 uw to 600 uw at 10 K.
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Fermi level lies within the conduction band and the lowest states in the conduction band are filled20. In this case, 
photon energy larger than the fundamental band gap is needed to excite a transition from valence band to unoc-
cupied states in the conduction band in absorption process. Hence, the absorption peak shifts to higher energy 
than that of photoluminescence peak as electron-hole recombination occurs near the band edge in photolumines-
cence process. If this mechanism works, we may deduce the electron density using equation:

π
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where EF −​ Ec is the energy difference between Fermi surface and the bottom of conduction band, and m* is the 
effective mass near Γ​ point. Taking EF −​ Ec =​ 34 meV, m* =​ 0.17 me

21, and ignoring the spin degeneracy that results 
in higher electron density, the electron density N is estimated to be 1.96 ×​ 1018 cm−3, 2 orders of magnitude larger 
than that of intrinsic material. However, electric-conductance measurements showed that GaSe slab is electrically 
intrinsic. Thus, we may safely rule out this possibility.

This phenomenon was also observed in indirect band gap semiconductor where most absorption occurs in 
direct transition of electrons around E-point under low temperature. After excitation, electrons (holes) are quickly 
scattered to the lowest point of conduction band near M-point, and then recombine with holes while releasing 
phonons22. This process can result in the red shift of PL spectrum compared with absorption one. Experimental 
result reported by Mosser’s group16 showed that there existed an indirect gap in bulk GaSe, several tens of meV 
below the direct one and that the indirect gap was only visible in thick sample with light incident along the layer 
plane. However, our experimental setup with E ⊥​ c configuration is completely different from theirs. Besides, 
the quantum yield (QY) of our GaSe sample at 10 K is estimated to be 0.05, with a thin film of fluorescent dye as 
standard with QY of 0.511 given by absolute PL quantum yields measurement system. The measured QY of our 
GaSe sample is one order of magnitude larger than that of monolayer MoS2, which is a direct-bandgap semicon-
ductor23. So our GaSe sample is not an indirect gap semiconductor, since the band gap photoluminescence QY 
for indirect band gap material is usually negligible compared to the direct band gap one for the phonon-assisted 
process of its photoluminescence. This evidence tends to support the possibility that the PL of our GaSe sample 
at low temperature is attributed to the direct interband transition. So the hypothesis for its being indirect band 
gap one is also excluded.

One potential reason may arise from high density of state (DOS) below the top of valance band, which exhib-
its a sharp van Hove singularity5. The DOS of single layer GaSe is almost a step function at the VBM and gives 
a quickly peak at the energy 0.013 eV below the VBM. Therefore, the energy of strong exciton absorption peak, 
which emerges at the position of the highest DOS, is higher than that of PL peak resulted from the electron-hole 
pair recombination near the band gap. However, this unusual character of large DOS at VBM mainly stems from 
a Mexican-hat-like energy surface around the zone center (Γ​) at the monolayer limit24. And according to theoret-
ical calculation, GaSe monolayer has an indirect band gap25. It is inconsistent with our experimental result that 
bulk GaSe is a direct band gap semiconductor at low temperature. So this explanation is also excluded.

Figure 2a shows the evolution of PL spectra with increasing temperature under cw laser excitation of 2.33 eV, 
which is higher than the band gap of GaSe slab. As shown in Fig. 2a, the PL spectrum shifts to lower energy as 
the temperature increases from 10 K to 40 K. Around 50 K, a higher energy peak around 2.102 eV labeled as 
“A” emerges, which is absent below 50 K. As temperature goes up to 290 K, the peak A shifts to lower energy, 
and then merges together with other PL peaks. At room temperature, only one PL peak around 2.00 eV can be 
observed. We fit the PL spectrum under 60 K with 4 peaks, and label the two highest energy peaks as “A” and 
“B”. It is shown in Fig. 2b that the energy difference between peaks A and B is around 39 meV at 60 K, which is 
comparable with the energy difference (34 meV) between high energy PL peak (2.086 eV) and exciton absorption 
peak (2.12 eV) at 10 K shown in Fig. 1a. Besides, peak A has a FWHM of 10 meV, seven times smaller than that of 
peak B. Therefore, we could attribute this peak A (around 2.102 eV) emerging at 60 K to the free exciton and peak 
B at lower energy to the bound exciton. As to peak C and peak D with lower energy than that of peak B, they are 
probably ascribed to the radiative recombination of trap states17. The temperature dependence of this free exciton 
emission is shown in Fig. 2c, where red spots represent PL peak position of free exciton with FWHMs labeled by 
red bar, whereas black squares represent exciton absorption peak with FWHMs labeled by black bar at various 
temperatures. Peak position of this free exciton emission changes from 2.10 eV with a FWHM of 8 meV at 60 K 
to 2.0 eV with a FWHM of 47 meV at 290 K. And exciton peak of absorption spectrum changes from 2.11 eV with 
a FWHM of 9 meV at 70 K to 2.01 eV with a FWHM of 14 meW at 290 K. These two peaks almost overlap with 
each other in the temperature range of 50 K to 290 K. Both of them exhibit the same temperature dependence, 
which can be fitted by Varshni empirical relationships. All evidences tend to demonstrate that the peak A of PL 
spectrum stems from radiative recombination of free excitons. Because the probability of thermal dissociation 
effect in bound excitons increases with the increased temperature, more and more free excitons are released from 
bound states. Therefore, the PL intensity of free excitons becomes relatively higher than that of bound excitons as  
temperature rises (Fig. 2a). So under room temperature, most of PL come from the radiative recombination 
of free excitons. Figure 3c also shows an obvious discrepancy in FWHM of PL and absorption spectra in the  
temperature range of 150 K–290 K. We only observed a single broad emission peak in PL spectra in this tem-
perature range, which makes it difficult to distinguish free excitons from bound excitons. So the FWHM of PL 
spectra is rather wider than that of absorption spectra in the range of 150 K to 290 K. Below 50 K, photoexcited 
free excitons are quickly captured by defect/impurity centers to form bound states, and consequently free exciton 
is difficult to be detected. These results provide another potential cause for energy difference in PL and absorption 
spectrum at low temperature.

We also investigated temperature-dependent integrated PL intensity under the same experimental conditions, 
including excitation power as well as exposure time. As shown in Fig. 3a, the PL intensity dramatically drops by 
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2 orders of magnitude as temperature rises from 10 K to 50 K, and then has a flat plateau above 60 K. The tem-
perature dependence below 50 K indicates that some non-radiative processes dominate the PL intensity, which 
are activated by increasing temperature. In such a situation, PL intensity is proportional to the scattering rate of 
non-radiative process-I ∝​ exp(−​E/kBT), where E is the activation energy. As shown in Fig. 3b, the black points are 
integrated intensity at different temperature, and the red curve is a fitting result based on the above equation, from 
which we extract E =​ 0.5 meV. Because of the layered structure of GaSe slab, stacking faults and dislocation often 
occur in the samples. Therefore, non-radiative centers are formed by these defect states, inducing the quenching 
of PL intensity as temperature rises.

Figure 4a shows lifetime evolution of the main PL peak with temperature. All PL lifetime data were collected 
around PL peak with bandwidth of 10 nm. Due to limitation of the repetition frequency of the excitation pulse 
laser, the maximum span of PL lifetime is around 12.5 ns. The black curve in Fig. 4a shows the PL lifetime as a 

Figure 2.  (a) Normalized PL spectra under different sample temperature ranging from 10 K to 290 K. (b) PL 
spectrum and muli-peak fitting curves at T =​ 60 K. (c) Absorption peak (black squares) and free exciton PL peak 
(red circles) as a function of temperature, where bars represent the FWHMs.

Figure 3.  (a) PL spectra at various temperatures under the same experimental conditions, including excitation 
power, CCD optical integral time. (b) The integrated PL intensity as a function of temperature (black squares) 
and fitting curve (solid red curve) by using the equation I ∝​ exp(−​E/kBT).
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function of delay time at 10 K. Non-zero PL intensity (around 6000 counts) before time zero indicates that PL 
lifetime at 10 K is longer than 12.5 ns, which is the limitation of our setup. By considering non-zero PL intensity 
before time zero and fitting PL data by bi-exponential function at 10 K, we deduce two time constants of 1.8 ns 
and 55 ns as shown in red curve of Fig. 4a. The deduced fast process with time constant of 1.8 ns can be attributed 
to bound exciton formation, which corresponds to the time that free excitons are captured by defects/impurities. 
And the slow process of 55 ns is attributed to PL decay of bound exciton. At 260 K, PL decay of free exciton only 
contains one component with time constant of 2.8 ns. When temperature changes from 10 K to 290 K, PL lifetime 
(the slow process) sharply decreases from 55 ns at 10 K to 12 ns at 80 K, then PL lifetime approaches to a constant 
of 2.3 ns above 80 K. The trend of PL lifetime shown in Fig. 4b is consistent with that of PL intensity, which further 
indicates that non-radiative process dominates at elevated temperature.

In summary, we observe a big energy difference between exciton absorption peak and PL peak below 50 K. 
By analyzing the temperature dependence of PL and absorption spectra, we propose that the PL mainly origins 
from emission of bound exciton at low temperature and the absorption peak results from absorption of free exci-
ton at direct gap. By comparing PL intensity and lifetime under various temperatures, the activation energy of 
non-radiative process is extracted to be around 0.5 meV.
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