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ABSTRACT 
We evaluated the impacts of substituting cottonseed meal (CSM) and sorghum grain (SG) with dried distillers` grains with solubles (DDGS) in 
lamb feedlot diets on the dry matter intake (DMI), the growth performance, blood serum analysis, feces phosphorus (P) and nitrogen (N), wool 
production and quality, carcass traits, adipose tissue fatty acid (FA) profiles, and sensory panel tests. For 72 d, Rambouillet wether lambs (n = 
44, initial body weight, BW = 28.8 ± 3.3 kg) were individually fed ad libitum pelleted diets containing DDGS that replaced 0% (0DDGS), 25% 
(25DDGS), 50% (50DDGS), or 75% (75DDGS) of the CSM and SG in a completely randomized design trial. Linear and quadratic effects of DDGS 
levels on the response variables were analyzed. Treatment × day interactions (P < 0.001) were observed for BW and DMI. As the DDGS level was 
increased, DMI (from days 21 to 70), lamb BW (from days 56 to 70), average daily gain, blood urea nitrogen and P, and fecal P linearly increased 
(P ≤ 0.05). Fecal N quadratically increased (P = 0.01), but no effects were found for gain:feed, blood insulin-like growth factor-1, or calcium. No 
differences in wool production or most of the wool quality parameters were detected. Adipose tissue stearic acid linearly increased (P = 0.02), 
linoleic acid quadratically increased (P = 0.01), and oleic acid tended to quadratically decrease (P = 0.08) as the DDGS increased in the diets. 
Increasing the DDGS level in the diets quadratically increased the hot carcass weight (P = 0.02), backfat thickness (P = 0.04), and body wall thick-
ness (P < 0.001) while having no impact on the longissimus muscle area. As the DDGS increased in the diet, juiciness, tenderness, and overall 
acceptability linearly increased (P ≤ 0.05), while having no effect on the cook-loss, flavor intensity, or off-flavor detectability. Replacing 50% of 
CSM and SG with DDGS improved growth performance and enhanced the carcass and meat quality.

Lay Summary 
Dried distillers’ grains with solubles (DDGS), mostly derived from corn ethanol production in the U.S., is an easily available feedstuff that can be 
used in animal rations to replace traditionally and frequently more expansive sources of energy and protein. In this study, we tested replacing up 
to 75% of sorghum grain and cottonseed meal with DDGS for finishing lambs in feedlot conditions. The DDGS in lamb diets increased intake, 
final body weight, and average daily gain while maintaining an unaltered gain:feed ratio, which may increase profitability if the DDGS price is 
competitive. Important carcass traits were improved by DDGS inclusion such as the hot carcass weight and backfat thickness; however, there 
was no effect on the longissimus muscle area. Although the fat percentage and most of the adipose tissue fatty acids (FA) in meat had no sig-
nificant differences with increased DDGS, some major FA had remarkable alterations, such as increased stearic and linoleic acids and decreased 
oleic acid. Increasing the DDGS improved the meat juiciness, tenderness, and overall acceptability while having no impact on the cook-loss, 
flavor intensity, or off-flavor detectability. In conclusion, moderate levels of substitution (50%) led to overall better results and therefore are 
recommended.
Key words: carcass, fatty acids, intake, Rambouillet, sensory panel, wool
Abbreviations:  AA, amino acids; ADF, acid detergent fiber; ADG, average daily gain; BCTRC, boneless closely trimmed retail cuts; BFT, backfat thickness; BUN, 
blood urea nitrogen; BW, body weight; BWT, body wall thickness; Ca, calcium; CF, crude fat; CP, crude protein; CSM, cottonseed meal; DDGS, dried distillers’ 
grains with solubles; DM, dry matter; DMI, dry matter intake; FA, fatty acid; FAME, fatty acid methyl ester; G:F, gain:feed; HCW, hot carcass weight; IGF-1, blood 
insulin-like growth factor-1; LM, longissimus muscle; LMA, longissimus muscle area; MUFA, monounsaturated fatty acid; N, nitrogen; NDF, neutral detergent 
fiber; P, phosphorus; PUFA, polyunsaturated fatty acid; RDP, rumen degradable protein; RUP, rumen undegradable protein; S, sulfur; SBM, soybean meal; SFA, 
saturated fatty acids; SG, sorghum grain; TDN, total digestible nutrients

INTRODUCTION
The corn ethanol industry has promoted the ready availability 
of distillers` grains co-product. In the last 15 years, the dried 
distillers’ grains with solubles (DDGS) supply in the U.S. has 
increased approximately 3.5-fold, reaching 35 million metric 

tons in 2020/2021 (USDA, 2021). Due to its crude protein 
(CP; 26%–33%; Liu, 2011) and energy contents (89.7% of 
total digestible nutrients, TDN; Nuez Ortín and Yu, 2009) 
as well as its lower relative costs (Alshdaifat and Obeidat, 
2019), DDGS has been included in animal diets to replace 
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traditional feedstuffs such as soybean meal (SBM) and corn 
(Klopfenstein, 1996; Hoffman and Baker, 2011; Karaca et al., 
2021). Cottonseed meal (CSM) and sorghum grain (SG) are 
common feed ingredients used in livestock diets that can also 
be replaced by DDGS in small ruminant production systems, 
notably for fattening lambs (Whitney and Braden, 2010; 
Hodges et al., 2020a). Furthermore, DDGS contains high levels 
of rumen undegradable protein (RUP; 45% of total protein; 
Belyea et al., 2010) and sulfur (S, 0.11%-0.84%; Liu, 2011), 
which can enhance growth and wool production (Hassan et 
al., 1991; Castro-Pérez et al., 2014), and fiber that help reduce 
acidosis problems (Klopfenstein, 1996). Maximizing the inclu-
sion rate of DDGS in small ruminant diets without negatively 
affecting growth, health, or end products will benefit not only 
corn growers and the ethanol industry but also the sheep in-
dustry by potentially reducing feed costs (Felix et al., 2012; 
Hodges et al., 2020b; Quadros et al., 2021).

It is hypothesized that DDGS can partially replace CSM 
and SG in feedlot lamb diets without compromising produc-
tion, physiological parameters, or meat quality. Therefore, 
this study aimed to evaluate the effects of replacing CSM and 
SG with DDGS in Rambouillet wether diets on lamb growth 
factors, wool quality and production, and as meat quality.

MATERIALS AND METHODS
Animals and Management
The experimental protocol was approved by the Texas A&M 
University Institutional Animal Care and Use Committee 
(2018-013A).

Rambouillet wether lambs (n = 44; approximate age = 4 
mo; initial body weight, BW = 28.9 ± 3.3 kg) were weighed, 
stratified by BW, and randomly assigned to one of four diets 
(n = 11/treatment). The trial was conducted following a 
completely randomized design using the animal as experi-
mental unit. Lambs received an ear tag and a subcutaneous 
injection of a clostridial vaccine (Vision7 with SPUR, Inervet 
Inc., Millsboro, DE) and were randomly assigned to an in-
dividual, completely covered dirt pen (2.44 × 2.97 m) with 
feed bunks and automatic watering systems. The adaptation 
period to the experimental diets was conducted in two steps 
and consisted of increasing levels of concentrate (50% and 
65%, dry matter, DM, basis) and DDGS in the diet over 16 
days (8 days for each step, using 50% and 100% of the pro-
portion of DDGS planned for each diet, respectively) until 
reaching the levels of concentrate (20:80) in the finishing ex-
perimental diets according to the assigned treatment group. 
Simultaneously, the non-pelleted feed was gradually replaced 
by pelleted treatment diets. Pelleted diets contained corn 
DDGS that replaced 0% (0DDGS), 25% (25DDGS), 50% 
(50DDGS), or 75% (75DDGS, DM basis) of the ground SG 
and CSM (Table 1). Monensin (22 g/metric ton of Rumensin 
80; Elanco, Indianapolis, IN) was included in all diets. Lambs 
were individually fed once daily at 0800 hours, with an al-
lowance of approximately 10% refusal. Feed refusals were 
collected three times per week and weighed to determine the 
average daily DM intake (DMI). Lamb BW was recorded on 
day 0 and then every 7 days until day 70. The animals were 
weighed at the same time each week. The average daily gain 
(ADG) and average daily DMI were determined between days 
in which BW was recorded; the gain:feed ratio (G:F) was cal-
culated by dividing ADG by DMI.

Feed and Feces Collection and Analysis
Samples of the feed ingredients in each treatment diet were 
randomly collected, dried at 55 °C in a forced-air oven 
for 48  h, ground in a Wiley Mill (Arthur H. Thomas Co., 
Philadelphia, PA) to pass a 1-mm screen, and stored at −20 
°C until analysis. Nitrogen (N) content was analyzed by a 
standard method (990.03, AOAC 2006), and the CP was cal-
culated as 6.25 × N. The crude fat (CF) was analyzed by ether 
extraction (2003.05, AOAC 2006), and the ash analysis was 
determined by a standard method (942.05, AOAC 2006). 
The neutral detergent fiber (NDF) and acid detergent fiber 
(ADF) were analyzed using the Van Soest et al. (1991) pro-
cedure modified for an Ankom 2000 Fiber Analyzer (Ankom 
Technol. Corp., Fairport, NY) without correcting for residual 
ash. The feed S was evaluated by a Leco (model SC-432, St. 
Joseph, MI) analyzer, and all other minerals were analyzed 
by a Thermo Jarrell Ash IRIS Advantage HX Inductively 
Coupled Plasma Radial Spectrometer (Thermo Instrument 
Systems, Inc., Waltham, MA).

Feces were rectally collected 5 h after feeding on day 60 
and analyzed for phosphorus (P) content using a Thermo 
iCAP 6300 inductively coupled plasma radial spectrometer 
(Thermo Instrument Systems) according to the procedure 
outlined in Wolf et al. (2003), and the N content was ana-
lyzed by a Leco analyzer (model CN-628; Leco Corporation, 
St. Joseph, MI).

Blood Collection and Analysis
A 10-mL blood sample was collected from each lamb on 
days 0, 14, 28, 42, and 70, 4  h after feeding via jugular 
venipuncture using a non-heparinized vacutainer collection 
tube (serum separator tube, gel and clot activator; Becton 
Dickenson, Franklin Lakes, NJ). The blood samples were al-
lowed to clot for approximately 30 min at room temperature 
and then centrifuged (Beckman Coulter TJ6 refrigerated cen-
trifuge, Fullerton, CA) at 970 × g for 25 min at 4 °C. Serum 
was decanted and frozen at −20 °C until analysis. The blood 
urea N (BUN) was analyzed using a commercial kit (Teco 
Diagnostics, Anaheim, CA), and blood insulin-like growth 
factor-1 (IGF-1) was determined by radioimmunoassay using 
the procedure outlined by Berrie et al. (1995). The serum 
calcium (Ca) and P contents were analyzed from days 0, 
14, 42, and 70 samples using an Olympus AU400E analyzer 
(Olympus America Inc., Center Valley, PA).

Wool Production and Quality
Lambs were shorn 2 days before study initiation and on day 
65. Fleece and fiber measurements were made in the Wool and 
Mohair Laboratory at the Texas AgriLife Research Center, 
San Angelo. After grease fleece weights were obtained for each 
fleece, staples (n = 10) were removed from random positions 
in each fleece for staple strength (Agritest Pty Ltd., Sidney, 
NSW) and length measurements (D1234; ASTM, 2007). The 
remainder of the fleece was pressure-cored (32 × 13 mm cores, 
Johnson and Larsen, 1978) to obtain a 50-g random sample. 
Two 25-g sub-samples were used to determine the laboratory 
scoured yield (D584; ASTM, 2007). One of the washed and 
dried duplicates was mini-cored (D6500; ASTM, 2008) to 
obtain a few milligrams of 2-mm snippets that represented 
the whole fleece. Snippets were washed in a Buchner funnel 
with 1,1,1-trichloroethane (10  mL) and acetone (10  mL), 
dried at 105 °C for 1 h, cooled, and conditioned for 12 h at 
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the standard atmosphere of 21 ± 1 °C and 65 ± 2% relative 
humidity (D1776; ASTM, 2007). Conditioned snippets were 
then spread onto microscope slides (7 × 7 cm) and measured 
for fiber diameter distribution (mean, SD, and CV), comfort 
factor (% fibers ≤ 30 µm), and average fiber curvature (mean, 
SD, and CV) using an OFDA 100 (BSC Electronics, Ardross, 
Western Australia; Baxter et al., 1992; ASTM, 2008). Wool 
production per unit of BW (g/kg) was calculated as clean 
wool production divided by final shorn BW.

Carcass Characteristics and the Feed and Meat 
Fatty Acid Profile
On day 72, lambs were transported 500 m to the Angelo State 
University Food Safety and Product Development Laboratory 
and humanely harvested after a 24-h fast. The shrunk BW and 
hot carcass weight (HCW) were recorded, and the carcasses 
were chilled at 2 ± 1 °C. At 48 h postmortem, each carcass was 
ribbed between the 12th and 13th ribs and analyzed to deter-
mine the longissimus muscle area (LMA), the backfat thick-
ness (BFT) at the 12th rib, the body wall thickness (BWT), 
and the leg circumference (LC) across the stifle joint (USDA, 
1997). The longissimus muscle (LM) was removed from the 
left side of each carcass by deboning from the thoracic ver-
tebrae according to procedures of the North American Meat 

Processors (#232a; NAMP, 1997). Five 2.54-cm-thick chops 
were cut starting from the posterior end. The first chop was 
designated for fatty acid (FA) methyl ester (FAME) analysis, 
cut to straighten the LM face, vacuum-packaged separately, 
and stored at −80 °C. Subsequently, four 2.54-cm-thick chops 
were serially cut for sensory analysis, labeled, vacuum pack-
aged, and stored at −10 °C.

The subsample collected from the LM cross-section, 
including any residual intermuscular fat, and feed sam-
ples were pulverized in liquid nitrogen. Then, total lipids 
were extracted by a modification of the method outlined in 
Folch et al. (1957). Adipose tissue (100  mg) was extracted 
in chloroform:methanol (2:1, vol/vol), and FAME analysis 
was prepared as described by Morrison and Smith (1964) 
but modified to include an additional saponification step 
(Archibeque et al., 2005). The FAME analysis was conducted 
using a Varian gas chromatograph (GC; model CP-3800 fixed 
with a CP-8200 autosampler; Varian, Inc., Walnut Creek, 
CA). Separation of the FAME was accomplished on a fused 
silica capillary column CP-Sil88 (100 m long × 0.25 mm i.d.; 
Chrompack, Inc., Middleburg, the Netherlands; helium as 
carrier gas and flow rate = 1.2 mL/min). After 32 min at 180 
°C, the oven temperature was increased at 20 °C/min to 225 
°C and held for 13.75 min; the total run time was 48 min. 
The injector and detector temperatures were 270 and 300 °C, 

Table 1. Ingredient and chemical composition (% DM basis) of dried distillers` grains with solubles (DDGS) and treatment diets

Item, %1 DDGS Diet2

0DDGS 25DDGS 50DDGS 75DDGS 

Cottonseed hulls 20.00 20.00 20.00 20.00

DDGS 0.00 17.58 35.16 52.74

Cottonseed meal 10.00 7.50 5.00 2.50

Ground sorghum grain 60.72 45.44 30.17 14.86

Cane molasses 4.00 4.00 4.00 4.00

Limestone 1.52 2.18 2.82 3.50

Ammonium chloride 0.95 0.95 0.95 0.95

Salt 0.95 0.95 0.95 0.95

Urea 1.36 0.90 0.45 0.00

Mineral and vitamin premix 0.50 0.50 0.50 0.50

Chemical composition

CP 25.1 17.6 18.7 21.5 21.1

Crude fat 5.0 3.5 5.2 7.1 6.6

NDF 37.1 18.9 25.6 28.3 37.1

ADF 13.9 12.2 16.6 18.7 23.8

Ash 6.2 4.9 4.8 5.4 7.2

NEm, Mcal/kg 2.05 1.66 1.66 1.65 1.64

NEl, Mcal/kg 1.28 1.07 1.05 1.03 1.00

Ca 0.1 1.7 1.3 1.5 1.9

P 1.1 0.3 0.3 0.6 0.7

Ca:P ratio 0.09 5.6 4.1 2.7 2.6

Mg 0.45 0.19 0.29 0.30 0.34

K 1.92 0.79 1.42 1.07 1.29

Na 0.68 0.14 0.26 0.22 0.35

S 0.44 0.19 0.31 0.36 0.40

1Mineral and vitamin premix = sodium chloride, potassium chloride, sulfur, manganous oxide, zinc oxide, vitamins A, D, and E, calcium carbonate, 
cottonseed meal, cane molasses, and animal fat. CP = crude protein; NDF = neutral detergent fiber; ADF = acid detergent fiber.
2Pelleted diets contained DDGS that replaced 0% (0DDGS), 25% (25DDGS), 50% (50DDGS), or 75% (75DDGS) of the cottonseed meal and sorghum 
grain.
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respectively. Individual FA was identified using genuine ex-
ternal standards (Nu-Chek Prep, Inc., Elysian, MN).

The Sensory Panel Evaluation
A trained sensory panel (6 members; Cross et al., 1978) 
evaluated the chops cut from the loin section (AMSA, 1995). 
Randomly selected chops were thawed for 24 h at 2 ± 1 °C 
and cooked on a clam-shell-style grill (Kerth et al., 2003) for 
7 min. Samples were trimmed to less than 0.64 cm of outside 
fat and connective tissue, cut into 1.27-cm × 1.27-cm portions 
and placed in warming pans until served to the panelists. The 
cook-loss was expressed as a percentage of post-cooking 
weight loss from the raw weight. Samples from each chop 
were evaluated by panelists who were secluded in partitioned 
booths with a controlled level of red incandescent light. A 
“warm-up” sample chop was served at the initiation of each 
sensory session, followed by 6 × 8 chop samples per session. 
Panelists were instructed to cleanse their palates with a salt-
free saltine cracker and water before each sample. Chops 
were evaluated for initial and sustained juiciness, initial and 
sustained tenderness, and flavor intensity on a scale of 1 to 8, 
where 1 = extremely dry, tough, and bland, and 8 = extremely 
juicy, tender, and intense, respectively. Chops were also evalu-
ated for off-flavor (1 = extreme off-flavor and 4 = no off-
flavor) and overall acceptability (1 = not acceptable and  
8 = highly acceptable).

Statistical Analysis
Lamb BW, ADG, DMI, G:F, and blood serum variables were 
analyzed by ANOVA using the PROC MIXED procedure of 
SAS (SAS Inst. Inc., Cary, NC) with a model that included 
treatment, day, and treatment × day interaction; the day was 
a repeated measure, and individual lambs were the subject. 
When a treatment × day interaction was observed (P ≤ 0.05), 
effects were evaluated by day. Suitable covariance structures 
were compared for each model. Fecal, wool, carcass, sensory, 
and meat FA profiles were analyzed using a model that in-
cluded the lamb as the experimental unit. The average fiber 
diameter of the mid-side sample at the start of the study was 

used as the covariate for the average fiber diameter of the 
fleece, and the initial BW was used as a covariate for the clean 
fleece weight, but these covariates were later removed because 
they were not significant. The percentage of fat in the meat 
samples was analyzed by ANOVA using the GLIMMIX pro-
cedure of SAS (β distribution) with a model that included the 
diet as the fixed effect and the lamb as the experimental unit. 
All data are reported as least squares means with the greatest 
SEM. Treatment effects were tested using the following single 
degree of freedom orthogonal polynomial contrasts: linear 
and quadratic effects of replacing CSM and SG with DDGS. 
Only the highest-order contrast that was significant (P < 0.10) 
will be discussed further in this paper. Statistical significance 
was declared at P ≤ 0.05 and a tendency at 0.05 < P ≤ 0.10.

RESULTS AND DISCUSSION
The Chemical Composition and FA Profiles of the 
Treatment Diets
The chemical composition of the DDGS and diets is pre-
sented in Table 1, and the FA profiles of DDGS, CSM, SG, 
and diets are presented in Table 2. The DDGS is an advanta-
geous feed because it can substitute traditional protein (i.e., 
SBM, CSM; Hoffman and Baker, 2011, Castro-Pérez et al., 
2014; Karaca et al., 2021) and high-energy containing (i.e., 
corn, SG; Klopfenstein, 1996; Hodges et al., 2020a) feedstuffs 
in livestock diets; however, its composition can vary consid-
erably depending on the processing method (Böttger and 
Südekum, 2018). The CP variability in the diets was due to a 
greater CP content in the DDGS compared with SG (Trujillo 
et al., 2016), as the CSM CP levels were low (Table 1). Urea 
added in 0DDGS and 25DDGS did not turn diets isoproteic 
and adding more urea could bring metabolic risks and alter 
the experimental results.

Increasing the DDGS levels in the diets increased NDF and 
ADF (Table 1) due to greater NDF and ADF contents in the 
DDGS compared to the SG (Trujillo et al., 2016). The CF 
in the DDGS was less than 8.2%-11.4% range obtained by 
Spiehs et al. (2002) but slightly greater than 4.4% observed 

Table 2. Fatty acid (FA) profile of sorghum grain (SG), cottonseed meal (CSM), dried distillers` grains with solubles (DDGS), and treatment diets

Item1 SG CSM DDGS Diet2

0DDGS 25DDGS 50DDGS 75DDGS 

Fat, % 4.8 6.8 5.3 3.8 4.3 5.0 5.3

FA, %

  Lauric acid (C12:0) 8.1 8.6 10.6 11.1 9.5 8.3 9.4

  Palmitic acid (C16:0) 12.5 20.1 14.9 13.9 14.1 13.9 14.6

  Palmitoleic acid (C16:1) 0.40 0.40 nd 0.39 0.37 0.34 0.30

  Stearic acid (C18:0) 1.7 2.9 2.7 1.7 1.9 1.9 2.1

  Oleic acid (C18:1) 1.2 0.7 0.9 1.1 1.1 1.1 1.0

  Oleic acid (C18:1c9) 32.3 18.6 19.1 24.8 24.7 25.1 23.0

  Linoleic acid (C18:2) 41.9 47.2 48.5 45.5 46.2 46.9 47.0

  Linolenic acid (C18:3) 1.9 0.8 2.5 1.8 2.0 2.1 2.1

  Arachidonic acid (C20:4) Nd 0.30 0.26 nd nd 0.21 0.25

  Lignoceric acid (C24:0) Nd nd 0.35 nd 0.24 0.24 0.26

1FA = expressed as a percentage of total FA. nd = none detected.
2Pelleted diets contained DDGS that replaced 0% (0DDGS), 25% (25DDGS), 50% (50DDGS), or 75% (75DDGS) of the cottonseed meal and sorghum 
grain.
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by Whitney and Lupton (2010). The CF increased with the 
DDGS level in the diets, but the FA profile of the diets did 
not follow the same trend, with discrete changes in the major 
FA, such as C18:2, C18:1c9, C12:0, and C12:0 (Table 2). 
According to Moreau et al. (2011), the major FA in DDGS 
is linoleic acid (C18:2), followed by oleic acid (C18:1) and 
palmitic acid (C16:0), while stearic (C18:0) and linolenic 
(C18:3) acids are present at low levels.

Growth Performance
Treatment × day interactions were observed (P ≤ 0.05) for 
BW and DMI (Table 3). After 21 days, increasing DDGS 
levels in the diets linearly increased DMI (P ≤ 0.02), similar to 
what was observed by Schauer et al. (2008) when replacing 
approximately 70% of barley and all SBM with DDGS 
in Rambouillet wether and ewe lamb diets. Conversely, 

McEachern et al. (2009) observed no effect of substituting all 
CSM with DDGS on the DMI of Rambouillet wether lambs. 
Increased the NDF in experimental diets (Table 1) did not 
constrain the DMI (Table 3), probably because the physic-
ally effective NDF of DDGS provided little effective fiber 
(Kleinschmit et al., 2007).

The BW from days 0 to 49 was similar (P > 0.16) among 
treatments regardless of DDGS level. However, from days 
56 to 70, increasing DDGS in the diets promoted a linear 
increase (P ≤ 0.05) in BW. Assuming a 51% RUP in DDGS 
and CSM (McEachern et al., 2009), 75DDGS diets contained 
2.9 times more RUP than 0DDGS diets, which probably im-
proved protein utilization and animal productivity (Belyea et 
al., 2010). In addition, the additional CF with the increasing 
DDGS levels likely increased the net energy for gain (Schauer 
et al., 2008).

Table 3. Effects of substituting dried distillers` grains with solubles (DDGS) for cottonseed meal and sorghum grain on lamb growth performance, blood 
urea N (BUN), serum Ca, P and insulin-like growth factor-1 (IGF-1), and fecal P and N concentrations

Item1 Diet2 SEM3 P-value4

0DDGS 25DDGS 50DDGS 75DDGS L Q 

BW, kg

  Day 0 28.9 28.3 29.0 29.3 1.1 0.66 0.67

  Day 7 30.9 31.4 31.6 30.7 1.1 0.95 0.50

  Day 14 33.2 33.3 33.8 32.8 1.1 0.91 0.60

  Day 21 34.3 34.8 35.5 34.8 1.1 0.62 0.58

  Day 28 35.1 36.2 37.5 36.4 1.2 0.32 0.35

  Day 35 37.1 37.7 39.4 38.4 1.1 0.21 0.48

  Day 42 38.5 38.9 40.8 40.0 1.2 0.19 0.58

  Day 49 40.1 40.4 43.1 41.5 1.2 0.16 0.41

  Day 56 41.1 42.6 44.5 44.5 1.3 0.03 0.54

  Day 63 42.3 43.8 46.3 46.1 1.3 0.02 0.48

  Day 70 42.8 44.0 46.7 45.9 1.3 0.05 0.45

ADG, kg 0.20 0.21 0.26 0.24 0.01 0.001 0.24

DMI, kg

  Day 7 1.28 1.29 1.36 1.17 0.08 0.43 0.22

  Day 14 1.37 1.44 1.61 1.41 0.08 0.43 0.11

  Day 21 1.23 1.43 1.70 1.65 0.08 <0.001 0.10

  Day 28 1.26 1.37 1.57 1.65 0.09 0.002 0.84

  Day 35 1.25 1.34 1.70 1.64 0.07 <0.001 0.22

  Day 42 1.33 1.35 1.64 1.76 0.07 <0.001 0.49

  Day 49 1.27 1.35 1.66 1.74 0.08 <0.001 0.99

  Day 56 1.27 1.43 1.68 1.70 0.09 <0.001 0.42

  Day 63 1.11 1.24 1.46 1.58 0.09 <0.001 0.99

  Day 70 1.34 1.45 1.65 1.58 0.09 0.02 0.31

G:F, kg/kg 0.16 0.16 0.17 0.15 0.01 0.68 0.27

BUN, mg/dL 13.1 14.6 18.4 17.8 0.8 <0.001 0.17

IGF-1, ng/mL 217.7 221.0 250.4 227.8 13.4 0.30 0.33

Ca, mg/dL 10.1 9.8 9.9 9.4 0.3 0.13 0.64

P, mg/dL 7.7 9.1 9.3 9.9 0.4 <0.001 0.25

Fecal P, % 0.39 0.70 0.78 1.23 0.10 <0.001 0.48

Fecal N, % 2.9 3.6 3.6 3.6 0.1 <0.001 0.01

1Treatment × day interactions: BW (P < 0.001); ADG (P = 0.08); DMI (P < 0.001); G:F (P = 0.68); BUN (P = 0.43); IGF-1 (P = 0.20); serum Ca (P = 0.93); 
serum P (P = 0.60).
2Lambs were fed pelleted diets containing DDGS that replaced 0% (0DDGS), 25% (25DDGS), 50% (50DDGS), or 75% (75DDGS) of the cottonseed meal 
and sorghum grain.
3SEM represents the greatest standard error of the mean.
4Linear (L) and quadratic (Q) orthogonal polynomial contrasts.
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The ADG increased linearly as the DDGS level in the diets 
increased (P < 0.001; Table 3), corroborating Castro-Pérez 
et al. (2014) who replaced up to 45% of the dry-rolled corn 
and SBM with DDGS in the diets of Pelibuey × Katahdin 
crossbred intact male lambs. However, several authors (Huls 
et al., 2006; Şahin et al., 2013; Crane et al., 2017) found 
no differences in ADG when substituting traditional protein 
and energy feedstuffs with DDGS, but it should be noted that 
the DDGS proportions in the diets tested by those authors 
were up to 30%, while in this trial surpassed 50%. When 
higher levels (~60%) of DDGS were tested (Felix et al., 2012; 
Curzaynz-Leyva et al., 2019; Hodges et al., 2020a), the quad-
ratic effect is more consistent, indicating that partial replace-
ment of traditional protein and energy feedstuffs with DDGS 
can maximize growth performance.

The G:F was not affected by the diet × day interaction (P > 
0.05) or diet (P > 0.27), with an average of 0.16 ± 0.01 (Table 
3), in agreement with the studies by Schauer (2008), McEachern 
et al. (2009), and Castro-Pérez et al. (2014). Therefore, taking 
into consideration that DDGS may be potentially cheaper than 
traditional feedstuffs such as CSM and SG (Obeidat, 2018; 
Quadros et al., 2021), the absence of a difference in G:F per 
se can increase profitability because the net margin of a feedlot 
is generally low and the most representative operational cost 
comes from feed acquisition (Lima et al., 2017).

Blood and Fecal Analysis
The BUN, serum IGF-1, Ca and P, and fecal P were not in-
fluenced by the diet × day interaction (P > 0.05). The linear 
increase in BUN with DDGS levels (P < 0.001; Table 3) may 
be attributed to an increase in rumen degradable protein 
(RDP) intake (McEachern et al., 2009; Swanson et al., 2000; 
Hodges et al., 2020a). Additionally, with the increased DMI, 
the estimates of RDP also increased 80 g/kg from the control 
group (0DDGS) to the 75DDGS treatment group. Increasing 
the solubility or degradability of dietary protein can lead to 
increased ruminal ammonia concentrations, resulting in in-
creased BUN concentrations (Huntington and Archibeque, 
2000; Piccione et al. 2006). The increased rumen ammonia 
concentration with DDGS inclusion in the diets might be 
beneficial to the metabolic activity of ruminal proteolytic 
microflora and hence to the extent of dietary protein hy-
drolysis (Radev, 2012). In addition, the transport of amino 
acids (AA) and peptides from the small intestine contribute to 
the absorption of N into the bloodstream (Kohn et al., 2005). 
The intestinal digestibility of most AA in DDGS products ex-
ceeds 92%, and AA availability can be comparable to that of 
SBM (Mjoun et al., 2010).

As the DDGS levels in the diets increased, fecal N increased 
quadratically (P = 0.01), probably influenced by a greater 
DMI and N intake. It has been reported that there is a posi-
tive correlation between organic matter intake and fecal N 
excretion in sheep (Peripolli et al., 2011). Compared to the 
control group (0DDGS), fecal N increased (P < 0.001) by al-
most 25% in the 75DDGS treatment group, which may be re-
lated to greater N losses in the RDP due to not being utilized 
for microbial growth (Mikolayunas-Sandrock et al., 2009).

According to Whitney and Muir (2010) and Yang et al. 
(2019), IGF-1 synthesis and secretion, which are stimulated 
by the growth hormone, have a positive correlation with DMI 
and growth performance. Because the DDGS level did not im-
pact the serum IGF-1 concentration it can be hypothesized 
that it did not affect the DMI and the growth performance 

positive responses either. However, a discrepancy between cir-
culating IGF-1 and ADG was found by Whitney and Lupton 
(2010). Similar to this work, McEachern et al. (2009) did not 
find a correlated response between serum IGF-1 and growth. 
These contradictory data in the literature indicate the neces-
sity of further investigation.

Increasing DDGS levels in the diets linearly increased 
serum P (P < 0.001) and fecal P (P < 0.001), while serum 
Ca was independent of the DDGS level (P > 0.13; Table 
3). This was related to increased P concentration in the 
diets (Table 1), agreeing with the findings of Villalba et al. 
(2008). Unusually, serum P surpassed the Ca concentration in 
75DDGS (Stojković et al., 2011; Whitney et al., 2014; Song et 
al., 2018). Serum Ca values were in the range of 9.3–11.7 mg/
dL reported by Jianu et al. (2013) for sheep, although P was 
greater (4.0–7.3 mg/dL). The P levels in the diets with DDGS 
(Table 3) ranged between 2- and 3-fold above nutritional re-
quirements (NRC, 2007) which is a concern because it can 
contribute to environmental pollution generated by animal 
feeding operations (Huls et al., 2006) and can cause a high 
incidence of urolithiasis (Riedi et al., 2018). Despite the add-
ition of limestone and ammonium chloride to regulate the 
Ca:P ratio and prevent urinary calculi (Felix et al., 2012), 
one lamb fed 50DDGS and two lambs fed 75DDGS died near 
the end of the trial after exhibiting symptoms related to ob-
structive urolithiasis. The data from these lambs were kept in 
the dataset. Increased fecal P (Table 3) is related to P intake 
and absorption (Louvandini and Vitti, 1996), as ruminants 
primarily excrete P through feces, which is composed of un-
absorbed dietary P and endogenous P (Bravo et al., 2003).

Wool Characteristics
The grease fleece weight was not affected by experimental diets 
with an average weight of 0.88 kg (Table 4). The obtained daily 
grease fleece growth rate of 13.5 g/day was slightly less than 
15 g/day obtained by McEachern et al. (2009) who tested re-
placing CSM with DDGS in Rambouillet feedlot lamb diets; 
however, when considering the clean wool fiber percentage, 
the clean fleece daily growth rate was the same (6.3  g/day). 
Clean wool production per unit of BW tended to (P = 0.06) 
quadratically decrease when DDGS was increased in the diets, 
reaching the lowest point in the 25DDGS experimental group.

The fiber diameter is an important raw wool characteristic 
because it is a significant determinant of greasy wool price, 
and there is a premium paid for finer wool types (Nolan et al., 
2014). The effects of DDGS inclusion were not detected on 
fiber diameter but quadratically increased (P = 0.04) SD fiber 
diameter, with the highest SD in the 25DDGS experimental 
group (Table 4).

All other wool characteristics were not influenced by 
DDGS levels in the diets. Accordingly, Crane et al. (2017) 
observed no effects of up to 30% DDGS in Suffolk × 
Rambouillet lamb diets on the fiber diameter distribution, 
the fiber curvature distribution, the staple length, or the 
comfort factor. The fiber diameter and fiber elongation rate 
(i.e., staple length, Table 4) could have corresponded to a 
higher nutrition plane (Naderi et al., 2015), indicated by 
increased DMI and ADG (Table 3), as well as changes in 
the protein source (Ružić-Muslić et al., 2016), despite con-
flicting results on the relationship between DMI and wool 
growth (Khan et al., 2012) and no correlation between 
lamb growth performance and wool quality traits (Malau-
Aduli et al., 2019).
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Carcass Characteristics
Increasing the DDGS levels in the diets quadratically in-
creased shrunk BW (P = 0.03) and HCW (P = 0.02; Table 
5), corroborating with Hodges et al. (2020b) who tested re-
placing CMS and SG with DDGS in feedlot Dorper intact 
male lamb diets.

The LMA was not affected (P > 0.14) by the DDGS level 
in the diets, ratifying the finds of Schauer et al. (2008) and 
Felix et al. (2012). However, BFT (P = 0.04) and BWT (P 
< 0.001) quadratically increased. Yield grade (YG), esti-
mated by BFT (USDA, 1992), was 2.2, 2.4, 2.6, and 1.7 
for experimental groups 0DDGS, 25DDGS, 50DDGS, and 
75DDGS, respectively. A greater YG reduces boneless re-
tail cuts (USDA, 1992). However, the total body lean seems 
to be an appropriate means of differentiating dietary ef-
fects on carcass value (Felix et al., 2012). In this regard, 
boneless closely trimmed retail cuts (BCTRC), estimated 
using HCW, REA, and BWT data, were approximately 
48 ± 0.35%, without any significant variation among the 
experimental diets.

The LC tended to quadratically increase (P = 0.06) with 
the DDGS levels in the diets. The leg is the most valuable part 
of the carcass, accounting for its weight and price (Notter et 
al., 2012). The LC affects leg score and carcass conformation, 
consequently the final grade and retail value (USDA, 1992).

Research on DDGS substituting traditional sources of 
protein and energy in feedlot lamb diets found no differences 
in major carcass traits (Van Emon et al., 2012; Abdelrahim 
et al., 2014; Kawęcka et al. 2018), which can be understood 
as an advantage to the sheep industry by reducing produc-
tion costs without losing carcass grade (Schauer et al. 2008; 
Whitney and Braden, 2010; Crane et al., 2017). However, in 
agreement with this study, some authors (Felix et al. 2012; 
Curzaynz-Leyva et al. 2019) have reported positive effects 
of DDGS levels on lamb carcass traits, which might be even 
more interesting for the sheep industry.

Adipose Tissue FA Characteristics
Differences in the fat percentage and most adipose tissue FA, 
including the saturated fatty acids (SFA) palmitic and lauric, 

were not detected when the DDGS level was increased in the 
experimental diets (Table 5). However, some major FA in the 
lamb meat had remarkable alterations. Increasing DDGS in 
the diets linearly (P = 0.02) increased stearic acid (C18:0) due 
to its dietary increase and principally because of the conver-
sion of linoleic acid (C18:2), the predominant FA in DDGS, 
into C18:0, which increases C18:0 duodenal flow (Castillo-
Lopez et al, 2014; Giotto et al., 2020). Rumen microorgan-
isms hydrogenate a substantial proportion of PUFA (i.e., 
C18:2) contained in ruminant diets, resulting in high levels 
of SFA deposition in muscle, including stearic acid (Wood et 
al., 2004). In addition, increased NDF in the diets with DDGS 
may have increased the extension of C18:2 biohydrogenation 
(Sackman et al., 2003; Santos-Silva et al., 2018) because this 
process is related primarily to cellulolytic microorganisms 
(Kepler and Tove, 1967), and feeding DDGS may favor their 
population growth in the rumen (Depenbusch et al., 2009; 
Kawęcka et al., 2018).

Linoleic acid, which is a PUFA and part of the ω-6 family, 
quadratically (P = 0.01) increased with DDGS levels, agreeing 
with Kawęcka et al. (2018) and Karaca et al. (2021). The util-
ization of DDGS in ruminant diets usually leads to the modi-
fication of meat FA profile since some FA may be protected 
from biohydrogenation (Vander Pol et al., 2009; Whitney 
and Braden, 2010; Giotto et al., 2020). The protection of 
dietary PUFA from ruminal biohydrogenation is a strategy for 
improving the FA profile of meat and milk (Bessa et al., 2015; 
Salami et al., 2021). Feeding DDGS may increase dietary fat 
digestibility and the amount of unsaturated FA reaching the 
distal gut, indicative of decreased susceptibility of dietary 
PUFA to ruminal biohydrogenation (Xu et al., 2014; Giotto 
et al., 2020). However, final concentrations of linoleic acid 
and other PUFA in muscle also depend on fiber types and the 
expression of desaturases in the tissue (Wood et al., 2008), 
knowing that desaturases convert SFA into unsaturated FA in 
the muscle and may also be regulated by dietary lipid content 
(Waters et al., 2009).

Oleic acid, a monounsaturated fatty acid (MUFA) ω-9, 
tended to (P = 0.08) quadratically decrease as DDGS in the 
diets increased. Oleic acid, which is the most represented FA 

Table 4. Effects of substituting dried distillers grains for cottonseed meal and sorghum grain on wool characteristics

Item/day1 Diet2 SEM3 P-value4

0DDGS 25DDGS 50DDGS 75DDGS L Q 

Grease fleece weight, kg 0.86 0.83 0.93 0.91 0.05 0.24 0.99

Clean wool fiber present, % 50.4 44.8 45.9 45.5 2.1 0.12 0.19

Clean fleece weight, kg 0.43 0.36 0.43 0.42 0.03 0.82 0.32

Clean wool production/BW, g/kg 10.3 8.5 9.4 9.9 0.7 0.88 0.06

Average fiber diameter, µm 18.7 18.8 18.9 18.7 0.4 0.95 0.67

SD fiber diameter, µm 4.1 5.2 4.6 4.0 0.5 0.53 0.04

Average staple length, mm 22.4 20.3 22.3 22.5 1.2 0.62 0.29

SD staple length, mm 3.0 2.9 3.2 3.2 0.4 0.61 0.87

Average fiber curvature, deg/mm 105.8 116.6 107.5 110.8 4.5 0.75 0.38

SD fiber curvature, deg/mm 63.6 69.3 65.2 65.7 1.8 0.74 0.12

1Lambs were shorn on day 65.
2Lambs were fed pelleted diets containing DDGS that replaced 0% (0DDGS), 25% (25DDGS), 50% (50DDGS), or 75% (75DDGS) of the cottonseed meal 
and sorghum grain.
3SEM represents the greatest standard error of the mean.
4Linear (L) and quadratic (Q) orthogonal polynomial contrasts.
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in lamb meat, was proportionally 25% greater in meat than in 
the diets, and its inclusion in the human diet can bring health 
benefits, such as the reduction in blood low-density lipopro-
teins without reducing high-density lipoproteins (Polidori et 
al., 2011).

Diet influenced SFA, with the lowest value in the 50DDGS 
experimental group (49.0%) and the highest value in the 
75DDGS experimental group (52.8%). The opposite oc-
curred for PUFA with 13.3% and 8.1% for the 50DDGS and 
75DDGS experimental groups, respectively. Although the 
utilization of DDGS in lamb diets may reduce SFA and in-
crease PUFA and MUFA (Yossifov, 2014), the heterogeneous 
composition of DDGS, notably regarding its fat content (Liu, 
2011), is a factor that should be considered in result com-
parisons because it may affect the meat’s FA profile (Scollan 
et al., 2017). Greater PUFA/SFA and MUFA + PUFA/SFA 
ratios were observed in lambs fed in the 50DDGS treatment 
group (0.27 and 0.97, respectively) compared to the lambs 
fed in the 0DDGS, 25DDGS, and 75DDGS treatment groups 
(0.17 and 0.93; 0.19 and 0.87; 0.15 and 0.85, respectively). 
From the consumers’ perspective, greater PUFA/SFA and 
MUFA + PUFA/SFA ratio can be associated with multiple 
health benefits (Polidori et al., 2011; Oliveira et al., 2015; 
Siri-Tarino et al., 2015).

The sensory panel evaluation
The sensorial panel test results, except for cook-loss (P > 0.49) 
and off-flavor (P > 0.31) which had no significant differences, 
indicated that incorporating DDGS in lamb feedlot diets re-
sulted in more acceptable lamb meat (Table 6). Increasing the 
DDGS levels in the diets quadratically increased the initial 
and sustained juiciness (P < 0.02) and tenderness (P < 0.009). 
According to Hodges et al. (2020b), although the addition of 
DDGS to feedlot lamb diets did not affect muscle fiber tender-
ness and connective tissue amount, it linearly increased meat 
tenderness. The increase of carcass backfat thickness and body 
wall from lambs fed with 25DDGS and 50DDGS may have 
reduced cold shortening (Smith and Carpenter, 1973) and its 
effects on decreasing sarcomere length and increasing shear 
force (Aalhus et al., 2001; Okeudo and Moss, 2005), which 
can be perceived by sensory panelists (Destefanis et al., 2008).

Increasing the DDGS levels in the diets quadratically in-
creased the overall acceptability (P < 0.001) of the lamb 
chops. In addition, the DDGS levels linearly increased flavor 
intensity (P = 0.005), probably influenced by the positive cor-
relation with initial and sustained juiciness and tenderness 
scores (Whitney and Braden, 2010). Juiciness, tenderness, and 
flavor scores can be affected by the inability of panelists to 
completely separate these traits, known a halo effect (Roeber 

Table 5. Effects of substituting dried distillers` grains with solubles (DDGS) for cottonseed meal and sorghum grain on lamb carcass traits and adipose 
tissue fatty acid composition (%, weight basis)

Item1 Diet2 SEM3 P-value4

0DDGS 25DDGS 50DDGS 75DDGS L Q 

Carcass traits

  Shrunk BW, kg 37.8 40.2 42.2 39.1 1.2 0.27 0.03

  HCW, kg 21.9 23.2 24.5 22.5 0.70 0.34 0.02

  LMA, cm2 14.4 14.8 15.6 14.4 0.5 0.66 0.14

  Backfat, cm 0.47 0.52 0.55 0.34 0.07 0.21 0.04

  Body wall, cm 1.44 1.70 1.72 1.38 0.09 0.71 <0.001

  LC, cm 30.4 31.0 31.6 30.7 0.4 0.32 0.06

Fatty acids

  Fat, % 4.48 3.44 4.46 4.16 0.37 0.87 0.28

Saturated fatty acids, %

  Palmitic acid (16:0) 19.9 19.5 18.3 20.0 0.74 0.78 0.20

  Lauric acid (12:0)  16.0 17.9 15.9 17.0 1.1 0.81 0.70

  Stearic acid (18:0) 11.4 12.2 12.6 13.3 0.56 0.02 0.88

  Myristic acid (14:0) 1.58 1.44 1.31 1.51 0.13 0.56 0.20

  Heptadecanoic acid (17:0) 1.21 1.04 0.86 0.95 0.07 0.002 0.05

Polyunsaturated fatty acids, %

  Linoleic acid (C18:2n-6) 6.90 7.91 10.93 6.82 0.94 0.50 0.01

  Arachidonic acid (20:4n-6) 1.75 1.75 2.33 1.31 0.48 0.72 0.29

Monounsaturated fatty acids, %

  Oleic acid (18:1n-9) 31.8 30.5 28.6 31.6 1.21 0.64 0.08

  Cis-vaccenic acid (18:1n-7) 3.46 2.69 3.45 2.76 0.32 0.34 0.90

  Vaccenic acid (18:1trans-11) 1.52 1.43 1.23 1.12 0.07 <0.001 0.89

  Palmitoleic acid (16:1n7) 1.21 1.17 0.93 1.10 0.09 0.14 0.22

1Shrunk BW = BW without the fleece; HCW = hot carcass weight; REA = ribeye area; LC = leg circumference; Fatty acids were extracted from the 
Longissimus dorsi.
2Lambs were fed 80% concentrate pelleted diets containing DDGS that replaced 0% (0DDGS), 25% (25DDGS), 50% (50DDGS), or 75% (75DDGS) of the 
cottonseed meal and sorghum grain.
3SEM represents the greatest standard error of the mean.
4Linear (L) and quadratic (Q) orthogonal polynomial contrasts.



DDGS in feedlot lamb diets 9

et al., 2000). Consequently, increased sustained juiciness cre-
ates a generalized notion of increased tenderness and flavor.

The 25DDGS treatment group had the best overall sensorial 
panel results, with few differences from the 50DDGS treatment 
group. In general, these results were in agreement with those 
obtained by Whitney and Braden (2010), who tested the sub-
stitution of DDGS for CSM in feedlot Rambouillet lamb diets.

Chemical reactions (i.e., lipid oxidation) during lamb 
cooking generate volatile compounds responsible for the 
lamb flavor (Resconi et al., 2010). The taste and/or aroma 
derived from these volatile compounds is affected by the rela-
tive proportions of meat FA (Khan et al., 2015; Gkarane et 
al. 2019). Although increased PUFA is interesting for human 
health (Siri-Tarino et al., 2015), they may result in the loss of 
meat sensory quality (Elmore et al., 2005). For this reason, 
it can be hypothesized that the chops from lambs fed in the 
50DDGS treatment group, which were richer in unsaturated 
FA (Table 5) had a slightly inferior performance in the sen-
sory panel than the lambs in the 25DDGS treatment group 
(Table 6). Most carbonyl, aldehyde, and alcohol volatile com-
pounds originate from PUFA oxidation during cooking and 
can be powerful odorant compounds (Resconi et al., 2010).

The average cook-loss was approximately 6.9%, which was 
less than that observed by Smeti et al. (2014) in meat from fat-
tail Babarine lambs finished in feedlots and rangelands (8%–
11%). These authors found that lambs finished in a feedlot 
produced meat with a greater score of juiciness, which can 
be negatively correlated with cook loss. The DDGS inclusion 
in feedlot lamb diets benefited lamb meat sensory properties, 
particularly tenderness and taste desirability, and can there-
fore meet consumer expectations in many different markets 
(Kawęcka et al., 2018). Using intermediate levels (25%–50%) 
of DDGS to substitute CSM and SG in feedlot lamb diets will 
likely produce meat with both desirable characteristics in 
terms of the FA profile and the consumers’ palate satisfaction.

CONCLUSIONS
Replacing CSM and SG with DDGS in feedlot lamb diets 
increased growth performance and kept the gain:feed ratio 

unaltered, which can be advantageous for the sheep industry. 
However, urolith development could be problematic if proper 
Ca:P ratios are not maintained. Wool production and most 
of the wool’s quality parameters were not affected by the 
DDGS level. Carcass and meat quality traits, including the 
FA profile and the sensorial panel, were improved with the in-
clusion of DDGS in the diets, with better overall results when 
intermediate levels of substitution (25%–50%) were adopted. 
Finally, considering both animal performance and the quality 
of the final products, it is suggested the substitution of 50% 
of CSM and SG with DDGS.
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