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Summary Statement: Pathobiology,
biomarkers, and therapeutic studies of HIV-1
are limited by the lack of ideal human
reflective rodent model system. Prior works
have focused on employing transgenic, HIV-1
system viruses or repopulation of murine
immune organs with functional human
leukocytes in such studies. Though the current
available models allowed investigations of viral
reservoirs that included lymphoid tissues and
the CNS, most of them lacked cells of human
origin to support precise measures of viral
latency. With a focus on humanization of
peripheral, lymphoid, and CNS tissue
compartments, we discuss recent rodent
models that contain both human myeloid and T
cells for future therapeutics and viral
elimination investigations.
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Abstract

The HIV-1 often evades a robust antiretroviral-mediated immune response, leading
to persistent infection within anatomically privileged sites including the CNS. Con-
tinuous low-level infection occurs in the presence of effective antiretroviral therapy
(ART) in CD4+ T cells and mononuclear phagocytes (MP; monocytes, macrophages,
microglia, and dendritic cells). Within the CNS, productive viral infection is found exclu-
sively in microglia and meningeal, perivascular, and choroidal macrophages. MPs serve
as the principal viral CNS reservoir. Animal models have been developed to recapit-
ulate natural human HIV-1 infection. These include nonhuman primates, humanized
mice, EcoHIV, and transgenic rodent models. These models have been used to study
disease pathobiology, antiretroviral and immune modulatory agents, viral reservoirs,
and eradication strategies. However, each of these models are limited to specific com-
ponent(s) of human disease. Indeed, HIV-1 species specificity must drive therapeutic
and cure studies. These have been studied in several model systems reflective of latent
infections, specifically in MP (myeloid, monocyte, macrophages, microglia, and histio-
cyte cell) populations. Therefore, additional small animal models that allow productive
viral replication to enable viral carriage into the brain and the virus-susceptible MPs
are needed. To this end, this review serves to outline animal models currently available
to study myeloid brain reservoirs and highlight areas that are lacking and require future
research to more effectively study disease-specific events that could be useful for viral
eradication studies both in and outside the CNS.
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1 | INTRODUCTION

Following the initiation of combination antiretroviral therapy
(cART), HIV-infected people now lead a life largely free of comorbid
conditions.22 ART suppresses viral infection in lymphoid, genitouri-
nary, gut, and CNS compartments. Virus commonly remains dormant
in CD4+ T and myeloid cells as genome-integrated, replication-
competent proviral DNA. The dormant virus persists for decades in
HIV-1-infected regulatory and effector memory CD4* T cells that have
an average half-life of 44 months® independent of ART-suppressive
effects on viral growth.*-¢ The integrated provirus can be reactivated
if ART is interrupted, leading to full-blown HIV infection. Notably, ART
fails to eliminate infected cells or excise integrated proviral DNA. What
follows is HIV-1 latency. The latent viral reservoir is the principal bar-
rier to an HIV-1 cure. Within the CNS, a major therapeutic challenge
is the presence of the blood-brain barrier (BBB), which controls entry
of immune clearance mechanisms and antiretroviral drugs (ARVs).”
For the CNS, in particular, virus resides in myeloid cells (perivascular
brain macrophages and microglia) continuously throughout the course
of disease. This CNS reservoir may account for the case wherein
1 patient’s viral load remained undetectable for an extended time
period in blood, but over time viral rebound occurred. The virus was
detected within the cerebrospinal fluid (CSF), highlighting the critical
importance of the CNS reservoir for HIV-1 elimination.® Moreover,
HIV-1 reservoirs including the CNS are established rapidly after initial
exposure. In simian immunodeficiency virus (SIV) macaque models,
lymphoid tissue and the brain reservoirs have been shown to be
established as early as 3 days after infection.?1? HIV-1 was detected
in the CSF of humans as early as 8 days after infection. This is obvious
evidence of viral brain invasion.11-12

HIV-1 is species specific and infects human CD4 and CCR5 or
CXCR4 expressing cells. The latter 2 are the viral coreceptors, which
are expressed on the cell surface.’® Although viral infection targets
CD4+ T cells, infection also occurs in myeloid cells that can disseminate
virus across tissue sites.14"17 However, the most studied latent HIV-
1 reservoir is in resting CD4+ T-cells.>18 Within the CNS, microglia
and perivascular macrophages are the principal viral target cells that
express low levels of CD4.1? Multiple HIV-1 variants exist through
the body, and those who utilize the CCR5 coreceptor are stated as
macrophage-tropic.2 Strain evolution and viral compartmentalization
support the notion that HIV-1 can replicate in the CNS independently
of the rest of the body.?! Viruses isolated from brain are predomi-
nantly macrophage-tropic (M-tropic) as compared with those obtained
from the lymph nodes of the same patient.?? The former demonstrates
myeloid (perivascular macrophages and microglial) infection with low
levels of CD4 and CCR5 expression.2324 Sequencing of M-tropic viral
strains show strong HIV-1gp120 affinity to CD4.2> HIV-1 enters the
CNS and quickly establishes a myeloid reservoir.26:27

2 | CNS CELL TYPES AS HIV RESERVOIRS

Myeloid HIV-1 infection is associated with the clinical manifestations

of HIV-associated neurocognitive disorders (HAND).2628 Microglia

are primary CNS MPs, and together with perivascular, meningeal, and
choroid plexus brain macrophages are permissive to viral infection and
serve as the primary viral reservoir. The descriptions of HIV-1-MP
interactions have been focused on primary culture and postmortem
brain studies. Such investigations may not accurately reflect human
viral progression.2¢2? Hence, there is a need for relevant animal
models to study viral neuropathogenesis.

Most myeloid cells originate in the bone marrow (BM) and yolk sac.
These cells are replenished in the brain through circulating monocytes
that enter the brain then differentiate into macrophages.®° Virus-MP
interactions do not lead to cytopathicity but produce abundant virus
without inducing cell death.3! Infected microglia-macrophages can
live upto 20 years in the human brain and therefore contribute to a
long-lived reservoir.32 In order to develop therapeutics and viral cure
strategies, disease-relevant animal models that can reflect human CNS

infection are required and is addressed in this review.

3 | DEFINING THE HIV CNS RESERVOIR

A majority of HIV-1-infected persons, during the course of disease,
show signs and symptoms of cognitive impairment. This is seen despite
effective ART and associated maximal viral suppression.333* Minor
or asymptomatic cognitive impairment are a multifactorial compli-
cation that is not simply reflective of viral infection but due to
secondary factors such as neuroinflammation, nutritional deficien-
cies, social and environmental factors, drug toxicity including ARVs
themselves, metabolic dysregulation, mitochondrial dysfunction, and
substance use disorders.®> Even with the current ART, which read-
ily achieves sustained viral suppression, low-level productive CNS
infection contributes to disease, viral resistance,?43> and cognitive
impairments.3¢-38 Low-level viral infection or proteins released from
HIV-infected cells can cause changes in cell and tissue homeostasis
during ART. A charter of over 1500 individuals living with HIV showed
that over 50% show signs and symptoms of neurocognitive impairment
during ART.3? In another group of 200 patients with undetectable viral
loads for over 3 years, 27% had evidence of reduced mental fitness.*°
Whether these signs and symptoms can be reduced by improved ART
remains to be established. The findings support the notion that low-
level viral infection or viral latency can by themselves contribute to
cognitive impairments recorded during sustained viral infection.

Human studies of HIV-1 latency within the CNS have proven more
difficult because of the historical limitations for the use of autopsy
samples and the reliance on cell-based data sets. Alternative measures
to study HIV-1 CNS disease have relied on examinations of CSF.4
These studies demonstrated that CSF viral RNA show divergent ori-
gins from blood and can be recorded even when virus is undetectable
in blood.*2 Notably, in a study of 69 patients who were virally sup-
pressed on ART with undetectable virus in blood, 10% had detectable
virus in their CSF.*3 A replicate study of 5 individuals who died of HIV-
1 encephalitis demonstrated virus in MPs by laser microdissection and
immunohistochemistry. The study also found PCR detected integrated
HIV-1.44
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Autopsy samples from patients that were virally suppressed at the
time of death show HIV-infected MPs in brain. However, most of these
studies demonstrated active viral replication at the time of autopsy.*®
More recent studies from the National Neurological AIDS Bank that
included 87 autopsied brain tissue samples with low or undetectable
viral loads at death identified viral DNA in brain. This was identi-
fied by digital droplet PCR (ddPCR), which detected HIV DNA in 48
of the 87 brain samples.*® A replicate study completed by the Neu-
roAIDS Tissue Consortium identified 16 samples from patients with
undetectable plasma viral load at autopsy used DNA and RNAscope
techniques to demonstrate proviral DNA in brain MPs. No viral DNA
was found in astrocytes. A subset of brain tissues did demonstrate viral
RNA in select brain subregions with undetectable plasma viral loads.*”
This finding supports the notion that latent HIV-1 does exist in the
brain. HIV DNA and RNA are easily detected in brains of infected
persons with histories of neurocognitive impairment prior to death.
Both latent (viral DNA but no RNA) and active (viral DNA and RNA)
groups experienced cognitive deficits. Notably, cognitive impairments
were more pronounced with active viral infection.*® Nonetheless, the
latent reservoir is thus still associated with cognitive deficits. The HIV-
1 CNS reservoir is established before signs and symptoms of HAND. In
a study of 5 HIV-1-infected person who died of comorbid events not
related to HIV-1 infection, HIV DNA was found in brain MPs by laser
dissection microscopy and PCR.* Most studies examine tissues from
individuals infected with HIV-1 subtype B; however, HIV-1 subtype Cis
the most prevalent among people living with HIV. A study examined tis-
sues collected from autopsy samples from Zambians infected with HIV
subtype C. Three out of 4 virally suppressed subjects had detectable
viral DNA and RNA in the brain as detected by ddPCR and RNA and
DNAscope. Surprisingly, only 1 of 4 individuals with detectable viral
loads had proviral DNA and viral RNA in brain. The HIV-1-infected
cells in brain were found to be CD68+, indicating they were likely
perivascular macrophages and microglia.>®

The BBB controls the passage of cells from the periphery to
the brain. Nonetheless, activated CD14+ and CD16+ monocytes
enter the brain by migrating across the BBB. Through these mono-
cyte/macrophages and CD4+ T cells, infection can spread to other cells
in the brain. These infected cells display a preference to move across
the BBB compared with uninfected counterparts.'2 This cell migration
helps to establish the CNS viral reservoir.

It is important to examine the mechanisms that allow MPs to
become long-lived reservoirs in the CNS. T-cells infected with HIV
experience high levels of apoptosis, or cell death, which is the principal
cause of AIDS with the progression of HIV infection.”* However, there
is evidence that HIV prevents apoptosis when it comes to microglia
and macrophages. Lower levels of apoptotic markers were seenin HIV-
infected myeloid cells in the brain than in uninfected cells.>? Sections
of brains from HIV+ encephalitis subjects and those from uninfected
subjects were examined for the apoptotic factor TUNEL in the cere-
bral white matter. The percentage of TUNEL+ macrophage cells did
not differ between the control and the HIV+ encephalitis samples. If
the cells were not resistant to apoptosis, it would be expected that the

HIV+ samples would have much higher levels of TUNEL+ macrophage
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and microglial cells.>® The patient samples analyzed for this study
were never under ART treatment. This result implies that macrophages
and microglia are resistant to apoptosis and maintain myeloid cells as
reservoirs in the CNS.

In cultured microglial cells, following a period of apoptosis after HIV
infection, a subset of the cells survived. Most of these surviving cells
were HIV infected, indicating that infection with HIV induces a sur-
vival mechanism in a subset of microglial cells.3! A similar result was
detected in cultured macrophages, and it was seen that in the sur-
viving macrophages the protein Bim was up-regulated as compared
to controls, leading the authors to believe this protein may have an
anti-apoptotic effect.3!

The ability of macrophages to support low levels of viral infec-
tion and become resistant to death, which is typically induced by HIV,
makes them a potent viral tissue reservoir. There are several mecha-
nisms by which these cells can become such potent viral reservoirs.
The long noncoding RNA SAF plays a role in preventing the apoptosis
of infected macrophages, and if SAF is down-regulated the apoptotic
factor caspase-3/7 was induced in HIV-infected cells.’2 M-CSF also
enhances the survival of macrophages in the CNS and makes these
cells more susceptible to viral infection by HIV.>3 M-CSF promotes
viral replication, and individuals infected with HIV have higher lev-
els of M-CSF in their CSF. M-CSF was primarily found in perivascular
macrophages and in macrophages present in nodules, which are also
the areas of the brain that harbor the most viral reservoir. The Nef
gene in HIV codes for a protein that promotes myeloid cell growth.
Cell lines treated with Nef had enhanced HIV replication, and strains
of relatively non-aggressive and not progressive HIV isolated from
patients were shown to have defective Nef coding regions. Nef did
not appear to reduce apoptosis in myeloid cell lines, rather it stimu-
lated greater growth through a cytokine independent pathway.>* The
transcription factor NF-Kappa-B also plays a role in preventing apop-
tosis of HIV-infected myeloid cells. When NF-Kappa-B was stimulated,
myeloid cell lines were protected from TNF-alpha induced apopto-
sis, and restriction of NF-Kappa-B led to higher levels of apoptosis in
infected cells. Interestingly, in non-myeloid cell lines, NF-Kappa-B acti-
vation had varied effects, in some cell types protecting HIV-infected
cells from apoptosis, and in others having the opposite effect and
stimulating apoptosis.>®

Macrophages throughout the body do have mechanisms to con-
trol for retroviral infections, the major restriction factor being sterile
alpha motif and histidine/aspartic acid domain-containing protein 1
(SAMHD1).%¢ A study characterized monocyte-derived macrophages
and macrophages taken from the brain, lungs, and abdomen and found
that only 3% of these cells allowed HIV infection under normal levels
of SAMHD1. When SAMHD1 was knocked out, the level of infec-
tion increased 12 times in the cell cultures. Notably, in brain-derived
microglia, there was a 50% HIV infection rate before the knockout of
SAMHD1 and complete infection after the knockout. This indicates
that microglia are highly susceptible to HIV-1 infection.>”

While these human studies have been important in understand-
ing the effects of HIV on the brain, the inability to perform ethical in

vivo experiments necessitates the use of animal models. Due to lack of
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access to samples and other concerns as described in Table 1, primate
models have been employed to study myeloid reservoirs of HIV, which
is discussed in-depth in the next section.

4 | MACAQUE MODELS

HIV-1is highly host-specific and can only infect human hosts; however,
itis not possible to conduct in vivo mechanistic and cell-based studies in
humans due to ethical concerns, so animal models are vitally important
for studying HIV latency and its mechanism of establishment. Rhesus
macaque models of SIV infection are the most prevalent animal models
used to study HIV, as SIV is closely related to HIV and displays simi-
lar mechanisms and disease progression. Macaques infected with SIV
have high viral loads in their plasma and CSF, and often they develop
SIV encephalitis.>8

Macaques have a level of SIV infection comparable to that seen in
HIV-infected patients who develop AIDS and show evidence of neu-
rocognitive symptoms such as SIV encephalitis, and an increased rate
of macrophage recruitment and accumulation in the brain tissue.3°
In contrast, animals that had lower levels of infection and no evi-
dence of SIV encephalitis had lower levels of monocyte activation and
macrophage accumulation in the brain.>” Macaques can also be treated
with ART similar or identical to those used to treat HIV infection. SIV-
infected macaques show a significant decline in the viral RNA in the
CSF after ART treatment. However, there was still significant viral
DNA present in the CNS. In addition, some of the infected animals still
showed high levels of inflammation in the CNS.¢°

In another macaque study, Avalos et al.?* demonstrated that not
only the brains of SIV-infected macaques contain latently infected
macrophages, but the virus in those macrophages was replication
competent. This was accomplished using a quantitative viral out-
growth assay (QVOA) to demonstrate that over 85% of macaques
that had been virally suppressed still harbored CNS macrophages with
replication-competent virus.6? The authors posit that while SIV does
not actively spread while using ART, the latent reservoir in the brain
could periodically reactivate, thus leading to persistent inflammation.
The same group later developed a QVOA specifically for brain MP. In
macaques that were virally suppressed for over a year, all the animals
possessed latently infected macrophages in the brain. These viruses
were also shown to be replication-competent and were able to infect
CDA4 cells, as shown using a separate assay.®?

Gama et al.®% infected macaques with SIV and then maintained an
ART regime for 500 days to maintain viral suppression. This group
has previously shown that macaques infected with SIV developed SIV-
related neurocognitive issues such as encephalitis within 3 months,
and that ART treatment was able to reduce viral loads to an unde-
tectable level similar to ART suppressed HIV-1-infected patients. After
long-term maintenance of viral suppression, the macaques were then
treated with 2 different latency-reversing agents. After sacrifice, all
the tissues from the macaques were analyzed for the presence of
the virus using PCR, in situ hybridization, and phylogenetic genotyp-
ing. Despite the ongoing ART treatment, the authors observed that

1 out of the 2 animals had detectable viral load, and viral RNA in
the CSF. The authors also detected the reactivated latent virus in the
brain tissue.®® Increased immune activation markers were found in
the brain of the macaques that showed a rebound of SIV infection.
Evidence of increased neuronal damage was observed in the same
macaque brains.*¢ Interestingly, the phylogenetic analysis of the viral
RNA showed that the variant detected in the CSF was distinct from
that detected in the plasma, which indicates that the CNS served as a
genetically distinct viral reservoir.4¢

Simian HIV (SHIV) is a chimeric virus that combines SIV and
HIV, where the virus is primarily of SIV backbone, but contains the
HIV envelope gene, which facilitates viral entry and infection. SHIV
macaques have shown similar disease progression to HIV infection
in humans, and infected cells were detected in the meninges of the
brain.®* The inflammation in the CNS was shown to be associated with
T-cell activation but was not strongly related to myeloid cells.®* When
archival tissues were examined from rhesus macaques infected with
SHIV, 10 out of 14 had viral presence in the macrophages of the brain;
however, in pigtailed macaques, 21 of 22 showed no evidence of SHIV
replication in the brain.®® In another study, when rhesus macaques
were infected with SHIV, detectable SHIV DNA was found in the brains
of the monkeys.?® SHIV has been shown to invade the CNS quickly, as a
study of juvenile macaques showed SHIV DNA in the cerebellum 24 h
after infection.®” Rhesus macaques were infected with SHIV and then
treated with ART until all animals had an undetectable viral load. There
was no detectable SHIV RNA in the CNS following necropsy; however,
there were trace amounts of SHIV DNA in certain regions, primarily the
spinal cord.®® These viral DNA levels were much lower than those seen
in other tissues such as the spleen or Gl tract. This indicates that the
brain does harbor a viral SHIV reservoir; however, the size and nature
of that reservoir is unknown.

In another study, macaques were infected with SHIV as infants and
then subjected to long-term ART, and at the time of necropsy, 2 out of 6
macaques had low levels of SHIV DNA detected in their brain myeloid
cells.®? In contrast, another study of 9 SHIV-infected rhesus macaques
showed that after ART interruption none of the animals had detectable
SHIV-RNA in the CSF or in the brain tissue despite having high viral
loads before the initiation of ART.”? Colonna et al.,”! attempted to
recapitulate the results from the HIV-infected Berlin patient cured of
HIV, used BM transplants on SHIV-infected macaques; however, this
did not eliminate the viral reservoir, which persisted in many tissues
including the brain. These results indicate that SHIV might not be the
best model for studying latency in the CNS as the results surround-
ing CNS infection and reservoirs are unevenly distributed. While these
studies have shown that there is a viral reservoir in the brain in SHIV
models, these studies are rare and do not often focus on the CNS.
Macrophages have been shown to be the principal reservoir in SHIV
studies in other tissue compartments such as the liver, kidney, spleen,
and other tissues; however, not much analysis was performed to look
at the CNS reservoir and latency.”2

Primate SIV/SHIV models are useful systems to reflect HIV infec-
tion, as SIV and HIV have similar mode of infection pattern; however,

it is important to establish animal models that can look at the HIV
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virus directly. There are several deficits in the primate model studies
(asdescribed in Table 1), and that have shifted the focus on small animal
models to study HIV reservoirs in the CNS compartment.

5 | RODENT NEUROHIV MODELS

While SIV macaque models are the most well-publicized animal mod-
els to study HIV, there are some differences between SIV and HIV
that make certain CNS studies difficult to translate.”%~7> SIV contains
Vpx, which is known to reduce a myeloid cell restriction factor, which
subsequently leads to higher levels of infection in myeloid cells than
would be seen in HIV studies.”® Humans and monkeys also have dif-
ferent innate immune factors that control the response to HIV and
SIV infection.”” There are other limitations associated with nonhu-
man primate models; macaques are expensive to maintain, they are not
always readily available for experiments, and most importantly, there
are genetic limitations due to the dissimilarities between SIV and HIV.
These limitations highlight the need for small animal models of HIV as
human counterparts to study the CNS-related complications and latent
reservoirs.

As HIV-1 is human-specific, the only model that can recapitulate
HIV disease progression in small animals is humanized mice. These
models are developed on severe immunodeficiency background and
require genetic and cytokine support for the successful engraftment
of human cells. Multiple knockouts (scid mutation, common cytokine
receptor gamma chain, recombination activating gene (Rag-1 and —2),
FIt3 ligand, CD47,H2, |a) have been used, alone or in combination, with
only varying success.”®-8% These models were advanced through trans-
genic expression of human cytokines and growth factors (M-CSFs, IL-3,
IL-6, GM-CSF, and thrombopoietin, stem cell factor, HLA-A2, -DR4) as
well as MHC molecules. Currently, the most commonly used mouse
models are either immunodeficient (NSG/NOG) mice engrafted with
a functional human immune system (BM, liver, thymus)®! or mice in
which the coding region of HIV-1gp120 is substituted with that of gp80
from ecotropic murine leukemia virus, a retrovirus that infects only
rodents.?2

An ideal small animal model to study HIV-1 pathogenesis and
the cell types responsible for carrying the latent virus in the brain
could accurately represent an infection in the human brain. To
date, humanized mice with a human hematolymphoid system have
been used to study HIV persistence in the brain and its associated
neuropathology.23-87 Immune deficient mice that are engrafted with a
human immune system can reflect HIV-associated brain diseases seen
in humans.8487-89 A model known as HIV encephalitis mice was cre-
ated by injecting HIV-infected monocyte-derived macrophages into
the basal ganglia of humanized mice, and this model showed many
of the hallmark signs of HIV infection in the brain, such as neuronal
death, neurocognitive impairment, and the activation of microglia.t°
In another NSG-humanized mouse model, behavioral changes were
observed after HIV infection, which also displayed neuronal damage as
measured using magnetic resonance spectroscopy and validated using

immunofluorescence.®® In another study, HIV infection in humanized

mice led to human cells entering the brain at a higher rate, and there
was detectable HIV RNA in the brain compartment.t?

In NSG-humanized mice, HIV is not detected in the brain until 14-
28 days after infection.?® In rodent models, macrophages only have
a turnover rate between 2 and 8%, which indicates that the majority
of the macrophages are only replaced every few months, and some
cells can persist for years, which contributes to the long-lasting viral
reservoir.2® Humanized mice were also recently used to test a new
assay to recover the replication-competent viral reservoir from the
brain. PCR can overestimate the number of viruses because inactive
viruses can still be detected and sequenced, while QVOAs can underes-
timate the reservoir or fail to identify the virus in very small reservoirs.
The brain cells of humanized mice infected with HIV and kept on ART
for 3 months were adoptively transferred into uninfected humanized
mice, and these mice showed viral establishment.?? This assay shows
that the cells from virally suppressed mouse brains harbor replication-
competent HIV. Under ideal conditions, up to 10% of the microglia cells
in the brains of these NSG humanized mice were human, and they sup-
ported minimal HIV infection. These cells were isolated from the brains
of the mice and treated with HIV latency reversing chemicals, wherein
there was asharp increase in the amount of HIV released from the cells.
This demonstrates that the infected microglia in humanized mice con-
stitute a functional reservoir.”® Anideal model to study HIV-1 infection
inthe CNS and HAND requires the repopulation of a murine brain with
functional human microglial cells. Although these models could recapit-
ulate HIV-1 infection in the lining of meninges and perivascular areas,
they lack the ability to reconstitute human microglia, a potent brain
viral reservoir.

Previous studies have questioned if myeloid cells can serve as a
source of the HIV, or if they simply ingest T cells that already har-
bor the virus.”2 However, humanized mice studies have disproven the
ingestion hypothesis and shown that myeloid cells alone are able to
harbor HIV without the presence of T cells. A team created “myeloid
only mice” that did not harbor any human T cells by reconstituting mice
with CD34+ stem cells to establish human B cells and myeloid cells, but
no T cells.”® The researchers found replication-competent vDNA in the
brain as well as in other body compartments. When they transferred
cells from the initially infected mice to uninfected mice, the transfer
conveyed HIV infection. This result confirms that myeloid cells alone
can sustain HIV infection without engulfing any infected T cells.

The lack of models to repopulate microglia could be due to deficits
in species-specific cytokine support.”* Major factors that contribute
to microglial development are the CSF-1 and IL-34 ligands for CSF1
receptor (CSF1R) that function distinctively.”> CSF1 contributes to
the differentiation of BM-derived progenitor cells from monocytes to
tissue macrophages and dendritic cells,”® while IL-34 affects the devel-
opment of microglia and Langerhans cells.”®~? Some studies using
transgenic or knock-in mouse strains expressing human CSF-1 failed
to support spontaneous microglial development.10010% As it is difficult
to obtain human microglia from tissues, induced pluripotent stem cells
(iPSCs) have been examined as a productive avenue to obtain large
quantities of microglia. A team developed a methodology to generate

microglial cells from pluripotent stem cells. These induced microglial
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cells showed the identical protein profiles as microglia in vivo and also
displayed a similar receptor expression profile.1%2 Importantly, these
induced microglial cells were distinct from other myeloid cell lineages
and grouped most closely with adult and fetal microgliawhen subjected
to functional and transcriptomic analyses. These induced microglia also
displayed cytokine release in response to stress similarly to microglia
in vivo. When these cells were transplanted into mice, they displayed
properties consistent with normal microglial development, such as
developing branches/processes, phagocytizing amyloid plaques, and
responding differently in different areas of the brain. These results
indicate that induced microglia developed from pluripotent stem cells
could serve as an effective model for CNS disease within small rodents.
Though this model may be suitable to study CNS-related complications,
it lacks the peripheral human immune system, whichiis vital to the study
of HIV disease progression and pathogenesis.

To address this, Mathews et al.1%3 overexpressed human IL-34 (hlL-
34) in immunodeficient NOG mice under the CMV promoter that
successfully supported the development of brain microglia-like human
macrophages derived from human CD34+ hematopoietic stem cells
(HSCs). These microglial-like cells expressed canonical microglia cell
markers like Purinergic Receptor P2Y (P2Ry12), Triggering Receptor
Expressed on Myeloid Cells 2, CX3CR1, cluster differentiation 11b,
ionized calcium-binding adaptor molecule 1, and CSF-1R. A robust
viral replication within the human microglia was achieved within 3
weeks of peripheral infection. HIV-1 infection effectively induced
human-cell-specific molecular changes such as immune activation,
antiviral defense, and neuroinflammation.’?® This model readily char-
acterized previously reported pathologic events of an infected human
host.104-106 These outcomes suggest that this approach serves as a
promising new model of HIV-1 persistence in the brain and better rep-
resents HAND progression. The ability and potential to use iPSC and
stem cell therapies in humanized mice is also important and could be
vital for future CNS-related studies and its therapeutic targeting.

To look at the effect of HIV on brain cells, many researchers utilize
microglial or astrocytic or neuronal cell lines; however, these iso-
lated cell lines cannot capture the true nature of virus interactions
in the CNS. To overcome this problem, recently organoids have been
employed for CNS studies, as organoids were thought to better repre-
sent the functional features of a brain as compared to the cell lines.0”
Organoids are generated from stem cells that either spontaneously
differentiate or are guided to differentiate by using specific signaling
molecules.’%7-19? Microglia originated from organoids are suscepti-
ble to HIV-infection, but they need much longer exposure time as
compared to cocultured cells.2%7 Only microglial cells originating from
cerebral organoids have been shown to be productively infected with
HIV by using CCR5 coreceptor.19 Neurons, microglia, and astrocytes
isolated from human organoids were found to be infected with HIV and
to secrete neuroinflammatory markers such as TNFa and IL13%!! and
thus can be used for studies targeting CNS-related inflammation and
therapeutics. More future research work is needed to look at latency

using brain organoids.
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As of today, there are 3 widely used immunodeficient strains for HIV
research. They are NOD.Cg-Prkdcscd||2rgtm Wil (NSG), NODShi.Cg-
Prkdcscd|[2rgtm1Sus  (NOG), and C;129S4- Rag2imiFlvijorgtmiFiv
(commonly referred to as BALB/c-Rag2™! [L2rg™! mice or BRG)
mice.112-114 NSG and BRG mice lack the gamma chain (yc), whereas
NOG mice have a truncated cytoplasmic domain of yc, but lacks
the signaling domain. Using these backgrounds, 4 mice models are
deployed to study either short-term or long-term HIV infection-
related peripheral and CNS complications. The human peripheral
blood leukocyte (PBL) severe immune deficiency model (Hu-PBL-
SCID) allows transient studies of human T cell function because of the
development of xenogeneic graft-versus-host disease (GVHD).11> The
BM/liver/thymus model have all lineages of human hematopoietic cells
and support a robust mucosal immune system; however, they have
2 major drawbacks: the development of GVHD-like reactions during

long-term studies, 112116117

and difficulties and ethical regulations
in obtaining fetal cells of human origin to generate this model. The
third model is generated through the injection of human CD34 + HSCs
derived from BM, umbilical cord blood, fetal liver, or G-CSF-mobilized
peripheral blood. This model possesses BM-generated T cells, B cells,
APCs, and myeloid cells; however, these cells are found at low levels.
The human T cells mature in mouse thymus and are H2 type, not HLA
restricted.!’® The fourth model NSG is generated by intrahepatic
injection of human CD34+ HSCs derived from human cord blood.%?
This model possesses a complete human immune system and supports
long-term HIV and latency-related studies'?°; however, it has 2 lim-
itations in that the human T cells mature in murine thymus and have
functionally underdeveloped lymphatic tissues.121

While most of the current rodent models can be used to study HIV-
1 biology (viral entry, replication, and spread) after natural infection,
they do not permit research on other key elements of HIV infection
and AIDS, such as sustained levels of viral growth, specific antiretro-
viral immune responses, virus-induced immunopathology (CD4+ T-cell
depletion), mucosal inflammation, and cellular viral tropism and latency
establishment in CNS. Therefore, next-generation mouse models that
more effectively recapitulate human physiology and immunology are
needed to test vaccines and immunotherapeutic approaches to prevent
disease and virus transmission, and molecular approaches to achieve a
cure by eliminating latent virus from host cells. Ideally, these new mod-
els would co-express humanized genes for the primary HIV-1 receptor
(CD4), the common coreceptor in initial HIV-1 infection (CCR5), and
a glycine substitution for aspartic acid at position 106 of the mouse
ortholog (C1gbp) of the human gene (C1QBP [synonyms: P32, HABP1])
that promotes viral genomic transcripts and structural proteins, result-
ing in assembly and release of infectious virions (unpublished data).
There are several benefits of creating a triple polygenic humanized
mouse (hCD4/hCCR5/hC1qbp[D106G]), which can enable testing of
clinically relevant combination ARV regimens for efficacy of viral sup-

pression while evaluating viral reservoirs, and assessing viral rebound
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after therapeutic cessation; thus, enabling studies of HIV-1 pathogen-
esis and viral persistence in relationship to end-organ disease including
the CNS.

It is clear from the above discussion that animal models with
macrophages, microglia, and astrocytes of human origin in the brain are
needed to study CNS latency. Because macaques cannot be infected
with HIV, macaque models are less suitable for this long-term goal. It
is likely that future studies will further explore the role of myeloid cells
in HIV-induced neuropathology and behavioral deficits in HIV-infected
and cART suppressed mice as a method to better understand the HIV-1
pathogenesis in humans and develop strategies for therapy. The IL-34
microglia mouse can be used to test new generations of drug delivery
systems with improved CNS bioavailability. This model can also help to
develop better HIV cure strategies targeting specific brain cell types.
However, the humanized microglia mouse model has some caveats to
be considered. Although the model attained engraftment of immune
cells and microglia, it lacks another potential restricted viral reservoir
- astrocytes and features shown in Table 1.

Astrocytes, the other major glial cells in the brain, maintain brain
homeostasis among many other functions; however, their role as a CNS
reservoir is controversial. It was initially thought that astrocytes could
not harbor any replication-competent HIV virus in the brain as they
do not express CD4 receptors.1?2 More recent evidence suggests that
astrocytes become infected through a CD4 independent mechanism,
though at much lower levels than microglial cells.!2% Except a few stud-
ies (in vitro, autopsy samples and SIV studies)**124-127 |imited work
has been published examining the astrocyte’s role as a latent reservoir
in animal models. The support for the role of astrocytes during HIV
infection came from Lutgen et al.,'?® who demonstrated that astro-
cytes could initiate the spread of HIV-infection through T cells and
spread the disease from CNS to periphery. However, in this model, the
authors first infected fetal astrocytes in vitro using VSV-pseudo-typed
HIV and then transplanted them into brain of humanized mice, so it
is not a suitable model to study latency. Previously, our group gener-
ated a humanized mouse model reconstituted with human astrocytes
and human leukocytes by transplanting human neuro-progenitor cells
in the brain and HSC in the liver simultaneously in immunodeficient
neonates. These mice exhibited human astrocyte-specific antiviral
responses toward systemic HIV infection and neuronal damage.8¢
Overall, the role of astrocytes as latent reservoir needs more attention
through suitable animal model systems of human origin.

To broadly study the CNS latency in humanized mice, the presence
of both astrocytes and microglia are needed in the mouse brain. Repop-
ulating the murine brain with functional human macrophages, astro-
cytes, and microglia cells can open new avenues to study HIV-induced
inflammation, neuropathogenesis, latent viral reservoirs, and myeloid
cells carrying latent virus, and subsequent targeting to eliminate them

in a single system.
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