
ORIGINAL RESEARCH
published: 29 May 2018

doi: 10.3389/fnins.2018.00353

Frontiers in Neuroscience | www.frontiersin.org 1 May 2018 | Volume 12 | Article 353

Edited by:

Mikhail Lebedev,

Duke University, United States

Reviewed by:

Bruce C. Wheeler,

University of Florida, United States

Zhong Yin,

University of Shanghai for Science and

Technology, China

*Correspondence:

Rosaleena Mohanty

rmohanty@wisc.edu

Specialty section:

This article was submitted to

Neural Technology,

a section of the journal

Frontiers in Neuroscience

Received: 02 February 2018

Accepted: 07 May 2018

Published: 29 May 2018

Citation:

Mohanty R, Sinha AM, Remsik AB,

Dodd KC, Young BM, Jacobson T,

McMillan M, Thoma J, Advani H,

Nair VA, Kang TJ, Caldera K,

Edwards DF, Williams JC and

Prabhakaran V (2018) Machine

Learning Classification to Identify the

Stage of Brain-Computer Interface

Therapy for Stroke Rehabilitation

Using Functional Connectivity.

Front. Neurosci. 12:353.

doi: 10.3389/fnins.2018.00353

Machine Learning Classification to
Identify the Stage of Brain-Computer
Interface Therapy for Stroke
Rehabilitation Using Functional
Connectivity
Rosaleena Mohanty 1,2*, Anita M. Sinha 1,3, Alexander B. Remsik 1,4, Keith C. Dodd 1,3,

Brittany M. Young 5,6, Tyler Jacobson 1,7, Matthew McMillan 1,3, Jaclyn Thoma 1,6,

Hemali Advani 1, Veena A. Nair 1, Theresa J. Kang 1, Kristin Caldera 8, Dorothy F. Edwards 4,

Justin C. Williams 3 and Vivek Prabhakaran 1,5,6,9

1Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States, 2Department of Electrical

Engineering, University of Wisconsin-Madison, Madison, WI, United States, 3Department of Biomedical Engineering,

University of Wisconsin-Madison, Madison, WI, United States, 4Department of Kinesiology, University of Wisconsin-Madison,

Madison, WI, United States, 5Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI,

United States, 6Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States, 7Deparment

of Psychology, University of Wisconsin-Madison, Madison, WI, United States, 8Department of Orthopedics and

Rehabilitation, University of Wisconsin-Madison, Madison, WI, United States, 9Department of Medical Physics, University of

Wisconsin-Madison, Madison, WI, United States

Interventional therapy using brain-computer interface (BCI) technology has shown

promise in facilitating motor recovery in stroke survivors; however, the impact of this

form of intervention on functional networks outside of the motor network specifically

is not well-understood. Here, we investigated resting-state functional connectivity

(rs-FC) in stroke participants undergoing BCI therapy across stages, namely pre- and

post-intervention, to identify discriminative functional changes using a machine learning

classifier with the goal of categorizing participants into one of the two therapy stages.

Twenty chronic stroke participants with persistent upper-extremity motor impairment

received neuromodulatory training using a closed-loop neurofeedback BCI device,

and rs-functional MRI (rs-fMRI) scans were collected at four time points: pre-, mid-,

post-, and 1 month post-therapy. To evaluate the peak effects of this intervention, rs-

FC was analyzed from two specific stages, namely pre- and post-therapy. In total,

236 seeds spanning both motor and non-motor regions of the brain were computed

at each stage. A univariate feature selection was applied to reduce the number of

features followed by a principal component-based data transformation used by a

linear binary support vector machine (SVM) classifier to classify each participant into

a therapy stage. The SVM classifier achieved a cross-validation accuracy of 92.5%

using a leave-one-out method. Outside of the motor network, seeds from the fronto-

parietal task control, default mode, subcortical, and visual networks emerged as

important contributors to the classification. Furthermore, a higher number of functional

changes were observed to be strengthening from the pre- to post-therapy stage than

the ones weakening, both of which involved motor and non-motor regions of the

brain. These findings may provide new evidence to support the potential clinical utility
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of BCI therapy as a form of stroke rehabilitation that not only benefits motor recovery but

also facilitates recovery in other brain networks. Moreover, delineation of stronger and

weaker changes may inform more optimal designs of BCI interventional therapy so as to

facilitate strengthened and suppress weakened changes in the recovery process.

Keywords: BCI therapy, stroke recovery, functional MRI, functional connectivity, motor network, non-motor

networks, machine learning, support vector machine

INTRODUCTION

Recent advancements in neurotechnology have led to the
emergence of the brain-computer interface (BCI), which records
neural signals and translates them into signals that can control
assistive devices, such as computers or prostheses. To date,
BCI-based approaches are being investigated as therapeutic
strategies to facilitate recovery for several neurological diseases,
including stroke, epilepsy, and Parkinson’s Disease. For stroke,
the long-term objective of the rehabilitation is to improve
impaired brain functions so as to restore autonomy in daily
activities for stroke survivors. While conventional approaches
such as physical therapy and occupational therapy have proven
to be successful in aiding stroke recovery in the acute and
sub-acute stages (Bütefisch et al., 1995; Gordon et al., 2004)
modern technologies involving robotics (Kwakkel et al., 2008),
transcranial magnetic stimulation (Corti et al., 2012), and virtual
reality (Lohse et al., 2014) have demonstrated promise in
promoting additional motor and cognitive recovery to improve
autonomy and overall quality of life for stroke survivors even in
the chronic stages. The use of an electroencephalogram (EEG)-
based brain-computer-interface (BCI) is an unconventional
rehabilitation strategy that has emerged as a potentially effective
therapeutic modality for promoting motor recovery in patients
with stroke (Silvoni et al., 2011). An EEG-based BCI detects
and uses a patient’s neural signals as inputs to provide real-
time feedback, effectively enabling users to modulate their brain
activity (Felton et al., 2009). Additional feedback presented by
means of functional electrical stimulation (FES; De Kroon et al.,
2002) and tongue stimulation (TS) (Wilson et al., 2012) also
provide users with multi-modal feedback as a form of reward
for producing certain brain activity patterns while performing
tasks. While BCI therapy is often explicitly targeted at restoring
motor functions, simultaneous changes in non-motor-related
functions in the brain may also result after intervention; to
date, neural reorganization of cortical regions outside of the
motor network is not well-characterized. Distinction between the
overall brain state before and after the therapy could facilitate
a more thorough understanding of the mechanisms underlying
both the strengthening and/or weakening in motor and non-
motor networks in participants. Access to this information could

Abbreviations: BCI, brain-computer interface; BOLD, blood-oxygen-level
dependent; EEG, Electroencephalography; FES, functional electrical stimulation;
LOOCV, leave-one-out cross-validation; MAD, median absolute deviation; MNI,
Montreal Neurological Institute; NIHSS, National Institutes of Health Stroke Scale;
PCA, principal component analysis; Rs-FC, resting state functional connectivity;
rs-fMRI, resting state functional magnetic resonance imaging; SVM, support
vector machine; TS, tongue stimulation.

allow us to optimize the design and execution of this therapy for
stroke rehabilitation.

While EEG allows for study of real-time brain activity during
the BCI therapy with a high temporal resolution, neuroimaging
methods have afforded us the ability to study both large-scale
and small-scale reorganization of brain networks (Van Den
Heuvel and Pol, 2010) at a relatively higher spatial resolution.
Resting state functional magnetic resonance imaging (rs-fMRI),
specifically, has been demonstrated as a powerful and attractive
tool to study changes in brain functions as it is non-invasive,
time-efficient, and task-free. Rs-fMRI allows us to measure
the temporal correlation of the spontaneous, low-frequency
(<0.1Hz) blood-oxygen-level dependent (BOLD) signals across
regions in the resting brain. Oscillations in the BOLD fMRI
signals are indicative of cortical dynamic self-organization and
have been associated with the neural reorganization underlying
cognitive and motor function during stroke recovery (Lee et al.,
2013; Bajaj et al., 2015). Previous studies have demonstrated
that there are overlapping networks between the rs-fMRI-
derived motor network and those observed during motor
imagery and motor execution fMRI tasks (Grefkes et al., 2008;
Nair et al., 2015). A growing number of studies have utilized
neuroimaging methods to study the efficacy of BCI therapy in
stroke recovery and foundmodulating changes in neuroplasticity
and improvement in motor functions (Di Bono and Zorzi, 2008;
Várkuti et al., 2013; Song et al., 2014; Young et al., 2014b; Nair
et al., 2015; Soekadar et al., 2015). In the present study, we aim to
use rs-fMRI to examine changes in neuroplasticity in whole-brain
networks and to examine interactions between motor and non-
motor cortical regions in chronic stroke participants following
BCI therapy.

A whole-brain analysis resulting in high-dimensional
data calls for the application of machine learning-based
approaches which have become increasingly more integrated in
neuroimaging analysis as they enable discovery of multivariate
relationships beyond those identifiable by traditional univariate
analysis. Several studies have underscored the utility of machine
learning to not only differentiate among population groups
(Dai et al., 2012; Meier et al., 2012; Rehme et al., 2014; Fergus
et al., 2016; Khazaee et al., 2016; Ding et al., 2017) but also
make predictions about behavioral outcomes using regression
models (Dosenbach et al., 2010; Vergun et al., 2013; Mohanty
et al., 2017), all of which have advanced our understanding of
altered brain functionalities associated with several neurological
diseases. In the context of BCI systems, linear and non-linear
machine learning classification algorithms (Muller et al., 2003;
Lotte et al., 2007) including support vector machines (SVMs;
Rakotomamonjy and Guigue, 2008), nearest neighbors (Mason
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and Birch, 2000), and neural networks (Cecotti and Graser, 2011)
have mainly been limited to improvement and optimization
of the BCI2000 system from a design perspective to make the
system more adaptive and user-friendly (Selim et al., 2008;
Danziger et al., 2009; Alomari et al., 2013). Relatively fewer
studies have applied machine learning techniques to elucidate
the therapeutic impact of BCI interventional therapy in stroke
patients based on the dynamics of brain connectivity changes.
Specifically, SVM-based classifiers have demonstrated the ability
to not only draw a distinction between different classes but
also provide insight into underlying features that lead to the
separation between them (Dosenbach et al., 2010; Vergun
et al., 2013). Given that we aim to extensively investigate
whole-brain effects of BCI therapy, a similar classification
approach is befitting due to its efficiency in handling high-
dimensional rs-fMRI data. Recent developments have brought
deep learning approaches into view with applications in the field
of medical imaging such as tissue/lesion/tumor segmentation
(Birenbaum and Greenspan, 2016; Kamnitsas et al., 2017), image
reconstruction/enhancement (Benou et al., 2016; Hoffmann
et al., 2016) and population-based classification (Brosch et al.,
2013; Payan and Montana, 2015). The efficiency of deep learning
algorithms, however, is highly dependent on samples available
for training a reliable model. Thus, we adhere to supervised
machine learning classifiers given the limited sample size.

With the above considerations in mind, the goal of this
study was to identify the stage of therapy using whole brain
rs-fMRI data in stroke participants undergoing EEG-based BCI
intervention along with additional feedback provided by FES and
TS. We analyzed changes in non-motor regions of the brain in
addition to the well-studied motor regions following BCI therapy
in chronic stroke participants. To this end, we modeled this as a
classification problem of discriminating between pre-therapy and
post-therapy stages of intervention. Specifically, we illustrated
using rs-fMRI that connectivity at the pre-therapy stage can be
differentiated from that at post-therapy with reasonable accuracy.
A SVM-based machine learning classifier was employed to
identify specific functional nodes and connections in the brain
between the two stages. The significance of this study is 4-fold:
this study suggests that (i) a 10-min task-free rs-fMRI scan could
aid in identifying and tracking changes in functional connectivity
in the brain over the course of BCI therapy; (ii) SVM-
based classification can automate the process of categorizing
participants into pre-therapy or post-therapy stages and identify

features discriminating between the stages of therapy; (iii) BCI
therapy, targeted toward upper-extremity motor restoration, can
promote recovery effects related to brain connectivity in both
motor and non-motor networks; (iv) identification of specific
functional changes that strengthen and weaken between stages of
BCI-therapy could inform more tailored designs of BCI systems
that facilitate stronger changes and suppress weaker changes to
maximize the efficacy of this interventional therapy and improve
outcomes for stroke survivors.

METHODS

Study Design
A permuted-block design (Zelen, 1974) that accounted for
participant characteristics such as gender, stroke chronicity, and
severity of motor impairment was used to randomly assign
participants to one of two groups: crossover control group
and BCI therapy group. The study paradigm is schematized in
Figure 1. Ten participants in the BCI therapy group received
interventional rehabilitation therapy and were scanned for
MRI and rs-fMRI at four time points: pre-therapy (T4), mid-
therapy (T5), immediately post-therapy (T6), and 1 month after
completing the last BCI therapy (T7) as per the figure. Ten
participants in the crossover control group first received three
functional assessments and MRI scans during the control phase
in which no BCI therapy was administered (T1 through T3 in
Figure 1), and their assessments were spaced at intervals similar
to those given during the BCI therapy phase. Upon completion
of the control phase of the study, the crossover control group
“crossed over” into the BCI therapy phase of the study. For this
study, participants from the crossover control group and the BCI
therapy were combined (N = 20), treated as a single sample
group and studied at the pre-therapy (T4) and post-therapy
(T6) stages to provide additional power to the analysis. Even
though imaging data were collected at four distinct time-points,
changes between pre-therapy and post-therapy were examined as
maximal changes would be expected to occur between these two
time-points. Therefore, results from this study should be used to
demonstrate proof-of-concept.

Participants
All participants were recruited as part of an ongoing stroke
rehabilitation study to investigate the effects of interventional
therapy using an EEG-based BCI device targeting upper

FIGURE 1 | Study paradigm. The time-points at which neuroimaging data were collected are represented by: T1: Control baseline 1, T2: Control baseline 2, T3:

Control baseline 3, T4: Therapy baseline T5: Mid-therapy, T6: Post-therapy, and T7: 1-month post-therapy. While the crossover control group completed visits T1

through T7, the BCI therapy group completed visits T4 through T7 only.
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extremity motor function. The inclusion criteria for participation
were: (1) at least 18 years of age; (2) persistent upper extremity
motor impairment resulting from an ischemic or hemorrhagic
stroke; (3) ability to provide written informed consent. Exclusion
criteria consisted of: (1) concomitant neurodegenerative or other
neurological disorders; (2) psychiatric disorders or cognitive
deficits that would preclude a participant’s ability to provide
informed consent; (3) pregnant or likely to become pregnant
during the study; (4) allergies to electrode gel, metal and/or
surgical tape, contraindications toMRI; (5) concurrent treatment
for infectious disease. The study was approved by the University
of Wisconsin-Madison Health Sciences Institutional Review
Board. All participants provided written informed consent for
participation prior to the start of their participation in the
study. Participant age was reported corresponding to the first
session of BCI therapy. This analysis was limited to chronic
stroke participants only (time between stroke onset and the first
session of BCI therapy >6 months) since participants in the
acute or sub-acute stages often exhibit spontaneous post-stroke
recovery that may prove difficult to distinguish from the effects
of BCI therapy. While stroke severity was evaluated based on
NIH Stroke Scale (NIHSS) score (Brott et al., 1989), the severity
of motor impairment was assessed on the basis of standardized
scores on the Action Research Arm Test (Carroll, 1965; Lang
et al., 2006) and was dichotomized into severe and moderate.
Group participant characteristics are summarized in Table 1.

BCI Therapy
The primary purpose of using BCI therapy in this work was
to promote restorative function by providing neuromodulatory
training with concurrent assistive stimulation that generated
actual movement in the impaired upper limb. The BCI device
was controlled by actual attempted movement of the user and
not imagined movement. The attempted movement, in turn,
generated neural activity, as recorded by EEG signals, which
translated into computer-generated feedback in real time. Here
we provide a concise summary of the procedure for the BCI
intervention. The steps of interventionwere consistent with those
described in depth in prior studies (Wilson et al., 2009; Young
et al., 2014a). Neural activity was recorded using a 16-channel
EEG cap (g.GAMMA cap, Cortech Solutions) and amplifier
(Guger Technologies) and processed using BCI2000 software
(Schalk et al., 2004). Movements of the impaired upper extremity
were facilitated with two forms of external stimulation: TS (TDU
01.30, Wicab Inc.) and FES (LG-7500, LGMedSupply; Arduino

TABLE 1 | Study sample characteristics.

Characteristic Value

Sample size 20

Age (mean age ± SD) 62.4 ± 14.3 years

Gender (male/female) 12/8

Lesion hemisphere (left/right) 8/12

Time since stroke (mean ± SD) 37.6 ± 40.8 months

Stroke severity (severe/moderate) 11/9

1.0.4). Three main components were implemented: (i) open-loop
attempted movement without any feedback for determination of
channels and frequencies for subsequent steps; (ii) closed-loop
attempted movement with visual feedback in the form of a cursor
task that utilized EEG signals of the user in real time; and (iii)
closed-loop attempted movement as in step (ii) with additional
feedback in the form of TS and FES to themuscles of the impaired
arm.

Data Acquisition: Neuroimaging Data
Structural MRI scans lasting about 5min were acquired on 3T
GE 750 scanners (GE Healthcare, Waukesha, WI) equipped
with an eight-channel head coil. These were T1-weighted axial
anatomical scans and were collected using FSPGR BRAVO
sequence with the following specifications: TR = 8.132ms, TE
= 3.18ms, TI = 450ms over a 256 × 256 matrix and 156 slices,
flip angle = 12◦, FOV = 25.6 cm, slice thickness = 1mm. Ten-
minute rs-fMRI were collected with participants lying in the
scanner with their eyes closed. Participants were instructed to
relax with their eyes closed while trying not to fall asleep during
this scan. Rs-fMRI scans were obtained using single-shot echo-
planar T2∗-weighted imaging with the following parameters: TR
= 2.6 s, 231 time-points, TE = 22ms, FOV = 22.4 cm, flip angle
= 60◦, voxel dimensions 3.5× 3.5× 3.5 mm3 and 40 slices.

Data Availability Statement
The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

Individual Participant Analysis
Data Preprocessing
All scans were inspected visually to ensure they were free of any
apparent artifacts. Rs-fMRI data were processed using Analysis
of Functional NeuroImaging (AFNI) (Cox, 1996) software.
Functional scans were despiked, slice time corrected, motion
corrected, aligned with the anatomical scan, normalized to the
standard MNI (Montreal Neurological Institute) space using
the T1 scan, resampled to 3.5 mm3, and spatially smoothed
with a 4-mm full-width-half-maximum Gaussian kernel. Motion
censoring (per TR motion >1mm or 1◦), regression of white
matter and cerebrospinal fluid signals, and bandpass frequency
filtering were performed simultaneously in one regressionmodel.
The bandpass filtering was focused to the typical low oscillation
fluctuations within 0.01–0.1Hz. Global signal regression was
omitted due to ongoing controversy in the literature associated
with its use (Murphy and Fox, 2016).

Seed-Based Functional Connectivity
Based on a previous study (Power et al., 2011), 236 seed
regions of interest (ROI) spanning regions from 13 distinct
networks were selected. This seed template provides full coverage
of various motor and non-motor brain regions and has been
utilized to study functional reorganization of the brain in healthy
participants. The regions are depicted in Figure 2, as per the
MNI coordinates, and the networks are encoded as per Table 2.
Spherical seeds of 5mm radius each were created for each
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FIGURE 2 | The 236 seeds regions involving motor and non-motor regions include 13 major brain networks color coded according to Table 2 and visualized using

BrainNet Viewer (Xia et al., 2013). The seed regions falling outside the template of cerebrum were part of the cerebellum.

TABLE 2 | The seed template encompasses the whole brain comprising of 13

distinct brain networks coded by colors and specified number of regions.

Brain network Seed color Number of seeds

Sensory/somatomotor hand 30

Sensory/somatomotor mouth 5

Cingulo-opercular task control 14

Auditory 13

Default mode 58

Memory retrieval 5

Ventral attention 9

Visual 31

Fronto-parietal task control 25

Salience 18

Subcortical 13

Cerebellar 4

Dorsal attention 11

participant. This seed template was applied to the spatially
normalized, smoothed, and filtered residuals of the resting data
and BOLD time series was extracted at each of the 236 seed
regions. A correlation matrix of size 236-by-236 was generated
by temporally correlating time series from all pairs of seeds.
Of the 55,696 correlation coefficients generated, 27,730 unique
coefficients were retained for analysis and the duplicates were
discarded. The unique correlation coefficients were computed
from data at the pre- and post-therapy stages and used as
input features for the discrimination between the stages. The
methodology at single-participant level is outlined in Figure 3.

Group Level Analysis
Applications of classification using machine learning algorithms
such as SVM on rs-fMRI have been demonstrated in multiple
studies (Dosenbach et al., 2010; Vergun et al., 2013). For the
purpose of this study, we adopted a similar strategy, i.e., we
applied a binary linear-kernel SVM to rs-FC in order to classify
between the two classes, namely pre-therapy and post-therapy.

The rs-FC data for all participants were aggregated and the steps
described as follows were implemented.

Outlier Removal
It is acknowledged that with a limited sample size, the data could
be skewed due to the presence of outliers; therefore, possible
outlier features were detected and removed from the data set.
To this end, a median absolute deviation (MAD) (Leys et al.,
2013) method detected any value that is more than three scaled
MADs away from the median in a given feature which is deemed
an outlier. This was repeated for each feature within the pre-
therapy stage and post-therapy stage. The features containing
these outliers were eliminated, saving only common features
across pre- and post-therapy.

Feature Selection and Transformation
The rs-FC per participant consisted of 27,730 coefficients
resulting in a high-dimensional dataset. Drawing useful
conclusions based on a reasonable classifier is incumbent
upon selecting meaningful and important features. One way
to achieve this is by means of dimension reduction. Given
that a large number of features with a small sample size can
result in overfitting to noise, we adopted a feature selection
step followed by a feature transformation step. The feature
selection was a preprocessing step to select a subset of 27,730
features using a univariate paired t-test between the features
of pre-therapy and post-therapy stages. Features were tested
for normality using the Kolmogorov-Smirnov test (Massey,
1951) and a subset of normal features was selected on the basis
of the p-value for each individual feature that indicated its
effectiveness in the separation between the two aforementioned
stages. However, the filtered features were still high-dimensional
and could easily lead to overfitting. Therefore, the reduced
data obtained from the previous step were transformed to a
lower dimensional space using principal component analysis
(PCA; Jolliffe, 1986; Jackson, 2005). A PCA-based feature
transformation was suitably chosen as it assumes that data can
consist of correlated variables (features) and the redundancy
can be simplified by forming an uncorrelated basis composed
of the principal components which is low-dimensional and
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FIGURE 3 | Methodology for single-participant analysis: (A) raw structural T1 scan (top) was preprocessed and spatially normalized to MNI space (bottom); (B) raw

functional scan (top) was preprocessed up to smoothing (bottom); (C) smoothed fMRI was temporally filtered to obtain the low frequency oscillations within the range

of 0.01–0.1Hz using a bandpass filter; (D) 236 seeds comprising of 13 major brain networks were used to extract BOLD time courses at each seed region; (E) 236 ×

236 rs-FC matrix was computed using the BOLD time courses; (F) unique pairwise correlations contained in the lower triangle of the rs-FC matrix were extracted and

vectorized into a 27,730-dimensional vector.

FIGURE 4 | Methodology for group-level analysis: (A) vectorized form of rs-FC matrix for each participant aggregated for T4, i.e., pre-therapy and T6, i.e.,

post-therapy time points. Each group had 20 participants with 27,730-dimesional features; (B) outliers (marked in yellow) at pre- and post-therapy were identified

using MAD approach; (C) reduced rs-FC matrix after cumulative outliers were removed, i.e., each stage consisted of 20 participants and 17,614 features; (D) 679

features that were significantly different between pre- and post-therapy stages as identified by a paired t-test were retained and data across the two stages were

combined together for a feature transformation step; (E) feature transformation using PCA was performed that resulted in data with 40 participants and 39

low-dimensional principal components features. Of them 25 features accounted for more than 85% variance and were used as final features for classification; (F) the

selected features were fed to the binary SVM classifier that labels each test participant to either pre-therapy or post-therapy stage using LOOCV.

accounts for a large fraction of variance in the original data.
Each principal component is simply a linear combination of
the original rs-FC features. PCA is based upon computation of
covariance matrix of the raw data. Only mean centering was
applied to the raw data prior to application of PCA. Variance
was not standardized as it can change the covariance matrix and
lead to misleading principal components. The first few principal
component scores were selected based on the amount of variance
accounted for in the raw data and were used in the classification
step.

Classification
Once the appropriate number of principal components was
extracted in the feature selection and transformation step,
classification between the pre-therapy and post-therapy stages
was performed using the learned principal component-based
features. The inputs to the classifier were no longer the raw rs-
FC coefficients. Instead, the principal component scores, each of
which corresponded to a linear combination of multiple rs-FC

features, were fed into the classifier as features. Additionally,
since SVM-based classifiers do not assume data to be normally
distributed, the traditional Fisher z-transformation was not
necessary. However, the principal component scores were scaled
and standardized so that each component score had the same
mean and variance to avoid some features from potentially
dominating others due to large magnitude. This was realized
by mean centering and scaling by the standard deviation of
each component score. A binary classifier was trained on these
features and cross-validated on an out-of-sample participant.
To allow for more straightforward interpretation of results, a
linear-kernel SVM was applied due to the advantage of ease of
interpretation of results. Additionally, the choice of a linear-
kernel classifier was supported by the linear separability in the
data. As observed in three-dimensional space in Figure 5, the
principal component features are almost linearly separable. Thus,
there is a likelihood that the two classes are linearly separable
in higher dimensions which are used for classification (Noble,
2006).
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FIGURE 5 | First three principal components corresponding to pre-therapy

rs-FC and post-therapy rs-FC for all participants were visualized. Each point in

the 3-D plot corresponds to a participant. There appeared to be an almost

clear separation between the two stages just with three principal components.

Adding higher number of components better explained the variance in the

data. Our analysis used 25 components that explained over 85% of the

variance in the dataset.

FIGURE 6 | The number of principal components are arranged in order of

importance so that the first component accounts for the largest proportion of

variance in the rs-FC data. Of the 39 principal components, 25 were chosen

as marked in the graph as they cumulatively explained over 85% of the

variance in the data, represented by the shaded area under the curve.

Cross-Validation
A leave-one-out cross-validation (LOOCV)method (Hastie et al.,
2001) was adopted to estimate classifier performance as it
provides an approximation of the test error with lower bias and
is more suitable for a dataset with a small sample size such as
here. Since our analysis followed a within-participant design,
we performed a LOOCV by participant to avoid introducing
possible “twinning” bias. This means that the data consisting
of 40 observations (pre-FC and post-FC from 20 participants)
were subdivided into 20-folds such that each fold comprised

TABLE 3 | The number of features derived from the rs-FC data utilized in various

steps of the analysis.

Analysis step Number of

features

Feature space

Original features 27,730 rs-FC

After outlier removal 17,614 rs-FC

After univariate filtering 679 rs-FC

After principal component analysis 39 reduced

Chosen principal components for classification 25 reduced

The feature space indicates whether the corresponding features were measures of

functional connectivity, i.e., rs-FC space or principal components comprised of linear

combination of multiple rs-FC features, i.e., reduced space.

of pre-FC and post-FC data from a single participant. The
classifier was trained using features from 19-folds (equivalent to
38 observations from pre- and post-stages of 19 participants) and
tested on the left-out fold (2 observations from pre- and post-
stages of 1 participant). This was repeated 20 times such that
data from each participant was left out once while a model was
generated using the rest of the data. The performance of the
model was assessed by averaging the accuracies over all iterations.

Model Parameter Optimization
To achieve high classification accuracy, the SVM classifier
relies on both feature selection and learning optimized model
parameters. Specifically, the misclassification cost and kernel
scale parameters of the classifier were optimized with a Bayesian
optimization (Snoek et al., 2012) approach. By minimizing the
cross-validation error over a range of values for 30 iterations, the
optimal parameter values were obtained that further improve the
classification performance.

Feature Contribution
Once a model was learned with the optimal parameters,
the use of a linear-kernel SVM allowed understanding of
underlying discriminatory brain connections. The PCA feature
transformation yielded linear coefficients that weigh features
and the importance of each feature was dependent upon the
magnitude of the associated coefficient.

Seed Contribution
Based upon the feature weights obtained for each of the
discriminating functional connections, seed region weights were
calculated for individual brain regions. This was achieved by
halving the feature weight of each functional connection and
assigning this value to the two seeds involved (Meier et al., 2012).
A cumulative measure of weight corresponding to each seed was
computed by averaging the half-weights across all discriminating
connections.

Overview of Methodology
Overall, a classification model using rs-FC was learned and
optimized, and the contributing rs-FC features and ROIs that
provided the maximum discriminative power based on cross-
validation performance were identified. All computations were
carried out using the Statistics and Machine Learning Toolbox in
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MATLAB R2017a (The MathWorks, Inc., Natick, Massachusetts,
United States). The group-level analysis pipeline is illustrated in
Figure 4.

RESULTS

Performance of Classifier
Outlier Removal
Each of the 27,730 features was tested for the presence of outliers
within the pre- and post-therapy stages separately. Features were
removed if they contained values that were more than three
scaled deviations from the median. MAD was chosen as it is
more robust in comparison to the standard deviation measure.
Outliers constituted 21.99% of the features in the pre-therapy
stage and 19.53% of the features in the post-therapy stage. After
outliers across both time-points were removed, 17,614 features
were retained in each class.

Feature Selection and Transformation
The 17,614 features remaining after outlier elimination were
used as input to the feature selection step. Each feature was
tested for normality and the univariate paired t-test resulted in
679 features that were significantly different between the two
stages. During feature transformation using PCA, the number
of principal components was determined to be the smaller of
these two: number of samples-1 or number of input features.
Thus, application of PCA resulted in 39 principal components
in this case, each of which was uncorrelated to each other and
was realized as a linear combination of the 679 input features. Of
the 39 components, 25 components were able to account for over
85% of the variance in the data and were fed into the classifier.
Due to lack of visualization tools in 25 dimensions, a simpler plot
with the first three components was generated as displayed in
Figure 5. The separation observed in the visualization suggests
that PCA was able to build useful low-dimensional features
that can help in differentiating between the two stages. For
classification, the chosen number of components was based on
the variance explained by them as shown in Figure 6. An account
of number of features retained at each step of processing from

original space (i.e., features are rs-FC coefficients) to reduced
space (i.e., features are principal components) is provided in
Table 3.

Cross-Validation
A binary SVM classifier was built using 25 principal component
features. Classification performance was cross-validated using
the LOOCV method and was used to assess and compare results
as quantified in Table 4. The accuracy of LOOCV represents the
percentage of individual samples that were correctly classified
when left out. Since accuracy is a single-point statistic, the
results were further broken down into a confusion matrix metric
to understand the bias of the classifier toward each class, if
any. In addition, multiple performance evaluation metrics were
evaluated such as specificity, sensitivity, and area under the curve.
The receiver operator curve (ROC) plotted in Figure 7 indicated
that the classifiers developed here have superior performance as
compared to a random classifier.

Model Parameter Optimization
The optimal values of classifier parameters, i.e., the
misclassification cost and scaling factor for the linear kernel
were generated by the Bayesian approach for each classifier and
are listed in Table 4. As observed, optimization of the model
parameters improves the classifier performance further. This is
also reflected in the ROC plot in Figure 7.

Strengthened and Weakened Functional
Changes as Discriminating Features
From the evaluation of classification performance, it is possible
to extract the features that were involved in classification, as
well as the importance of each feature in making the distinction
between classes. Our objective was to identify discriminating
features between groups that strengthened from pre-therapy to
post-therapy and those that weakened from pre-therapy to post-
therapy. All changes in rs-FC were assessed in terms of group
means. Considering the 679 features that went into the final
classification model, the distribution of features is presented in
Table 5. Stronger connections outnumbered weaker connections

TABLE 4 | Overall comparative results obtained from LOOCV of binary SVM classifier.

Metric Performance without optimization Performance with optimization

LOOCV accuracy 90% 92.5%

Confusion matrix Pre Post Pre Post

Pre 18 2 Pre 18 2

Post 2 18 Post 1 19

Specificity 0.90 0.95

Sensitivity 0.90 0.90

Area under the curve 0.9825 0.9850

Misclassification cost 1 (default) 0.0010

Kernel scale 1 (default) 0.0011

The rows of confusion matrix represent the actual class while the columns show the predicted class.
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FIGURE 7 | The ROC for the learned SVM classifier was compared to that of a

random classifier. The SVM classifier with optimized model parameters

showed the best performance. The area under the curves for unoptimized and

optimized SVM are specified in Table 4.

TABLE 5 | Breakdown of discriminating features into functional connections that

strengthened and weakened from pre-therapy to post-therapy are shown for

motor as well as non-motor regions.

Motor Non-motor Total

Strengthened 105 336 441

Weakened 71 167 238

Overall 176 503 679

The colors correspond to the edges in Figure 8. The specific stronger and weaker

connections in terms of networks and anatomical locations are provided in Supplementary

Tables 1, 2, respectively.

in discriminating between the two stages of therapy both
in the motor and non-motor networks. Individual functional
changes that strengthened and weakened over time are listed
in Supplementary Tables 1, 2, respectively in the order of their
importance. These changes are also visualized in Figure 8.

Discriminating Seed Regions
Motor as well as non-motor regions were involved in
differentiating between pre- and post-therapy. Among the 679
total input features, the distribution of frequency of involved seed
regions by network is presented in Figure 9. As observed, seed
regions from all major motor and non-motor networks showed
involvement in the discriminating features. From Figure 9A,
it appeared that the default mode network had the highest
number of involved regions; however, the distribution of number
of seeds across the networks was not equal as listed in
Table 2. The number of discriminating features was normalized
by the number of seeds available within each network and
plotted in Figure 9B. In particular, networks that exhibited
greater normalized involvement included regions from visual,
subcortical, fronto-parietal task control, cingulo-opercular task
control, default mode, and hand-mouth motor networks.

In addition to assessing the frequency of involvement, the
seeds were also assigned weights to study the importance of
each seed region based on the coefficients of the principle
components. The coefficient corresponding to each feature or
connection was halved and assigned to the involved seed regions
as per prior work by Vergun et al. (2013). This was repeated
across all 25 principal components, and the average of those
weights determined the final weight of the seed regions. The
weighted seed regions are shown in Figure 10. The complete
list of weighted seeds, anatomical locations, and corresponding
networks can be found in the Supplementary Table 3. The highly-
weighted regions identified are known to be part of the fronto-
parietal task control, hand motor, subcortical, visual, and default
mode networks.

DISCUSSION

Rs-fMRI as a Tool to Track Stroke Recovery
Results from this study highlight the utility of rs-fMRI as a tool
to track changes in the brain during stroke recovery through
rehabilitative therapy. Rs-fMRI is particularly attractive because
it only requires about 10min for acquisition and is task-free. Our
analysis suggests that a similar analysis might be extendable to
incorporate more than one time-point to gain deeper insight into
the recovery process.

Large-Scale Impact of BCI Stroke
Rehabilitation
The majority of BCI-aided therapy programs are targeted at the
recovery of a particular impairment, such as motor functions, as
was the case for participants studied in this cohort. Our findings
showed that such a therapy can impact not only motor but also
non-motor networks in the brain. We demonstrate a greater
number of functional connections growing stronger than ones
growing weaker over time over the course of this therapy. These
results can better guide the design and implementation of BCI
systems to facilitate greater changes that strengthened in patients
with stroke.

Machine Learning as a Tool to Identify
Stage of Therapy and Relevant Functional
Differences
As evident from the confusion matrix in Table 4, we were
able to differentiate between the two stages of BCI therapy
with high cross-validation accuracy. High-dimensional rs-FC
extracted from whole brain analysis was downscaled by PCA-
based feature transformation that helped elucidate differences
across stages of therapy regarding underlying brain connections
involved. In comparison to a random classifier that is 50%
accurate, our machine learning classifier developed using low-
dimensional features derived from rs-FC performed much better
with over 90% accuracy. These results indicate that with a large
sample size, a SVM classifier could be trained on rs-FC data to
categorize a new participant into either the pre-therapy or post-
therapy stage of the recovery process by identifying the most
discriminative rs-FC features.
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FIGURE 8 | Visualization of (A) 441 strengthening functional connections and (B) 238 weakening functional connections. The overall number of connections involved

in the motor and non-motor networks can be found in Table 5. A detailed list of individual connections can be found in the Supplementary Tables 1, 2, respectively. All

brain visualizations were performed using BrainNet Viewer Toolbox (Xia et al., 2013).

The Bigger Picture
The current study is presented from a neuroimaging perspective
of the changes occurring after BCI therapy. However, other
than the neuroimaging methods, EEG and behavioral data are
the core components of this interventional study. Since this
therapy is based on acquisition of simultaneous EEG, it would be
important to understand the spectral data to support the effects
of the therapy. Group-level EEG analyses were conducted on the
associated cohort (N = 21) and the results are currently reported
under separate covers to the same issue (Remsik et al., submitted,
currently submitted for review to Frontiers in Neuroscience,
section Neural Technology). The analysis studied the levels of
desynchronization and coherence over the motor cortex and
performance with respect to functional outcomes across all time-
points. Similarly, rs-FC in the motor cortex before and after
the therapy associated with subjective and objective behavioral
outcomes have been quantified in another manuscript submitted
to the same journal (Mohanty et al., submitted, currently
submitted for review to Frontiers in Neuroscience, sectionNeural
Technology).

The most common rehabilitative clinical applications of
BCI systems (Bamdad et al., 2015) include speech (Brumberg
et al., 2010; Mugler et al., 2013) and motor (Birbaumer,
2006; Neshige et al., 2007; Sun et al., 2011) rehabilitation.

Fewer studies have adopted the BCI paradigm for cognitive
rehabilitation (Gomez-Pilar et al., 2014). Most of these deal
with improving a specific function and study changes occurring
in the associated limited brain regions. As per Supplementary
Table 3, the motor regions that contributed the most to
classification were found over the bilateral precentral gyrus
which forms the core of the primary motor cortex. This is
in alignment with findings that focus specifically on post-
stroke changes in the motor network (Lotze et al., 1999;
Young et al., 2014b; Nair et al., 2015). In addition, our study
expands the knowledge further by identifying brain changes that
occurred in the non-motor areas involving fronto-parietal task
control, default mode, and visual networks even though the
BCI therapy was primarily targeted at the recovery of motor
function. This demonstrates the importance of comprehending
the gross impact of BCI therapy on a whole-brain level.
Additionally, since the BCI system is adaptive in nature
(Schalk et al., 2004), the knowledge about functional changes
that are strengthening and/or weakening as a result of this
therapy might point toward a better design of the intervention.
Maladaptive changes caused by the compensatory activity of
the unaffected side has been shown to prevent recovery on
the affected side (Takeuchi and Izumi, 2012). One direction to
harness this information could involve regulating the way EEG
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FIGURE 9 | Number of discriminating connections per network is plotted below: (A) shows the distribution of involvement of various networks in discriminating

features; (B) shows the involvement of various networks when normalized with respect to the number of seeds found in each network. The two networks primarily

associated with motor functions are highlighted.

FIGURE 10 | Involved seed regions were weighted as per their contribution in classification. The size of each seed was directly proportional to assigned weight. The

top weighted seeds belonged to fronto-parietal, hand motor, default mode, and visual networks. A detailed list of the networks and labels of ROIs ranked as per their

weights are presented in Supplementary Table 3.

signals are processed within BCI device. The signal processing
module of the BCI system that takes into account the signal
generated at each output channel could be modulated so as

to maximize the changes that grew stronger and minimize the
changes that grew weaker, thus, tailoring the therapy for each
user.
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Limitations
Our results show that standard machine learning approach has
the potential to track recovery through BCI therapy. However,
the study was constrained in terms of the sample size since
conventional machine learning analysis relies on training on
a large dataset so as to have greater power of generalizability.
Although we attempted to include a comparable number of
participants of both genders, different lesion locations and
volumes, and differing levels of stroke severity, heterogeneity
in any of these factors might be relevant considerations
for future analysis as they could potentially influence the
results. In this analysis, the number of samples available for
training impacted the number of principal components (rank
of covariance matrix) evaluated in the feature transformation
step using PCA. Higher number of samples would provide
higher degree of freedom. With continuing recruitment, using
a larger and more homogeneous participant cohort would
allow for more generalizable conclusions. The definition of
rs-FC was based upon Pearson’s correlation, which is a
classical approach and accounts for linear dynamics among
the BOLD signals. Recent studies such as that conducted
by Smith et al. (2011) provide alternate definitions of rs-FC
such as mutual information, cosine similarity, and dynamic
time warping; therefore, applying different definitions of seeds
and rs-FC could impact the underlying discriminatory features
in classification. Although several non-motor networks were
identified as being recruited during recovery, we have not
investigated the behavioral implications of this finding, i.e.,
whether strengthened connections in these networks correlate
with behavioral gains in various brain functions. The notion of
stronger and weaker changes in rs-FC in this study might not
reflect adaptive and maladaptive changes in behavioral aspects
even though we observed overall improvement at the group-level
in measures such as the Action Research Arm Test (mean change
= 0.85), and domains of the Stroke Impact Scale (mean change in
hand function = 0.75; mean change in physical strength ≤0.13)
from pre-therapy to post-therapy.

Future Scope
The ongoing recruitment for this study offers a broad future
scope to incorporate more participants that can form a more
homogenous cohort. Comparison between stroke participants
undergoing rehabilitative therapy and healthy participants
undergoing the same therapy will allow comprehension of
recovery specifically associated with the event of a stroke. An
analysis similar to our study could be extended to incorporate
other time-points during the BCI therapy paradigm, such as the
mid-therapy (T5) and 1-month post-therapy (T7) time points.
Aside from rs-fMRI, alternative neuroimaging methods such
as diffusion tensor imaging, task-fMRI, arterial spin labeling,
and perfusion imaging capture complementary information and
could be used to analyze and compare classification performance.

CONCLUSION

We utilized PCA-based feature transformation coupled with
a SVM classifier to discriminate stroke participants by stage

of BCI intervention (i.e., the pre-therapy stage to the post-
therapy stage) on the basis of rs-FC in both motor and
non-motor regions. The findings from this study can be
summarized as follows: (i) data from a task-free rs-fMRI can
help identify changes across stages of the BCI-aided stroke
intervention and hence, has the potential to track stroke
recovery; (ii) using a machine learning SVM classifier facilitates
automation of discrimination between stages of therapy with
a reasonably high accuracy and examination of discriminating
connections; (iii) both motor and non-motor regions of the
brain undergo reorganization during this intervention. Higher
number of strengthening functional changes in comparison to
the ones weakening between pre- and post-therapy suggests
a greater overall positive impact of BCI intervention on
stroke recovery at a whole-brain level; (iv) the capability of
delineating such specific changes holds promise for better design
of the BCI therapy that could incorporate the information
by reinforcing stronger changes while suppressing weaker
changes.
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